THE IMPACT OF INVERTEBRATES TO FOUR AQUATIC MACROPHYTES:

Potamogeton nodosus, P. illinoensis, Vallisneria americana

AND Nymphaea mexicana

Julie Graham Nachtrieb, B.S.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

August 2008

APPROVED:

James H. Kennedy, Major Professor William T. Waller, Committee Member Kevin J. Stevens, Committee Member Art Goven, Chair of the Department of Biological Sciences Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Nachtrieb, Julie Graham, The impact of invertebrates to four aquatic

macrophytes: nodosus, P. illinoensis, Vallisneria americana and

Nymphaea mexicana. Master of Science (Environmental Science), August 2008, 74 pp.,

34 figures, 5 tables, references, 39 titles.

This research investigated the impact of invertebrates to four species of native

aquatic macrophytes: V. americana, P. nodosus, P. illinoensis, and N. mexicana. Two treatments were utilized on each species, an insecticide treatment to remove most invertebrates and a non-treated control. Ten herbivore taxa were collected during the duration of the study including; Synclita, Paraponyx, Donacia, Rhopalosiphum, and

Hydrellia. Macrophyte biomass differences between treatments were not measured for

V. americana or N. mexicana. The biomasses of P. nodosus and P. illinoensis in non- treated areas were reduced by 40% and 63% respectively. This indicated that herbivory, once thought to be insignificant to aquatic macrophytes, can cause substantial reductions in biomass.

Copyright 2008

by

Julie Graham Nachtrieb

ii

ACKNOWLEDGEMENTS

This research was made possible by funding from the Control

Research Program, sponsored by Headquarters, U.S. Army Corps of Engineers and is

assigned to the U.S. Army Engineer Research and Development Center under the purview of the Environmental Laboratory.

I would like to thank Drs. Grodowitz and Smart, of the Corp of Engineers, for guidance and assistance throughout this entire project from planning to statistical analyses. Without their encouragement none of this work would have been completed. I would also like to thank Dr. Kennedy for instilling me with a greater knowledge of invertebrates. I will never be able to pass a stream without looking for inhabitants under rocks. I would like to thank Drs. Waller and Stevens for their time and effort in reading and editing manuscripts. I would also like to thank all employees at the Lewisville

Aquatic Ecosystem Research Facility for countless assistance in the field, with special thanks to Chetta Owens whose positive outlook never fails. Finally, I would like to thank my family. My parents, Larry and Suzanne Graham, have always been supportive of every endeavor I have attempted. My husband, Matt Nachtrieb, is the most patient and understanding person I have ever met. I greatly appreciate all help received from my family, friends, and advisors.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...... iii

LIST OF TABLES...... v

LIST OF FIGURES...... vi

Chapters

1. INTRODUCTION ...... 1

2. OBJECTIVES ...... 6

3. MATERIALS AND METHODS ...... 8 Study Site and Design Rhodamine WT Dye Test Data Collection and Sample Processing Statistical Analyses

4. RESULTS AND DISCUSSION ...... 21 Rhodamine WT Dye Test Invertebrate Collections Harvest and Treatment Effects Community Analysis Herbivores and Non-consumptive Invertebrate Damage Percentage Invertebrate Leaf Damage Macrophyte Biomass

5. CONCLUSIONS ...... 65

APPENDIX: TAXA LIST OF ALL INVERTEBRATES COLLECTED...... 67

REFERENCES...... 70

iv

LIST OF TABLES

Page

1. Rhodamine concentrations (μg/L) ...... 22

2. Results from two-way ANOVAs of invertebrate numbers due to harvest and treatment ...... 24

3. Correspondence analysis results for Harvests I-III ...... 37

4. List of invertebrate herbivores ...... 44

5. Results from two-way ANOVAs or percent invertebrate leaf damage due to harvest and treatment...... 52

v

LIST OF FIGURES

Page

1. View of an entire pond...... 10

2. Separation fence prior to pond liner installation...... 11

3. Completed separation fence...... 12

4. Diagram of separation fence, kettle, and cages...... 13

5. The abate application system in a single cage ...... 15

6. The abate application system in an entire treatment area ...... 16

7. Diagram of rhodamine WT sampling sites...... 17

8. Mean (± 0.95 confidence interval) Ephemeroptera larvae collected per treatment (A) and per treatment area at each harvest (B) ...... 25

9. Mean (± 0.95 confidence interval) Gastropoda collected per treatment (A) and per treatment area at each harvest (B)...... 27

10. Mean (± 0.95 confidence interval) Oligochaeta collected per treatment (A) and per treatment area at each harvest (B)...... 28

11. Mean (± 0.95 confidence interval) Hemiptera collected per treatment (A) and per treatment area at each harvest (B)...... 29

12. Mean (± 0.95 confidence interval) Hemiptera excluding aphids collected per treatment (A) and per treatment area at each harvest (B) ...... 30

13. Mean (± 0.95 confidence interval) Lepidoptera collected per treatment (A) and per treatment area at each harvest (B)...... 32

14. Mean (± 0.95 confidence interval) Trichoptera larvae collected per treatment (A) and per treatment area at each harvest (B)...... 33

15. Mean (± 0.95 confidence interval) Odonata larvae collected per treatment (A) and per treatment area at each harvest (B)...... 34

16. Mean (± 0.95 confidence interval) Diptera collected per treatment (A) and per treatment area at each harvest (B)...... 35

17. Mean (± 0.95 confidence interval) Coleoptera larvae collected per treatment (A) and per treatment area at each harvest (B)...... 36

vi

18. Correspondence analysis ordination of macrophyte and macroinvertebrate taxa from Harvest I...... 40

19. Correspondence analysis ordination of macrophyte and macroinvertebrate taxa from Harvest II...... 41

20. Correspondence analysis ordination of macrophyte and macroinvertebrate taxa from Harvest III...... 42

21. Correspondence analysis ordination of macrophyte and macroinvertebrate taxa from Harvest III (excluding aphids) ...... 43

22. Damage caused to a floating leaf of P. nodosus by Synclita ...... 45

23. An adult Donacia beetle resting on N. mexicana...... 47

24. Donacia eggs on the underside of a N. mexicana leaf ...... 48

25. A Hydrellia larvae mining a floating leaf of P. nodosus...... 50

26. Odonate eggs in a floating leaf of P. illinoensis ...... 51

27. Treated (a) and non-treated (b) N. mexicana at Harvest III ...... 53

28. Treated (a) and non-treated (b) P. nodosus at Harvest III ...... 54

29. Treated (a) and non-treated (b) P. illinoensis at Harvest III ...... 55

30. Mean (± 0.95 confidence interval) dry biomass (g) of V. americana collected per treatment area at each harvest...... 58

31. Treated (a) and non-treated (b) V. americana at Harvest III...... 59

32. Mean (± 0.95 confidence interval) dry biomass (g) of N. mexicana collected per treatment area at each harvest...... 61

33. Mean (± 0.95 confidence interval) dry biomass (g) of P. nodosus collected per treatment area at each harvest...... 63

34. Mean (± 0.95 confidence interval) dry biomass (g) of P. illinoensis collected per treatment area at each harvest...... 64

vii CHAPTER1

INTRODUCTION

Thereislittleinformationavailablethatquantifiestheimpactofinvertebrate herbivoresonnativemacrophytebiomassinNorthAmerica.Earlyresearchindicated thatwhilemacrophyteswereusefulasasubstrateforinvertebratesandepiphytic growththeyprovidedlittleifanynutritivevalue(Shelford,1918).However,additional studieshaveshownimportanceofmacrophytesasanutritivesourceforinvertebrates.

