Open Final-Thesis.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Final-Thesis.Pdf The Pennsylvania State University The Graduate School College of Medicine AN INVESTIGATION OF THE VACCINE GENERATED CELL MEDIATED IMMUNE RESPONSES TO HLA-A2.1 RESTRICTED HPV16E7 EPITOPES IN VIVO USING TWO PRECLINICAL ANIMAL MODELS A Dissertation in Microbiology and Immunology by Callie E. Bounds © 2010 Callie E. Bounds Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2010 The dissertation of Callie E. Bounds was reviewed and approved* by the following: Neil D. Christensen Professor of Pathology and Microbiology and Immunology Dissertation Advisor Chair of Committee Craig Meyers Professor of Microbiology and Immunology David J. Spector Professor of Microbiology and Immunology Todd D. Schell Associate Professor of Microbiology and Immunology Laura Carrel Associate Professor of Biochemistry and Molecular Biology Richard Courtney Professor of Microbiology and Immunology Department Chair *Signatures are on file in the Graduate School ii Abstract Human papillomaviruses (HPVs) are small DNA tumor viruses and “high risk” types have been recognized as the etiological agents of cervical cancer. Two prophylactic virus-like particle (VLP) vaccines that protect against the two most common “high risk” types, HPV16 and HPV18, are currently commercially available. However, the protection provided by each vaccine is type specific and neither vaccine can induce clearance of pre-existing HPV infections or established HPV disease. Moreover, approximately 30% of all cervical cancers are caused by other HPV types and at least 5 other cancers have been linked to HPV infection. Consequently, additional protective and therapeutic vaccine strategies are needed. The focus of this thesis was to investigate the protective vaccine generated immunity to HLA-A2.1 restricted HPV16 E7 epitopes using two preclinical animal models. The protective immunity generated after DNA vaccination against the well-known HLA- A2.1 restricted HPV16 E7 82-90 epitope was first examined using the CRPV/HLA-A2.1 transgenic rabbit model. Infectious CRPV genomes were developed by embedding the epitope within the E7 gene or the L2 gene using two alternative strategies. Protective vaccination studies carried out with these two genomes indicated that this epitope was processed and presented from its position within either the E7 protein or the L2 protein, as epitope vaccinated HLA-A2.1 transgenic rabbits were protected against viral DNA challenge. These studies also revealed that the CRPV genome contains areas of plasticity within both the E7 and the L2 genes that are amenable to PCR induced modification and suggested that while an epitope expressed during a late time point of a natural papillomavirus infection could be targeted by cell mediated immunity, early expressed epitopes are more readily targeted by cellular immunity. iii It has long been known that route of delivery can have an impact on the immune- stimulating capacity of vaccines. In head to head experiments comparing two vaccination strategies, rabbit groups were vaccinated three times at three-week intervals using the tattoo gun or gene gun followed by challenge with the wild type CRPV genome or an epitope-modified CRPV genome. These protective vaccination studies indicated that DNA vaccination through tattooing or with a gene gun yielded similar levels of protection. Thus the tattoo gun is a simple, useful, and cost-effective alternative to the gene gun and produces comparable results in the CRPV/HLA-A2.1 transgenic rabbit model. The focus of the third data chapter was the validation of new HLA-A2.1 restricted HPV16 E7 epitopes identified by bioinformatics. To examine the binding affinity and stability of the peptide/MHC complex, various in vitro assays were performed. The immunogenicity of these potential HPV16E7 epitopes was determined in vivo through peptide and DNA vaccination of HHD mice. HLA-A2-restricted HPV16 