Renewable Energy 168 (2021) 181E194
Renewable Energy 168 (2021) 181e194 Contents lists available at ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery * Teng Zhong a, b, c, 1, Kai Zhang a, b, c, 1, Min Chen a, b, c, g, , Yijie Wang a, b, c, Rui Zhu d, Zhixin Zhang a, b, c, Zixuan Zhou a, b, c, Zhen Qian a, b, c, Guonian Lv a, b, c, Jinyue Yan e, f a Key Laboratory of Virtual Geographic Environment (Ministry of Education of PR China), Nanjing Normal University, Nanjing, 210023, China b State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing, 210023, China c Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China d Senseable City Laboratory, Future Urban Mobility IRG, Singapore-MIT Alliance for Research and Technology, 1 Create Way 09-02 Create Tower, 138062, Singapore e School of Business, Society & Engineering, Malardalen€ University, Vasterås,€ 72123, Sweden f Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, 10044, Sweden g Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Science, Nanjing Normal University, Nanjing, 210023, China article info abstract Article history: Solar energy captured by solar photovoltaic (PV) systems has great potential to meet the high demand for Received 10 July 2020 renewable energy sources in urban areas. A photovoltaic noise barrier (PVNB) system, which integrates a Received in revised form PV system with a noise barrier, is a promising source for harvesting solar energy to overcome the 12 October 2020 problem of having limited land available for solar panel installations.
[Show full text]