Amongthose,Soszka(1975)reportedPotamogetonspeciescanloose50to90%of theirleafareabyinsectherbivoryandnonconsumptivedestructionmostlyfrom lepidopterans,trichopterans,anddipterans.Leafareadamageashighas56%, dependingonplantspeciesandlocality,wasdocumentedbySandJensenand

Madsen(1989)andattributedtoherbivorymostlybytrichopteransanddipterans.

Newman(1991)lateridentifiedfiveinsectorders,Trichoptera,Diptera,Lepidoptera,

Coleoptera,andHomoptera,ascontainingmostknownherbivorestoaquatic macrophytes.Livemacrophyteswerealsofoundtobeengagedinaquaticfoodwebs, sometimestotheextentthatmacrophytebiomass,productivity,andrelativespecies abundanceisdramaticallychangedbygrazers(Lodge,1991).Finally,Croninetal.

(1998)determinedthatfreshwatermacrophyteherbivoryissimilartothatreportedfor terrestrial.Thisviewpointdifferedwidelyfromtheideathatmacrophytesoffered surfacesubstratesonly(Shelford,1918).Yet,herbivoryisnottheonlysourceof interactionbetweeninvertebratesandaquaticplants.

Nonconsumptiveactivitiessuchasovipositingandcasemakingcanalso damageaquaticplants.Twoanisopteranfamilies,AeschnidaeandPetaluridae,aswell

1 asmostzygopterans,areknowntoovipositinaquaticplanttissue,whichcanleave

holesinplantsoncethelarvaemerge.Thisendophytictraitcanresultinexcessive

damagetoplanttissuebylargenumbersoffemales(WestfallandTennessen,1996).

ThelarvaeofSynclita obliteralis(Walker),alepidopteranthatfeedsonatleast60

differentaquaticplants,constructaportablecaseofplanttissue(Centeretal.,1999).

Aslarvaegrowtheycontinuallydiscardandbuildnewcases.Aswithodonates

mentionedabove,themorenumerousthelarvae,themoredetrimentalthiscase

makingbehaviorcanbe.Yetunliketheodonates,S. obliteralisalsofeedsonplants,

causingfurtherdamage.

Thepaucityofpublishedaccountsofinvertebrateherbivoryornonconsumptive

damagetonativemacrophytesindicatesmoreresearchiswarranted.Previousstudies

quantifiedparameterssuchaspercentherbivoredamagetomacrophytes,butwithouta

comparisontoungrazedplants,thesignificanceofthisinteractionisunknown.

ExclusionstudiesareclassifiedbyBoavidaetal.(1995)asthemostefficientand

straightforwardmethodofevaluatingtheimpactbetweenrelationshipssuchas

invertebratesandnativemacrophytes.Acomparisonbetweentwodifferentpopulations

ofmacrophytes,onewithinvertebratesandonewithout,wouldaddvaluableinformation

regardingtheimpactinvertebrateshaveonaquaticplantsbyprovidingdetailsto

differencesinplantqualityandbiomasswheninvertebratesareactiveinasystem.This

impacttonativemacrophytesisimportantformanyreasons.

First,nativeplantsareavaluablecomponentofaquatichabitats.Theyprovide

importantfishandwildlifehabitat(SavinoandStein,1982;HeitmeyerandVohs,1984;

Dibbleetal.,1996),improvewaterclarityandquality,andreduceratesofshoreline

2 erosionandsedimentresuspension(Smart,1995).Understandingtheimportanceof nativeaquaticplantshaspromptedtheiruseinanincreasingnumberofrevegetation projects.Yet,tobetterprepareplantstosurvivetransplantationmoreinformationis neededthatdescribestheimpactofbiologicalorenvironmentalfactorsontheir establishmentandgrowth.Onesuchchallengeencounteredwhenestablishingnative vegetationisherbivory.Turtles,crayfish,insectlarva,muskrats,nutria,andbeaver havebeenshowntoposeathreattoestablishmentandgrowthofaquaticplant communities(Lodge,1991;Dicketal.,1995;DoyleandSmart,1995;Doyleetal.,

1997).Duringrevegetation,macrophytesareoftenplantedwithincagestoreduce herbivoryandbioticdisturbance(Smartetal.,1998).Cagesareconstructedofvarious sizesandmaterialsandareabletoprotectmacrophytesfromcrayfishaswellaslarger herbivores.Yetinvertebratesarenotexcludedusingthecurrentdesignandtherefore substantialdamagebyinvertebrateherbivoresiscommonlyseenwithincages(Dick,

G.O.,U.S.ArmyEngineerResearchandDevelopmentCenter,personal communication).Knowledgeoftherelationshipbetweeninvertebrateherbivoresand nativemacrophytescanaidinrevegetationdecisionssuchasappropriateplantspecies andlocalityofplantings.

Nativeplantshavebeenshowntocompeteeffectivelyagainstmanyinvasive macrophytestherebyprovidingsustainablemanagementofaquaticecosystems.This providesafurtherreasontoexplorecomplexinteractionsbetweeninvertebratesand nativemacrophytes.Plantsoccurringintheirnativerangegenerallygrowbelowan economicthreshold(levelatwhichapeststartstohaveaneconomiceffect,i.e.incurs managementcosts)duetoaseriesofnaturalenemiesandseveralabioticandbiotic

3 factors,whichlimittheirspread(HarleyandForno,1992).Thesefactorscaninclude weather,climate,shelteravailability,geographicbarriers,andintraspecificand interspecificcompetition(U.S.ArmyEngineerResearchandDevelopmentCenter,

2005).Outsidetheirnativerange,plantsdonothavetheselimitingfactorsand thereforehavethecapabilityofbecominginvasive(HarleyandForno,1992).Man madereservoirsareparticularlyvulnerabletoinfestationsbyweedyspeciesbecause theytypicallylackaquaticvegetation(Smartetal.,1998).Populatingreservoirswith macrophytescanbenefitthegeneralhealthoftheaquaticsystemandhelpprevent spreadofnuisanceexoticspecies(Smart,1995).Somenativeplantscommonlyused inthesoutheasternU.S.forrestorationeffortsinpreventinginvasivespeciesinclude

Vallisneria americanaMichx., Potamogeton nodosusPoir., P. illinoensisMorong,

Heteranthera dubia(Jacq.)MacMill., and Nymphaea odorataAiton.Native macrophytessuchasV. americanahavebeennotedaseffectivecompetitorswith invasiveplantsundercertainconditions(Smartetal.,1994).Byestablishingadiverse andhencestablecommunityofnativespecies,recurrenceofaquaticplantproblems mightbeslowedorevenprevented.