E7 epitopes that stimulated epitope-specific CTLs in the HHD mice after peptide vaccination were considered potential epitopes for continued testing. Of the seven candidate epitopes tested, four were immunogenic in vivo. Additional studies to examine the vaccine- induced epitope-specific protective immune responses generated to two of these epitopes were performed using the CRPV/HLA-A2.1 transgenic rabbit model. DNA vaccination was followed by challenge with modified CRPV genomes containing each epitope embedded in the E6 or E7 genes. The data collected from these studies suggested that the C-terminus region of the E7 gene has plasticity and is more amenable to PCR modification than the tested regions within the E6 gene. Additionally, HLA-A2.1 transgenic rabbits vaccinated against a newly discovered HPV16 E7 epitope were partially protected from challenge with the epitope-modified CRPV genome containing this epitope embedded in the E7 gene. iv Supplementary projects demonstrated that both the CRPV E6 and CRPV E7 genes are permissive for epitope-modification and that genome position, as well as epitope sequence, affect the stimulating capacity of individual epitopes. Moreover, the CRPV/HLA-A2.1 transgenic rabbit model is a useful and versatile tool for exploring the vaccine generated immunity in a model of natural papillomavirus infection and the use of both HHD mice and HLA-A2.1 transgenic rabbits to evaluate predicted epitopes overcomes the individual limitations of each HPV preclinical animal model. v TABLE OF CONTENTS LIST OF FIGURES xiv LIST OF TABLES xix LIST OF ABBREVIATIONS xxi ACKNOWLEDGEMENTS xxiv CHAPTER I: Literature Review 1 A. Papillomaviruses 2 1. Introduction 2 2. Human Papillomaviruses 2 a. Types and Tissues 2 i. Cutaneous and mucosal HPVs 2 ii. HPV and cancer progression 3 iii. Infections in immunocompromised patients 6 iv. Current treatments 7 b. Genome Organization 8 c. Life Cycle and Function of Proteins 10 3. Immune Responses to HPV Infections 15 a. Cellular Immunity 15 b. Humoral Immunity 17 c. Protein Localization and Immunity 18 4. An Illustration of Immune Evasion 18 a. The Infectious Cycle 18 b. Inhibition of Host’s Innate Immunity During Infection 20 c. Rare Codon Usage 23 d. Other Mechanisms of Immune Escape 24 vi 5. Commercially available VLP vaccines 24 a. Gardasil and Cervarix 24 b. Deficiencies of First Generation VLP Vaccines 25 B. Animal Model Systems for the Study of Papillomaviruses 26 1. Models of Natural Infection 26 a. Introduction 26 b. BPV 26 c. COPV 27 d. ROPV 27 e. CRPV 28 e. CRPV/HLA-A2.1 30 2. Mouse Models 31 a. Introduction 31 b. C57Bl/6 Mice 31 c. HLA-A2.1 Transgenic Models 32 i. HHD Mice 32 C. HPV Therapeutic Vaccines 33 1. Challenges of Vaccine Development 33 2. Considerations for Therapeutic HPV Vaccine Designs 34 3. Current Therapeutic HPV Vaccine Strategies 35 a. DNA Vaccines 35 b. Peptide/protein Vaccines 36 c. Viral/bacterial Vectors 37 d. Dendritic Cell Vaccines 38 e. Combination Vaccines 39 f. Non-HPV-Specific Therapies 40 vii 4. The First Human T Cell Vaccine 41 CHAPTER II: Introduction to the thesis 42 CHAPTER III: Relocation of an HPV16 E7 HLA-A2.1 Restricted CD8+ T Cell Epitope into the Cottontail Rabbit Papillomavirus (CRPV) Genome Increases the Protective Immunity Elicited in the HLA-A2.1 Transgenic Rabbit Model 47 A. Abstract 48 B. Introduction 49 C. Materials and Methods 51 1. DNA vaccines 51 2. Viral DNA challenge constructs 51 3. Rabbit vaccination and DNA challenge 54 4. Papilloma volume determination and statistical analysis 55 D. Results 56 1. Epitope modified CRPV genomes produce papillomas 56 2. DNA vaccinated HLA-A2.1 transgenic rabbits are partially protected against challenge with a modified CRPV genome 60 3. DNA vaccinated HLA-A2.1 transgenic rabbits are completely protected against challenge with a modified CRPV genome 60 4. DNA vaccination generates epitope-specific immunity in HLA-A2.1 transgenic rabbits 65 E. Discussion 72 F. Acknowledgements 77 CHAPTER IV: DNA Vaccination by Tattooing Induces Specific Protective Immunity to HLA-A2.1 Restricted CRPV E1 and HPV16 E7 Epitopes in HLA-A2.1 Transgenic Rabbits 78 A. Abstract 79 viii B. Introduction 81 C. Materials and Methods 84 1. DNA vaccines 84 2. DNA plasmids 84 3. Rabbit vaccination and DNA challenge 85 4. Histology and immunofluorescence detection 87 5. Statistical analysis 87 D. Results 88 1. Detection of EGFP 88 2. DNA vaccination by tattooing provides complete protection against wild type CRPV challenge 88 3. Gene gun and tattoo gun DNA vaccination provide similar levels of protection 93 4. DNA vaccination by tattooing provides complete protection against a modified CRPV genome 95 E. Discussion 103 F. Acknowledgements 105 CHAPTER V: Characterizing the Immunogenicity of a “Sequence Optimized” HPV16 E7 HLA-A2.1 Restricted Epitope Using Two HLA-A2.1 Transgenic Preclinical Animal Models 106 A. Abstract 107 B. Introduction 109 C. Materials and Methods 109 1. Bioinformatics and peptide synthesis 112 2. Antibodies, tetramer synthesis, and flow cytometry 112 3. HLA-A2.1 peptide binding assay 113 4. HLA-A2.1 stability assay 113 ix 5. Animals 114 6. HLA-A2.1 transgenic mice vaccination 114 7. Cell culture 115 8. Dendritic cell isolation and culture 115 9. Tetramer staining assay 116 10. Intracellular cytokine staining assay 116 11. DNA vaccine 117 12. Viral DNA challenge constructs 117 13. Rabbit vaccination and viral DNA challenge 119 14. Papilloma volume determination and statistical analysis 119 D. Results 120 1. Sequence modification increases binding affinity of HLA-A2.1 restricted epitope 120 2. Peptide immunization of HHD mice produces epitope- specific CTLs 123 3. An epitope-modified CRPV genomes produces papillomas 130 4. Epitope DNA vaccination is partially protective against an epitope-modified CRPV genome 133 E. Discussion 138 F. Acknowledgements 141 CHAPTER VI: Identification and Characterization of the Vaccine Generated Cellular Immune Responses to Computer-Predicted and Known HPV16 E7 HLA-A2.1 Restricted Epitopes In Vivo 142 A. Abstract 143 B. Introduction 145 C. Materials and Methods 147 1.
Recommended publications
  • The Retinoblastoma Tumor-Suppressor Gene, the Exception That Proves the Rule
    Oncogene (2006) 25, 5233–5243 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc REVIEW The retinoblastoma tumor-suppressor gene, the exception that proves the rule DW Goodrich Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA The retinoblastoma tumor-suppressor gene (Rb1)is transmission of one mutationally inactivated Rb1 allele centrally important in cancer research. Mutational and loss of the remaining wild-type allele in somatic inactivation of Rb1 causes the pediatric cancer retino- retinal cells. Hence hereditary retinoblastoma typically blastoma, while deregulation ofthe pathway in which it has an earlier onset and a greater number of tumor foci functions is common in most types of human cancer. The than sporadic retinoblastoma where both Rb1 alleles Rb1-encoded protein (pRb) is well known as a general cell must be inactivated in somatic retinal cells. To this day, cycle regulator, and this activity is critical for pRb- Rb1 remains an exception among cancer-associated mediated tumor suppression. The main focus of this genes in that its mutation is apparently both necessary review, however, is on more recent evidence demonstrating and sufficient, or at least rate limiting, for the genesis of the existence ofadditional, cell type-specific pRb func- a human cancer. The simple genetics of retinoblastoma tions in cellular differentiation and survival. These has spawned the hope that a complete molecular additional functions are relevant to carcinogenesis sug- understanding of the Rb1-encoded protein (pRb) would gesting that the net effect of Rb1 loss on the behavior of lead to deeper insight into the processes of neoplastic resulting tumors is highly dependent on biological context.