Finally,ithasalsobeenshownthatnativeplantscanbecomeproblematicwithin theirnativerangeundercertainconditionsandevenmoreimportantlycanbecome seriousproblemsinotherregions.AlthoughnativetoNorthAmerica,severalspeciesof

Nuphar,Nymphaea,andPotamogetonareregardedasweedsinHolarcticcountries

(Sculthorpe,1967).Cabomba carolinianaA.Gray,anothernativespecies,isbecoming aprobleminAustraliawhereitformsmonospecificstandsthatcancoveranentirelake andislistedasoneofAustralia’s20WeedsofNationalSignificance(Schooleretal.,

4 2006).WetlandsintheUnitedKingdom,theNetherlands,andAustraliaarealsobeing threatenedby,Hydrocotyle ranunculoidesL.f.Thisrootedaquaticplantcancausea widerangeofenvironmentalproblemsincluding;1)dissolvedoxygenreduction,2) floodingduetocloggeddrainagesystems,and3)biodiversityreductionthrough competition(EPPO,2006).ByunderstandingtheimpactNorthAmericanherbivores haveonthesemacrophytespeciesnewbiologicalagentsmaybedevelopedforusein regionsfacingtheseproblemstherebyprovidinganotherlongtermcontrolstrategy.

5 CHAPTER2

OBJECTIVES

Thisresearchinvestigatedtheimpactofinvertebratestofourdifferentspeciesof nativeaquaticmacrophytes:V. americana, P. nodosus, P. illinoensis, and N. mexicana

Zucc.Twotreatmentswereutilizedoneachplantspecies,aninsecticidetreatmentto removemostinvertebratesandanontreatedcontrol.Invertebrateswerecollected, identified,andquantifiedtoassessefficacyoftheinsecticideandtodetermine communitystructure.Invertebrateeffectsonaquaticplantswerequantifiedby comparisonof1)plantdrybiomassand2)percentinvertebrateleafdamageperplant speciesbetweentreatedandnontreatedspecimens.Hypothesesforthestudyareas follows:

H0:Therearenodifferencesinnumberofinvertebratescollectedfromthe

twotreatments.

Ha:Therearedifferencesinnumberofinvertebratescollectedfromthe

twotreatments.

H0:Therearenodifferencesininvertebratecommunitiesdueto;1)pond,

2)plantspecies,or3)treatment.

Ha:Therearedifferencesininvertebratecommunitiesdueto;1)pond,2)

plantspecies,or3)treatment.

H0:Therearenodifferencesinpercentinvertebrateleafdamagefromthe

twotreatments.

Ha:Therearedifferencesinpercentinvertebrateleafdamagefromthe

twotreatments.

6 H0:Therearenodifferencesindryplantbiomassfromthetwotreatments atharvestIII.

Ha:Therearedifferencesindryplantbiomassfromthetwotreatmentsat harvestIII.

7 CHAPTER3

MATERIALSANDMETHODS

StudySiteandDesign

TheLewisvilleAquaticEcosystemResearchFacility(LAERF)islocatedin

Lewisville,Texas,DentonCounty.Thesiteincludes53earthenpondsrangingfrom

0.20.81hainsizeandaveraging1mindepth.Pondswereconstructedinthe1950’s withclaylinersoverlaidbysandyloamtopsoil,andwereusedasgamefishproduction pondsuntil1985.Nativemacrophytesandmacroinvertebratesinhabitallpondsand watertopondsisgravityfedfromLakeLewisville(Smartetal.,1995).

Thisstudywasconductedinthree0.3haponds(ponds50,51,and52)atthe

LAERF,measuringapproximately40mby60m.Preparationofthestudyponds includeddraining,mowing,rototilling,andinstallingabarriertoseparateeachpond lengthwiseintotwocongruentsides.Thebarrierconsistedofafencecoveredbypond liner,creatingtwotreatmentareasperpond,aninsecticidetreatmentandanontreated control(Figure1).Thefencewasplacedinthecenterofeachpond,lengthwisefrom thepond’skettletotheoppositebank.Thekettlerepresentsaconcreteareawhere watersupplyanddrainpipesarelocatedineachpond.Thefencewasconstructedof

1.5mtpostscoveredbygalvanizedpipeandsetat2.4mincrementsalongthecenter lineofthepond.Theheightofeachgalvanizedpipewasadjustedtofitthepond’s contour.Eachpipewasfittedwithacap,andatoprailwasinstalledthroughthecaps, perpendiculartothegalvanizedpipes(Figure2).Meshweldedwirefencing,5cmby

10cm,wasattachedtothetoprailparalleltothegalvanizedpipes.Thefencing providedsupportfor45MilEPDMFirestonepondliner(AZPondsandSupplies,Inc.

8 Birdsboro,PA)whichwashungfromthetoprail(Figure3).Thelinerwasfittedwith1

cmgrommetsevery61cmandattachedtothetoprailbycableties.Thelinerwas

measuredtofittheheightateachpipe,with1extrameteroflinerleftatthebottomto

beburiedinpondsediment.Waterwassuppliedevenlytobothsidesofthepond.

Uponcompletionofthefence,thethreepondswereplanted.

OnMay27,2005eachpondwasplantedwithfournativemacrophytes;V.

americana, P. nodosus, P. illinoensis, and N. mexicana.Nymphaea odoratawas originallyplannedforthisstudybecauseofitscommonuseinrevegetationprojectsin thisregionofTexas.Yet,N. odoratawasunavailableinthequantityneeded.Duetoits similaritieswithN. odorata,N. mexicanawasplantedinstead.Sevenreplicatesofeach

specieswereplantedineachtreatmentarea.Eachreplicatewasenclosedina91cm

diameterby1.2mtallcylinder(cage)andconstructedfrom5cmby10cmmesh

weldedwirefencinganchoredwith1.2mlengthsofrebar.Cageswereusedforeasy

visibilityoflocationofreplicatesandtoprotectplantsfromdisturbancessuchasturtles

orducks.Thecageswereevenlyspacedapartandpositionedatequaldepthsby

followingthecontourofeachpond(Figure4).Sizeandamountofpotsdeterminedto

besuitableforacagevariedforeachspeciesduetoplantsizeandgrowthrate.Each

cagewasplantedwithoneofthefollowing:three–1LpotsofP. nodosusorP.

illinoensis,one6.7LpotofV. americana,orone–1LpotofN. mexicana.Plantswere

removedfrompotsandplanteddirectlyintosediment.Placementofeachplantspecies

withineachtreatmentareawasrandomlyselected.Fivetriploidgrasscarpwerealso

addedpertreatmentareatohelpcontrolvegetativegrowthoutsideofcages.Ponds

weremaintainedatadepthofapproximately1m.

9 Figure1.Viewofanentirepondwithseparationfencespanninglengthwisefromone

banktotheother.Cagesarevisibleinpondpriortoplanting.

10 Figure2.Theseparationfencewasconstructedof1.5metertpostscoveredby

galvanizedpipeandsetat2.4meterincrementsalongthecenterlineofeachpond.

Eachpipewasfittedwithacapandtoprailwasinstalledthroughthecaps

perpendiculartothegalvanizedpipes.

11 Figure3.Pondlinerwasattachedtothetoprailoftheseparationfencetoforma

barrierbetweenthetwotreatmentareasofeachpond.Meshweldedwirefencingwas

alsohungfromthetoprailtoprovidefencestabilityandsupportforthepondliner.

12 Figure4.Diagramofseparationfence,kettle,andcages.Thefencewasplacedinthe centerofeachpond,lengthwisefromthepond’skettle(locationofwatersupplyand drainpipes)totheoppositebank.Pondsmeasuredapproximately40mby60m.All plantreplicateswereenclosedincages.Cageswereevenlyspacedapartalongthe pond’scontourtoequalizedepth.Placementofeachplantspecieswasrandomly selected.

13 Aninsecticide,Abate®4E(Abate)(ClarkeMosquitoControlProducts,Inc.

Roselle,IL),wasappliedasanemulsifiableconcentratetoonehalfofeachpond weeklyat0.047lbsa.i./acre(1.5fl.oz/acre)toremovemostinvertebrates.This treatmentamountwaschosenbecauseitisthelabelratesuggestedforapplicationsin deepwaterorareaswithdensesurfacecoversuchasmacrophytes.Abateisanon systemicorganophosphatewith44.6%activeingredienttemephos(O,O’(thiodi4,1 phenylene)O,O,O’,O’,tetramethylphosphorothioate)and55.4%inertingredients includingpetroleumdistillates.Abateactsasacholinesteraseinhibitorandisusedfor controlofmidgeandmosquitolarva.Halflifeofabatephotolysisinwateris15days.

TheAbateapplicationsystemwasconstructedof1.3cmdiameterirrigationhose attachedtothetopofeachcagewithineachAbatetreatmentarea.One2gphdrip emitterwasattachedtoirrigationhoseinthecenterofeachcagesothatAbatewas directlyappliedtoplantsandwaterwithinthecage(Figure5).Hosecontinuedthrough eachcagewithoneendcappedshutandtheotherendleftopen(Figure6).Abatewas appliedbyattachingtheopenendofirrigationhosetoagaspoweredsprayer(FIMCO,

No.SiouxCity,SD)whichforcedAbateintothehoseandoutthroughthedripemitters.

RhodamineWTDyeTest

Toevaluateefficacyoftheseparationfencetopreventmixingofwaterbetween treatmentareas,rhodamineWTdye(rhodamine)wasappliedat1.34g/Ltoeach treatedareapriortoAbateapplicationusingtheAbateapplicationsystem.Water samplesweretakenacrossthewidthofeachpondattransectlinesat16,32,and48m alongthelengthofthepond(Figure7).Threewatersamplesweretakenoneachside ofthecenterseparationfenceateachtransectlineatadepthof41cmat1,5,24,48,

14 and96hoursaftertreatment(HAT).Locationsoftransectlineswerechoseninorderto

collectsamplesthroughouttheentirepond.Onereferencewatersamplewasalso

takenfromeachpondareabeforeapplication.Allsampleswerestoredindarkbottles

forapproximately1weekuntilfluorometer(TurnerDesigns,Inc.Sunnyvale,CA)

analysisforrhodamineconcentration.

Figure5.Theabateapplicationsystemwasconstructedof1.3centimeterdiameter

irrigationhoseattachedtothetopofeachcage.Adripemitter(2gph)wasattachedto

theirrigationhoseinthecenterofeachcagesothatAbatewasdirectlyappliedtothe

waterandplantswithinthecage.

15 Figure6.Onelineofirrigationhosewasinsertedthroughallcagesofatreatmentarea.

Oneendofthehosewascappedshutwhiletheotherremainedopenforattachmentto

agaspoweredsprayer.

16 Figure7.AdiagramofrhodamineWTsamplingsites.Watersamplesweretaken acrossthewidthofeachpondattransectlinesat16,32,and48metersalongthe lengthofthepond.Threewatersamplesweretakenoneachsideoftheseparation fenceateachtransectline.Cagesarerepresentedbyblackcircles.

17 DataCollectionandSampleProcessing

Onereplicateofeachplantspeciespertreatmentareawasrandomlyselected andharvestedforinvertebrates,plantbiomass,andpercentinvertebratedamageatthe firstandsecondmonthafterplanting,June20(harvestI)andJuly19(harvestII) respectively.Atthefourthmonthafterplanting,September16(harvestIII),5replicates ofeachplantspeciespertreatmentareawererandomlyselectedandharvested.Asin previousharvests;invertebrates,plantbiomass,andpercentinvertebratedamagewere collectedfrom1replicatewhileonlyplantbiomasswascollectedfromtheremaining4 replicates.PlantbiomasswascollectedinlowreplicationatharvestI&IItoshow generaltrendsofplantgrowth.Toevaluateendofgrowingseasondifferencesinplant biomassduetoinvertebrate/plantinteractions,additionalbiomassreplicateswere collectedatharvestIII.Thesamemethodswerefollowedforeachharvest.

Plantswithineachcagewereseveredatthetopofsedimentandimmediatelyput intoaplasticbag.Uponreturntothelaballplantmatterwasrinsedwithwaterto removesedimentoralgae.Replicatesharvestedforinvertebrateswererinsedwith wateroverabuckettodislodgeanyinvertebrates.Bucketswereemptiedinto710 micronsievesandallinvertebratescollectedwerepreservedin70%ethanol.After rinsingwascomplete,plantswerephysicallyexaminedandanyremaininginvertebrates wereremovedandpreserved.Invertebrateswereidentifiedasfollows:Annelidsto class,Gastropoda&Insectatogenus(exceptforfamilyChironomidaetosubfamily).

Planttissuewasseparatedintospeciesandifreplicateswereharvestedforpercent invertebrateleafdamage,threeleaveswerechosenatrandomandphotographed.

Plantswereplacedinbrownpaperbags,anddriedinanovenat55ْCfor48hoursto

18 obtainadryweight.Uponremovalfromtheoven,plantmatterwasweighed.Aportion

ofplantswereplacedbackintotheovenforanadditional48hourstoverifythata

constantweighthadbeenobtained.LeafphotographswereanalyzedusingImage

Pro®Express5.1(MediaCybernetics,Inc.Bethesda,MD).Totalareaofeachleafas

wellasthetotalareaofallinvertebratedamage(consumptiveaswellasnon

consumptive)wascalculatedtodeterminemeanpercentageofinvertebratedamageto

eachplantreplicate.

StatisticalAnalyses

ExperimentaldatawereanalyzedusingSTATISTICAversion8.0(StatSoft,Inc.,

2007,Tulsa,OK)andincludeanalysisofvariance(ANOVA),NewmanKeuls(NK),

HartleyFmax,ShapiroWilk’sWtest,poweranalysis,andcorrespondenceanalysis

(CA).Statementsofsignificancemadethroughoutthetextrefertoalphalevel0.05.