    [Show full text]
  • P53 Regulates Myogenesis by Triggering the Differentiation
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central p53 Regulates Myogenesis by Triggering the Differentiation Activity of pRb Alessandro Porrello, Maria Antonietta Cerone, Sabrina Coen, Aymone Gurtner, Giulia Fontemaggi, Letizia Cimino, Giulia Piaggio, Ada Sacchi, and Silvia Soddu Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, Center for Experimental Research, 00158 Rome, Italy Abstract. The p53 oncosuppressor protein regulates mary myoblasts, pRb is hypophosphorylated and prolif- cell cycle checkpoints and apoptosis, but increasing evi- eration stops. However, these cells do not upregulate dence also indicates its involvement in differentiation pRb and have reduced MyoD activity. The transduction and development. We had previously demonstrated of exogenous TP53 or Rb genes in p53-defective myo- that in the presence of differentiation-promoting stim- blasts rescues MyoD activity and differentiation poten- uli, p53-defective myoblasts exit from the cell cycle but tial. Additionally, in vivo studies on the Rb promoter do not differentiate into myocytes and myotubes. To demonstrate that p53 regulates the Rb gene expression identify the pathways through which p53 contributes at transcriptional level through a p53-binding site. to skeletal muscle differentiation, we have analyzed Therefore, here we show that p53 regulates myoblast the expression of a series of genes regulated during differentiation by means of pRb without affecting its myogenesis in parental and dominant–negative p53 cell cycle–related functions. (dnp53)-expressing C2C12 myoblasts. We found that in dnp53-expressing C2C12 cells, as well as in p53Ϫ/Ϫ pri- Key words: p53 • Rb • MyoD • differentiation • muscle Introduction The differentiation of skeletal myoblasts is characterized review, see Wright, 1992).
    [Show full text]
  • Elevated E2F1 Inhibits Transcription of the Androgen Receptor in Metastatic Hormone-Resistant Prostate Cancer
    Research Article Elevated E2F1 Inhibits Transcription of the Androgen Receptor in Metastatic Hormone-Resistant Prostate Cancer Joanne N. Davis,1 Kirk J. Wojno,1 Stephanie Daignault,1 Matthias D. Hofer,2,3 Rainer Kuefer,3 Mark A. Rubin,3,4 and Mark L. Day1 1Department of Urology, University of Michigan, Ann Arbor, Michigan; 2Department of Urology, University of Ulm, Ulm, Germany; 3Department of Pathology, Brigham and Women’s Hospital; and 4Harvard University, School of Medicine, Boston, Massachusetts Abstract disease recurs in an estimated 15% to 30% of patients (2). The androgen receptor (AR) is the mediator of the physiologic effects of Activation of E2F transcription factors, through disruption of androgen. It regulates the growth of normal and malignant the retinoblastoma (Rb) tumor-suppressor gene, is a key event prostate epithelial cells. Upon ligand binding, AR translocates to in the development of many human cancers. Previously, we the nucleus, binds to DNA recognition sequences, and activates showed that homozygous deletion of Rb in a prostate tissue transcription of target genes, including genes involved in cell recombination model exhibits increased E2F activity, acti- proliferation, apoptosis, and differentiation (reviewed in ref. 3). vation of E2F-target genes, and increased susceptibility to Androgen ablation therapy is highly successful for the treatment of hormonal carcinogenesis. In this study, we examined the hormone-sensitive prostate cancer; however, hormone resistance expression of E2F1 in 667 prostate tissue cores and compared significantly limits its benefits. Hormonal ablation therapy will it with the expression of the androgen receptor (AR), a marker control metastatic disease for 18 to 24 months (4), but once of prostate epithelial differentiation, using tissue microarray metastatic prostate cancer ceases to respond to hormonal therapy, analysis.
    [Show full text]
  • DEK Is a Homologous Recombination DNA Repair Protein and Prognostic Marker for a Subset of Oropharyngeal Carcinomas
    DEK is a homologous recombination DNA repair protein and prognostic marker for a subset of oropharyngeal carcinomas A dissertation submitted to the Graduate School Of the University of Cincinnati In partial fulfillment of the requirements to the degree of Doctor of Philosophy (Ph.D.) in the Department of Cancer and Cell Biology of the College of Medicine March 29, 2017 by ERIC ALAN SMITH B.S Rose-Hulman Institute of Technology, 2010 Dissertation Committee: Susanne I. Wells, Ph.D. (Chair) Paul R. Andreassen, Ph.D. Nancy Ratner, Ph.D. Peter J. Stambrook , Ph.D. Kathryn A. Wikenheiser-Brokamp, M.D., Ph.D. Abstract The DEK oncogene is currently under investigation as a therapeutic target and clinical biomarker for tumor progression, chemotherapy resistance and poor outcomes for multiple types of malignancies. With regard to most cancer types, the degree of DEK overexpression correlates with higher stage tumors and worse patient survival, marking this molecule as a promising prognostic factor. Prior to this work, the utility of DEK as a biomarker had not been assessed in oropharyngeal squamous cell carcinoma (OPSCC), an aggressive disease characterized by poor survival and high rates of treatment comorbidities. As discussed in chapter 1, OPSCC is comprised of two subtypes based on the presence or absence of human papillomavirus (HPV) infection. In general, HPV+ OPSCCs have improved therapy response and an overall better prognosis than their HPV- counterparts. This treatment sensitivity may be due in part to the HPV oncogenes, which inactivate and degrade tumor suppressors as discussed in chapter 2, removing the need for the development of mutations that promote radiation and chemotherapy resistance.