AtwowayANOVAwasperformedtodifferentiatechangesintotalnumberof

invertebratesdueto:1)harvestand2)treatment.Nineinvertebrategroupswere

analyzedseparatelyincluding;Coleoptera,Diptera,Trichoptera,Hemiptera,

Lepidoptera,Odonata,Ephemeroptera,Oligochaeta,andGastropoda.Thislevelof

identificationwasconsideredtaxonomicallysufficientforthisanalysisduetolow

samplessizeswhendatawereseparatedintofamilyorgenus.NKmultiplerangetest

differentiatedstatisticallydistinctmeans.Assumptionsofnormalityandhomogeneityof

varianceswereevaluatedwithShapiroWilk’sWtestandHartleyFmaxrespectively.

Allinvertebrategroupsfailedtomeettheseassumptions.AtwowayANOVAwas

performedonrankeddataasanacceptablenonparametricmethodfortwofactorand

higherANOVAs.Zar(1999)discussescomparingobservedprobabilitiesandstatistical

19 decisionsofparametricandnonparametricresults.Asinthiscase,ifresultsaresimilar eithertestcanbereported.Fortheseanalysesallfactorsdeemedstatistically significantwerethesameforbothtests.ParametrictwowayANOVAresultswillbe reported.

Invertebrateeffectsonaquaticplantswerequantifiedbycomparisonofpercent invertebrateleafdamageandplantdrybiomassbetweentreatedandnontreated samples.AtwowayANOVAwasperformedforeachplantspeciestodifferentiate changesinpercentinvertebrateleafdamagedueto:1)harvestand2)treatment.

DifferencesinplantbiomassbetweentreatmentsatHarvestIIIwereanalyzedwitha onewayANOVAforeachplantspecies.Assumptionsofnormalityandhomogeneityof variancesweremetforbothanalyses.

PoweranalysiswasevaluatedforeachfactorofeachANOVAwhichdidnotgain statisticalsignificance.Samplesizerequiredforstatisticallysignificantresultswas determinedwithstandarddeviationandmeansfromoriginalstatisticsatapowerof

0.95.

Differencesininvertebratecommunitystructurebasedonplantspecies,pond, andtreatmentwereanalyzedbyCAforharvestsIIII.Forthisanalysisinvertebratedata wasincludedatthelowestidentifiedlevel:Annelidstoclass,Gastropoda&Insectato genus(exceptforfamilyChironomidaetosubfamily).CAresultsarepresentedas ordinationbiplotsforeachharvestofplantspeciesperpondandtreatmentarea.

20 CHAPTER4

RESULTSANDDISCUSSION

RhodamineWTDyeTest

Rhodamineconcentrationsweremorevariableintreatedareasfrom1to5HAT thanatsubsequentsamplestimes(Table1).Forinstance,inpond50concentrations rangedfrom0.20g/Lto4.40g/L(1HAT)and1.70g/Lto4.50g/L(5HAT).This variabilityresultedfromincompletedyedispersalandpossible‘hotspots’wheredye wastrappedbyexcessvegetation.Therhodaminedyeineachtreatedareawas uniformlydistributedby24HAT(Table1);thereforea96hoursamplingperiodshould havebeensufficienttodetectrhodamineinnontreatedareas.Analysisofpre treatmentwaterfromeachpondareayielded0.20g/Lofbackgroundfluorescence.

Therefore,thedetectablelevelofrhodaminewasgreaterthan0.20g/L.

Concentrationsinnontreatedareasremainedat0.20g/Linpond51forallsampling sitesandtimes.Inponds50and52concentrationsof0.30g/Land0.40g/L respectivelywererecorded(Table1).Thiscouldrepresentcontaminationofrhodamine

(i.e.Abate)inthenontreatedareasofponds50and52,butatlowlevels.Each separationfencewasdeterminedtobeaneffectivebarrier,withtransferofinsecticide minimalatmost.

21 Table1.Rhodamineconcentrations(g/L)attransectlinesat16,32and48meters alongthelengthofeachpondat1,5,24,48,and96hoursaftertreatment(HAT).

Rhodaminewasappliedattherateof1.34g/L.Analysisofpretreatmentwaterfrom eachpondareayielded0.20g/L.

Pond Treatment Transect Rep 1HAT 5HAT 24HAT 48HAT 96HAT (m) g/L g/L g/L g/L g/L 50 Control 16 1 0.20 0.30 0.20 0.20 0.20 50 Control 16 2 0.20 0.30 0.20 0.20 0.20 50 Control 16 3 0.20 0.20 0.20 0.20 0.20 50 Control 32 1 0.20 0.30 0.20 0.20 0.20 50 Control 32 2 0.20 0.20 0.20 0.20 0.20 50 Control 32 3 0.20 0.30 0.20 0.20 0.20 50 Control 48 1 0.20 0.30 0.20 0.20 0.20 50 Control 48 2 0.20 0.30 0.20 0.20 0.20 50 Control 48 3 0.20 0.30 0.30 0.20 0.20 50 Rhodamine 16 1 2.00 4.50 1.10 1.00 1.00 50 Rhodamine 16 2 0.60 2.20 1.10 1.00 1.00 50 Rhodamine 16 3 1.60 2.60 1.10 1.00 1.00 50 Rhodamine 32 1 4.40 2.80 1.20 1.00 1.00 50 Rhodamine 32 2 1.70 2.90 1.20 1.00 1.00 50 Rhodamine 32 3 1.70 2.70 1.20 1.00 1.00 50 Rhodamine 48 1 0.80 2.20 1.20 1.00 1.00 50 Rhodamine 48 2 0.20 2.20 1.20 1.00 1.00 50 Rhodamine 48 3 0.60 1.70 1.20 1.00 1.00 51 Control 16 1 0.20 0.20 0.20 0.20 0.20 51 Control 16 2 0.20 0.20 0.20 0.20 0.20 51 Control 16 3 0.20 0.20 0.20 0.20 0.20 51 Control 32 1 0.20 0.20 0.20 0.20 0.20 51 Control 32 2 0.20 0.20 0.20 0.20 0.20 51 Control 32 3 0.20 0.20 0.20 0.20 0.20 51 Control 48 1 0.20 0.20 0.20 0.20 0.20 51 Control 48 2 0.20 0.20 0.20 0.20 0.20 51 Control 48 3 0.20 0.20 0.20 0.20 0.20 51 Rhodamine 16 1 1.60 1.40 0.70 0.60 0.60 51 Rhodamine 16 2 1.60 1.40 0.70 0.60 0.60 51 Rhodamine 16 3 1.40 1.40 0.80 0.60 0.60 51 Rhodamine 32 1 2.00 1.40 0.70 0.60 0.60 51 Rhodamine 32 2 1.90 1.30 0.70 0.60 0.60 51 Rhodamine 32 3 1.90 1.40 0.70 0.60 0.60 51 Rhodamine 48 1 0.80 0.80 0.70 0.60 0.60 51 Rhodamine 48 2 0.70 0.80 0.80 0.60 0.60 22 51 Rhodamine 48 3 0.20 1.00 0.80 0.60 0.60 52 Control 16 1 0.30 0.20 0.30 0.20 0.30 52 Control 16 2 0.20 0.30 0.30 0.20 0.30 52 Control 16 3 0.30 0.30 0.30 0.20 0.30 52 Control 32 1 0.30 0.30 0.40 0.20 0.30 52 Control 32 2 0.30 0.30 0.40 0.20 0.30 52 Control 32 3 0.40 0.30 0.40 0.20 0.30 52 Control 48 1 0.40 0.40 0.40 0.20 0.30 52 Control 48 2 0.40 0.30 0.30 0.30 0.30 52 Control 48 3 0.30 0.30 0.30 0.30 0.30 52 Rhodamine 16 1 1.00 1.60 0.80 0.80 0.70 52 Rhodamine 16 2 3.50 1.20 0.80 0.80 0.70 52 Rhodamine 16 3 0.50 0.90 0.90 0.80 0.70 52 Rhodamine 32 1 2.50 2.00 0.80 0.70 0.70 52 Rhodamine 32 2 2.60 1.00 0.80 0.80 0.70 52 Rhodamine 32 3 3.00 2.00 0.90 0.80 0.70 52 Rhodamine 48 1 3.20 1.80 0.90 0.80 0.70 52 Rhodamine 48 2 3.00 1.80 0.90 0.80 0.70 52 Rhodamine 48 3 3.50 1.60 0.90 0.80 0.70