    [Show full text]
  • Restrictions in Cell Cycle Progression of Adult Vestibular Supporting Cells in Response to Ectopic Cyclin D1 Expression
    Restrictions in Cell Cycle Progression of Adult Vestibular Supporting Cells in Response to Ectopic Cyclin D1 Expression Heidi Loponen1, Jukka Ylikoski2, Jeffrey H. Albrecht3, Ulla Pirvola1* 1 Institute of Biotechnology, University of Helsinki, Helsinki, Finland, 2 Helsinki Ear Institute, Helsinki, Finland, 3 Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, United States of America Abstract Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27Kip1 and p21Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells. Citation: Loponen H, Ylikoski J, Albrecht JH, Pirvola U (2011) Restrictions in Cell Cycle Progression of Adult Vestibular Supporting Cells in Response to Ectopic Cyclin D1 Expression.
    [Show full text]
  • Functional Characterization of the Arabidopsis Retinoblastoma Related Protein
    Research Collection Doctoral Thesis Functional characterization of the Arabidopsis retinoblastoma related protein Author(s): Gutzat, Ruben Publication Date: 2009 Permanent Link: https://doi.org/10.3929/ethz-a-006023141 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH Nr. 18446 FUNCTIONAL CHARACTERIZATION OF THE ARABIDOPSIS RETINOBLASTOMA RELATED PROTEIN ABHANDLUNG zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN der ETH ZÜRICH vorgelegt von RUBEN GUTZAT Dipl.-Biol. Univ. Konstanz geboren am 14.07.1977 aus Deutschland Angenommen auf Antrag von Prof. Dr. Wilhelm Gruissem Prof. Dr. Claudia Köhler Prof. Dr. Ueli Grossniklaus Prof. Dr. Ben Scheres 2009 Ruben Gutzat FUNCTIONAL CHARACTERIZATION OF THE ARABIDOPSIS RETINOBLASTOMA RELATED PROTEIN 2 Abstract The retinoblastoma protein (pRB) is a master regulator of cell cycle and differentiation in animal cells and as such an important tumor suppressor. It regulates the G1/S-phase transition via binding to E2F/DP transcription factors and therefore inhibiting expression of S-phase genes. Some studies provide evidence that pRB is also important for cell fate determination. However, whether this is an effect only on some specialized cell types or if pRB has a general effect on cell differentiation remains unresolved. The presence of retinoblastoma-related proteins (RBRs) in plants offers the opportunity to study the function of this protein in a completely different developmental context. For example, plant organs develop after embryogenesis, plants switch from heterotrophy to autotrophy during germination and plants do not develop tumors without infection of specialized pathogens.
    [Show full text]
  • DNA Tumor Virus Oncogenes Antagonize the Cgas-STING DNA
    DNA Tumor Virus Oncogenes Antagonize the cGAS-STING DNA Sensing Pathway Laura Lau A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Daniel B. Stetson, Chair Jessica A. Hamerman Ram Savan Program Authorized to Offer Degree: Department of Immunology ©Copyright 2015 Laura Lau University of Washington Abstract DNA Tumor Viral Oncogenes Antagonizes the cGAS-STING DNA Sensing Pathway Laura Lau Chair of Supervisory Committee: Associate Professor Daniel B. Stetson Department of Immunology A key aspect of antiviral immunity is the induction of type I interferons (IFN) to mediate the effective clearance of a viral infection. Cyclic GMP-AMP synthase (cGAS) detects intracellular DNA and signals through the adapter protein STING to initiate a type I IFN- mediated antiviral response to DNA viruses. These viruses, some of which have evolved with their hosts for millions of years, have likely developed means to prevent activation of the cGAS-STING pathway, but such virus-encoded antagonists remain largely unknown. Here, we identify the viral oncogenes of the DNA tumor viruses, including E7 from human papillomavirus (HPV) and E1A from adenovirus, as potent and specific inhibitors of the cGAS-STING pathway. We show that the LXCXE motif of these oncoproteins, which is essential for blockade of the Retinoblastoma tumor suppressor, is also important for cGAS- STING pathway antagonism. We find that E1A and E7 bind to STING, and that silencing of these oncogenes in human tumor cells restores cGAS-STING pathway signaling. Our findings reveal a host-virus conflict that may have shaped the evolution of viral oncogenes, with implications for the origins of the DNA viruses that cause cancer in humans.
    [Show full text]
  • Transcriptional and Epigenetic Control of Brown and Beige Adipose Cell Fate and Function
    REVIEWS Transcriptional and epigenetic control of brown and beige adipose cell fate and function Takeshi Inagaki1,2, Juro Sakai1,2 and Shingo Kajimura3 Abstract | White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes. Interscapular BAT Adipose tissue has a central role in whole-body energy subjects who had previously lacked detectable BAT Brown adipose tissue (BAT) is a homeostasis. White adipose tissue (WAT) is the major depots before cold exposure, presumably owing to the specialized organ that adipose organ in mammals. It represents 10% or more emergence of new thermogenic adipocytes. This, then, produces heat. BAT is localized of the body weight of healthy adult humans and is leads to an increase in non-shivering thermogenesis in the interscapular and 6–9 perirenal regions of rodents specialized for the storage of excess energy. Humans and/or an improvement in insulin sensitivity . These and infants.
    [Show full text]
  • Policing Cancer: Vitamin D Arrests the Cell Cycle
    International Journal of Molecular Sciences Review Policing Cancer: Vitamin D Arrests the Cell Cycle Sachin Bhoora 1 and Rivak Punchoo 1,2,* 1 Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0083, Gauteng, South Africa; [email protected] 2 National Health Laboratory Service, Tshwane Academic Division, Pretoria 0083, South Africa * Correspondence: [email protected] Received: 30 October 2020; Accepted: 26 November 2020; Published: 6 December 2020 Abstract: Vitamin D is a steroid hormone crucial for bone mineral metabolism. In addition, vitamin D has pleiotropic actions in the body, including anti-cancer actions. These anti-cancer properties observed within in vitro studies frequently report the reduction of cell proliferation by interruption of the cell cycle by the direct alteration of cell cycle regulators which induce cell cycle arrest. The most recurrent reported mode of cell cycle arrest by vitamin D is at the G1/G0 phase of the cell cycle. This arrest is mediated by p21 and p27 upregulation, which results in suppression of cyclin D and E activity which leads to G1/G0 arrest. In addition, vitamin D treatments within in vitro cell lines have observed a reduced C-MYC expression and increased retinoblastoma protein levels that also result in G1/G0 arrest. In contrast, G2/M arrest is reported rarely within in vitro studies, and the mechanisms of this arrest are poorly described. Although the relationship of epigenetics on vitamin D metabolism is acknowledged, studies exploring a direct relationship to cell cycle perturbation is limited. In this review, we examine in vitro evidence of vitamin D and vitamin D metabolites directly influencing cell cycle regulators and inducing cell cycle arrest in cancer cell lines.