InvertebrateCollections

HarvestandTreatmentEffects

Ephemeropteransdisplayedstatisticallysignificantpopulationreductionsdueto treatmentonly(Table2&Figure8a).Poweranalysisdeterminedthatasamplesizeof

51replicateswouldberequiredtoachievestatisticallysignificantresultsforharvestata powerof0.95.Statisticalsignificancewasnotattainedforharvestdifferences,yet generaltrendswerenoted.Collectionsfromtreatedareasaveragedclosetozero larvaepersamplefortheentirestudy.Mayflycollectionsfromnontreatedareas,while alsolow,peakedatameanofabout4larvaepersampleatharvestIII(Figure8b).

23 Table2.ResultsfromtwowayANOVAsperformedtoidentifychangesinnumberof

invertebratesduetoharvestandtreatment.

Harvest* Invertebrate Harvest Treatment Treatment F p F p F p Gastropoda 8.4356 0.0005 2.4117 0.1252 1.2381 0.2966 Coleoptera 5.1416 0.0084 44.5448 0.0000 8.5244 0.0005 Diptera 8.2512 0.0006 26.1916 0.0000 8.1864 0.0007 Oligochaeta 5.1801 0.0081 2.8124 0.0983 0.2760 0.7597 Trichoptera 3.0048 0.0564 11.8890 0.0010 3.0057 0.0563 Hemiptera 14.1597 0.0000 1.5998 0.2104 2.1962 0.1193 Hemiptera–Aphididae 6.2965 0.0031 10.6446 0.0018 6.4263 0.0028 Lepidoptera 7.9294 0.0008 33.9200 0.0000 6.2011 0.0034 Odonata 12.6545 0.0000 14.6409 0.0003 10.1269 0.0001 Ephemeroptera 2.1367 0.1261 8.2380 0.0055 1.8321 0.1681

24 Figure8.Mean(±0.95confidenceinterval)Ephemeropteralarvaecollectedper treatment(A)andpertreatmentareaateachharvest(B).Meanswiththesameletter arenotsignificantlydifferent(NKmultiplerangetest,α=0.05).TwowayANOVA, harvest:p=0.126,F=2.137,DF=2,66;treatment:p=0.006,F=8.238,DF=1,66; interaction:p=0.168,F=1.832,DF=2,66).

a A 3

2

b 1 MeanEphemeroptera

0

1 Nontreated Treated Treatment

25 Threeinvertebrategroups,Gastropoda,Oligochaeta,andHemiptera,had statisticallysignificantdifferencesatharvestonly(Table2).Theseinvertebrategroups werenotaffectedbytheinsecticidetreatment.Toachievestatisticalsignificance differencesbetweentreatmentsatapowerof0.95,Gastropoda,Oligochaeta,and

Hemipterawouldrequire80,63,and139samplesrespectively.Gastropods significantlyincreasedover4foldfromharvestIII,butdidnotsignificantlychangeat harvestIII(Figure9).Lownumbersofoligochaeteswerecollectedthroughoutthe study,withmeanslessthan3individualspersample(Figure10).Hemipterascollected atharvestIIIweresignificantlygreaterthanbothharvestI&II(Figure11).Acloserlook attheHemipteradatarevealsthatwhileaphids(Rhopalosiphumsp.)werenotcollected

atharvestI,aphidsdominatedHemipteracollectionsbyharvestII&III.Hemiptera

samplesconsistedof96and97percentaphidsatharvestII&IIIrespectively.

Rhopalosiphumaphidsareknowntooverwinteraseggsonfruittreesandthenas

adults,migratetoaquaticvegetation(floatingandemergent)inmidtolatesummer

whichwouldcoincidewithlaterharvests(Centeretal.,1999).Aphidsmaynothave

beenexposedtoAbatewhilerestingandfeedingontopofplants,notincontactwith

water.WhenHemipteradatawereanalyzedwithoutaphidstheinsecticidewasfoundto

beeffective(Figure12).

26 Figure9.Mean(±0.95confidenceinterval)Gastropodacollectedperharvest.Means

withthesameletterarenotsignificantlydifferent(NKmultiplerangetest,α=0.05).

TwowayANOVA,harvest:p<0.001,F=8.436,DF=2,66;treatment:p=0.125,F=

2.412,DF=1,66;interaction:p=0.296,F=1.238,DF=2,66).

b 200 b

150

100 a MeanGastropoda 50

0

I II III Harvest 27 Figure10.Mean(±0.95confidenceinterval)Oligochaetacollectedperharvest.Means

withthesameletterarenotsignificantlydifferent(NKmultiplerangetest,α=0.05).

TwowayANOVA,harvest:p=0.008,F=5.180,DF=2,66;treatment:p=0.098,F=

2.812,DF=1,66;interaction:p=0.760,F=0.276,DF=2,66).

a 4

3 ab

2 b

1 MeanOligochaeta

0

1 I II III Harvest

28 Figure11.Mean(±0.95confidenceinterval)Hemipteracollectedperharvest.Means

withthesameletterarenotsignificantlydifferent(NKmultiplerangetest,α=0.05).

TwowayANOVA,harvest:p<0.001,F=14.160,DF=2,66;treatment:p=0.210,F=

1.600,DF=1,66;interaction:p=0.119,F=2.196,DF=2,66).

b 140

120

100

80

60 a 40 a MeanHemiptera 20

0

20

40 I II III Harvest

29 Figure12.Mean(±0.95confidenceinterval)Hemipteraexcludingaphidscollectedper

treatmentareaateachharvest.Meanswiththesameletterarenotsignificantly

different(NKmultiplerangetest,α=0.05).TwowayANOVA,harvest:p=0.003,F=

6.296,DF=2,66;treatment:p=0.002,F=10.645,DF=1,66;interaction:p=0.003,F

=6.426,DF=2,66).

Analysisofsixinvertebrategroups(Coleoptera,Diptera,Trichoptera,

Lepidoptera,Odonata,andHemipteraexcludingaphids)resultedinstatistical

30 significancefortheinteractionbetweenharvestandtreatment(Table2).Threegeneral trendswerenotedforeachinvertebrategroup.

First,thenumberofinvertebratescollectedfromtreatedareasdidnot significantlychangethroughoutallharvests(Figures1217).Meaninvertebrates collectedremainedlessthan1individualpersampleforHemipteraexcludingaphids,

Lepidoptera,Trichoptera,andDiptera(Figures1215),whileOdonataandColeoptera meanswerelessthan6individualspersample(Figures1617).

Second,invertebratepopulationscollectedfromnontreatedareassignificantly increasedovertime(Figures1217).Increasesinmeaninvertebratenumbersfrom harvestIIIIrangedfroma3foldincreaseinColeopteratoa41foldincreaseinOdonata

(Figure16&17).Theseincreasesweremostlikelyduetoinvertebratecolonization.All threepondsweredrypriortothestartofthestudyandwerethereforevoidofaquatic invertebratesandvegetation.OtherpondsattheLAERFaremaintainedyearround, thereforeprovidinga‘stock’ofinvertebratescapableofcolonization.Inaddition, invertebrateswereprobablyintroducedthroughtheLakeLewisvillepondwaterusedto fillallpondsattheLAERF.

Finally,statisticallysignificantdifferencesininvertebratenumbersbetweenthe twotreatmentswereonlyattainedatharvestII&III(Figs12–17).Bothtreatment areashadfewinhabitantsatharvestImakingitdifficulttoidentifyreductionsin invertebratesduetoabateapplication.ByharvestII&III,invertebrateshadcolonized nontreatedareasandtreatmentdifferenceswereevident.Abateapplicationsreduced invertebratesnumbersby94–100percentdependingonharvestandinvertebrate group.Lepidoptera,Diptera,andColeopteraweresignificantlylessintreatedareasat

31 bothharvestII&III(Figures13,15,and17),whileHemipteraexcludingaphids,

Trichoptera,andOdonataattainedstatisticallysignificantreductionsatharvestIIIonly

(Figures12,14,and16).

Figure13.Mean(±0.95confidenceinterval)Lepidopteracollectedpertreatmentarea

ateachharvest.Meanswiththesameletterarenotsignificantlydifferent(NKmultiple

rangetest,α=0.05).TwowayANOVA,harvest:p=0.001,F=7.929,DF=2,66;

treatment:p<0.001,F=33.920,DF=1,66;interaction:p=0.003,F=6.201,DF=2,

66).

32 Figure14.Mean(±0.95confidenceinterval)Trichopteralarvaeandpupaecollected pertreatmentareaateachharvest.Meanswiththesameletterarenotsignificantly different(NKmultiplerangetest,α=0.05).TwowayANOVA,harvest:p=0.056,F=

3.005,DF=2,66;treatment:p=0.001,F=11.889,DF=1,66;interaction:p=0.056,F

=3.006,DF=2,66).

33 Figure15.Mean(±0.95confidenceinterval)Dipteralarvaeandpupaecollectedper

treatmentareaateachharvest.Meanswiththesameletterarenotsignificantly

different(NKmultiplerangetest,α=0.05).TwowayANOVA,harvest:p=0.001,F=

8.251,DF=2,66;treatment:p<0.001,F=44.545,DF=1,66;interaction:p<0.001,F

=8.524,DF=2,66).

34 Figure16.Mean(±0.95confidenceinterval)Odonatalarvaecollectedpertreatment

areaateachharvest.Meanswiththesameletterarenotsignificantlydifferent(NK

multiplerangetest,α=0.05).TwowayANOVA,harvest:p<0.001,F=12.654,DF=

2,66;treatment:p<0.001,F=14.641,DF=1,66;interaction:p<0.001,F=10.127,

DF=2,66).

35 Figure17.Mean(±0.95confidenceinterval)Coleopteralarvaecollectedpertreatment areaateachharvest.Meanswiththesameletterarenotsignificantlydifferent(NK multiplerangetest,α=0.05).TwowayANOVA,harvest:p=0.008,F=5.142,DF=2,

66;treatment:p<0.001,F=44.545,DF=1,66;interaction:p=0.001,F=8.524,DF=

2,66).

36 Differencesinnumberofinvertebratesduetotreatmentvariedbasedon invertebrategroup(Table2).Thenullhypothesisthatnumbersofinvertebrates collectedfromthetwotreatmentswouldnotdifferwasacceptedforGastropoda,

Oligochaeta,andHemipterawhenaphidswereincludedinthecounts.Significant reductionsininvertebratenumbersduetoabatewereseenforEphemeroptera,

Coleoptera,Diptera,Trichoptera,Lepidoptera,Odonata,andHemipterawhenaphid countswereexcludedandthereforethenullhypothesiswasrejected.

InvertebrateCollections

CommunityAnalysis

EachCAbiplotisrepresentedbythefirsttwoaxisdeemedsignificantbytheCA.

Thepercentoftotalinertia(variance)explainedcollectivelybythetwoaxisincreased overtimefromharvestI(36%)toharvestIII(57%)(Table3).Thelocationofreplicates withinCAbiplotsappearedrandomatharvestI,butbyharvestII&IIItreatment differencesdefinedthegroupings(Figures18–21).

Table3.CorrespondenceAnalysisresultsforharvestsIIIIincluding:1)eigenvaluesfor eachaxis,2)totalinertia(variance),3)percentoftotalinertiadescribedbyeachaxis, and4)totalpercentofinertiadescribebybothaxistogether.

EigenValues PercentofTotalInertia Total Harvest Axis1 Axis2 TotalInertia Axis1 Axis2 Percent I 0.49 0.26 2.09 24 12 36 II 0.59 0.37 1.74 34 21 55 III 0.48 0.25 1.28 38 19 57 IIIexcludingaphids 0.42 0.18 1.12 37 16 53

37 AtharvestI,fewinvertebratesinhabitedtheponds;therefore,itwasdifficultto identifycommunitydifferences.MostreplicateswithintheCAbiplotweregrouped togetherwithoutanydistinctassemblagesbasedonplantspecies,pond,ortreatment

(Figure18).Fourreplicates(N. mexicana51treated(T),N. mexicana52Nontreated

(NT),P. illinoensis52NT,andP. nodosus52NT)wereseparatedfromthemain

groupingduetoanabundanceorscarcityofoneormoreinvertebrates(Figure18).

Nymphaeamexicana52NTwasassociatedwithanabundanceoftwodifferentlarval coleopterans,Cybistersp.andTropisternussp.whilePhysasp.,agastropod,was absentfromN.mexicana51Tandpresentinallothersamples.Callibaetissp.,an ephemeropteran,waspresentinP. illinoensis52NTandP. nodosus52NTin quantities58foldgreaterthananyothersample.Theremainingreplicatesdidnot assembleinanydistinctorderbasedonplantspecies,pond,ortreatment(Figure18).