    [Show full text]
  • Proquest Dissertations
    This work is dedicated to my family. BIOCHEMICAL CHARACTERISATION OF THE EUKARYOTIC CELL CYCLE REGULATORY PROTEINS. E2F AND pRB Nadeem Ali-Khan A thesis submitted in partial fulfilment of the requirements of University College London for the degree of Doctor of Philosophy. June 2002 Division of Protein Structure, MRC National Institute for Medical Research, London. ProQuest Number: U643133 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643133 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Control of the cell cycle is partly mediated by a transcriptional regulatory mechanism whose components include the pRb family of tumour suppressors (pRb, p i30, p i07) and the E2F/DP heterodimeric transcription factors. Each of these heterodimers consists of one member of the E2F family of proteins (E2Fs 1- 6) and one of the DP family (DPs 1 and 2). E2F/DP activation of cell cycle genes is negatively regulated by cyclin A-CDK2-mediated phosphorylation of DP. The formation of a complex between E2F/DP and a pRb family protein leads to anti­ proliferative transcriptional repression.
    [Show full text]
  • Mechanisms of Embryonic Stem Cell Division and Differentiation
    GRuct rll Mechanisms of embryonic stem cell division and differentiation Josephine White Department of Molecular Biosciences (Biochemistry) The University of Adelaide Adelaide, South Australia Submitted for the degree of Doctor of Philosophy March, 2004 Thesis Summary The regulatory mechanisms governing dramatic proliferative changes during early mouse development are not well understood. This thesis aims to address this question using in vitro model systems of mouse embryogenesis. In particular, this thesis aimed to assess the function of the elevated, constitutive levels of cyclin dependent kinase 2 (CDK2) activity in embryonic stem (ES) and early primitive ectoderm-like (EPL) cells and the changes associated with differentiation into EPL embryoid bodies, in vitro equivalent of differentiation primarily to a mesodermal fate. It was determined that active CDK2 complexes associate with an increased proportion of substrates in pluripotent ES and EPL cells compared to EPL embryoid bodies. In addition, this thesis assessed the presence of other Gl CDK activity, determining that ES cells have high levels of constitutive CDK6 activity, which is refractory to inhibition by p16. Lineage specific decreases in CDK6 activity highlighted the complexities regulating cell proliferation during differentiation. Due to the reported constitutive E2F target gene expression in ES cells, this thesis also aimed to further analyse the regulation and activity of E2F transcription factors and pocket proteins in ES cells. It was demonstrated that constitutive phosphorylation of p107 and increased E2F-4 stability in ES cells contributes to increased levels of free E2F-4, that binds E2F target gene promoters in vivo. 'lhe importance of CDK regulation of pl07 in ES cells was demonstrated by analysis of ectopic expression of phosphorylation-resistant mutant p107.
    [Show full text]
  • Marlier D., Bertagnoli S
    Proceedings of the 4-7 July 2000 – Valencia Spain These proceedings were printed as a special issue of WORLD RABBIT SCIENCE , the journal of the World Rabbit Science Association, Volume 8, supplement 1 ISSN reference of this on line version is 2308-1910 (ISSN for all the on-line versions of the proceedings of the successive World Rabbit Congresses) MARLIER D., BERTAGNOLI S. VIRUS INFECTIONS OF RABBITS (main paper) Volume B, pages 151-166 VIRUS INFECTIONS OF RABBITS MARLIER D*. and BERTAGNOLI S**. *Department of Bird and Rabbit Medicine, Faculty of Veterinary Medicine, University of Liège, Bld de Colonster 20, Bat B42, Sart-Tilman, B4000, Liège, Belgium. ** UMR de Microbiologie Moléculaire, Institut National de la Recherche Agronomique and Ecole Nationale Vétérinaire, 23 Chemin des Capelles, F31076 Toulouse, France. Introduction The domestic rabbit, derived from the European wild rabbit ( Oryctolagus cuniculus ), can be naturally infected by several viruses. Nevertheless, nowadays two important viral diseases of European rabbits still exist: myxomatosis and rabbit viral haemorrhagic disease (RVHD). The etiological agent of myxomatosis, myxoma virus (MV), is a large double strand DNA virus belonging to the Leporipoxvirus genus of the Poxviridae family (Francki et al , 1991). It induces a mild disease in cottontail rabbits ( Sylvilagus spp) but a systemic and usually fatal one in the European rabbits (Fenner and Ratcliffe, 1965). Rabbit viral haemorrhagic disease (RVHD), a highly contagious disease in wild and domestic rabbits, was first described in People's Republic of China in 1984 (Liu et al , 1984). RVHD spread throughout Europe during the years 1987 to 1989 (Morisse et al , 1991).
    [Show full text]