AtharvestIIreplicatesbegantoseparateintotwodifferentgroupsbasedon treatment,butnotrendswereobservedforpondorplantspecies(Figure19).Treated replicateswereseparatedfromnontreatedbecauseoftheirlackofinvertebratesother thanthosenotaffectedbytheinsecticidetreatment;aphids,gastropods,and oligochaetes.Nontreatedreplicatescontainedmuchmorediverseinvertebrate communitiesandthereforehadabroaderrangeontheCAbiplot(Figure19).Three treatedand2nontreatedreplicatesappeartobedetachedfromtheremainingsamples

(Figure19).Fourofthesereplicates(N. mexicana51T,P. illinoensis51T,P.

illinoensis51NT,andV. americana51NT)hadanabundanceofRhopalosiphumsp.

aphidsrangingfrom62–123aphids,whileallremainingsampleshadamaximumof22

38 aphids.Potamogeton nodosus51Twasseparatedfromothertreatedreplicatesdueto lowpopulationsofPhysasp.

AtharvestIIItwodistincttreatmentgroupswereidentifiedontheCAbiplot,while noevidenceofplantspeciesorpondgroupingswerenoted(Figure20).Thenon treatedgroupcontainedtworeplicates(P. nodosus51NTandP. nodosus52NT)that werespacedapartfromtheremaininggroupduetoanabundanceofaphids.These twosampleshadquantitiesofaphidsgreaterthan200whileallothernontreated replicateshadamaximumof73.Treatedreplicateshadamuchbroaderrangeonthe biplot,thannontreatedreplicates.Thiswasunexpectedsincetreatedreplicatesshould havefewinvertebratesduetotheinsecticidetreatment.Acloserlookatthedata revealedthattreatedreplicateswereverticallyspacedapartbyaphidquantity.The topmostsample,N. mexicana50Thadtheleastaphids,0,whilethebottommost sample,N. mexicana51Thadthemostaphids,423(Figure20).Toillustratethe degreeofinfluenceaphidshadovertreatedcommunitystructure,aphidswereremoved fromdataandtheCAbiplotwasregenerated.Asexpected,thetreatedreplicates formedatightgroup,distinctfromnontreatedreplicates(Figure21).Treatedreplicates containedfewinvertebratesotherthanaphids,gastropods,andoligochaetes.Ofthese invertebrates,theaphid’sdistributionamongreplicateswaslessuniformandtherefore greatlyinfluentialtotheCAoutcome.

39 Figure18.CorrespondenceAnalysisordinationofmacrophyteandmacroinvertebrate

taxafromharvestI.Pointsarelabeledastotheplantspecies,pondnumber,and

treatment(T=treated,NT=nontreated)where:V. americana(V.ame),P. nodosus

(P.nod),P. illinoensis(P.ill),andN. mexicana(N.mex).Axis1&2explainedatotalof

36%oftotalinertia(variance).

1.5 N.mex51TMe51NH1

1.0 N.mex50NT P.nod51T V.ame51T P.nod51NT 0.5 V.ame50T P.nod50NT N.mex52NT P.ill51T V.ame51NT P.ill51NT P.ill50NT 0.0 V.ame50NT N.mex52T N.mex51NT P.nod52T P.ill51T V.ame52T 0.5 N.mex50T

V.ame52NT P.ill52NT P.nod50T P.nod52NT 1.0 Axis2;Eigenvalue:0.26(12%ofInertia) P.ill52T

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Axis1;Eigenvalue:0.49(24%ofInertia)

40 Figure19.CorrespondenceAnalysisordinationofmacrophyteandmacroinvertebrate

taxafromharvestII.Pointsarelabeledastotheplantspecies,pondnumber,and

treatment(T=treated,NT=nontreated)where:V. americana(V.ame),P. nodosus

(P.nod),P. illinoensis(P.ill),andN. mexicana(N.mex).Axis1&2explainedatotalof

55%oftotalinertia(variance).

Treated Nontreated 3.0

2.5

2.0

N.mex51T 1.5 P.nod51T P.ill51NT P.ill51T V.ame51NT 1.0

0.5 V.ame51T P.nod51NT P.nod52T P.nod52NT 0.0 P.nod50T N.mex50NT P.ill50T V.ame52NTP.nod50NT P.ill52NT Axis2;Eigenvalue:0.37(21%ofInertia) P.ill50NTval 0.5 V.ame52T N.mex52NT N.mex51NT P.ill52TN.mex52T V.ame50NT V.ame50TN.mex50T

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 Axis1;Eigenvalue:0.59(34%ofInertia)

41 Figure20.CorrespondenceAnalysisordinationofmacrophyteandmacroinvertebrate

taxafromharvestIII.Pointsarelabeledastotheplantspecies,pondnumber,and

treatment(T=treated,NT=nontreated)where:V. americana(V.ame),P. nodosus

(P.nod),P. illinoensis(P.ill),andN. mexicana(N.mex).Axis1&2explainedatotalof

57%oftotalinertia(variance).

Nontreated Treated

1.5 N.mex50T P.nod50T P.ill52T V.ame50T 1.0 Me52NH3 N.mex52T P.ill50T N.mex50NT 0.5 P.nod50NT V.ame52T V.ame50NT P.ill50NT P.ill52NT 0.0 V.ame51NT V.ame51T N.mex52NT N.mex51NT P.nod52T V.ame52NT P.ill51NT P.nod51NT P.nod52NT P.nod51T 0.5 P.ill51T

N.mex51T 1.0 Axis2;Eigenvalue:0.25(19%ofInertia)

1.0 0.5 0.0 0.5 1.0 Axis1;Eigenvalue:0.48(38%ofInertia) 42 Figure21.CorrespondenceAnalysisordinationofmacrophyteandmacroinvertebrate

taxafromharvestIII(excludingaphids).Pointsarelabeledastotheplantspecies,

pondnumber,andtreatment(T=treated,NT=nontreated)where:V. americana

(V.ame),P. nodosus(P.nod),P. illinoensis(P.ill),andN. mexicana(N.mex).Axis1&2

explainedatotalof53%oftotalinertia(variance).

Nontreated Treated

1.5

1.0 P.nod50TV.ame52T N.mex50NT P.ill50NT P.ill52TN.mex51T V.ame50T V.ame50NT 0.5 P.nod51NT V.ame51NT P.nod50NT P.ill51NT N.mex51NT Pi50NH3P.ill50T 0.0 P.nod50T P.nod51T N.mex50T P.nod52NT V.ame51T N.mex52T P.ill51T 0.5 V.ame52NT P.ill52NT N.mex52NT 1.0 Axis2;Eigenvalue:0.18(16%ofInertia)

1.0 0.5 0.0 0.5 1.0 Axis1;Eigenvalue:0.42(37%ofInertia)

Thenullhypothesisthattherewouldbenodifferencesininvertebrate communitiesbasedontreatmentwasrejected.AtharvestII&IIIinvertebrate communitiesseparatedintotwogroupsbasedontreatment.Treatedcommunity structurewaspredominatelycomposedofinvertebratesnotaffectedbytheinsecticide treatment;aphids,gastropods,andoligochaetes.Incontrast,nontreatedsamples 43 containedamorediverseassemblageofinvertebrates.AtharvestIII,theCAbiplotfor treatedsampleswashighlyinfluencedbythedistributionofaphidsamongsamples.

Thenullhypothesisthattherewouldbenodifferencesininvertebrate communitiesbasedonpondandplantspecieswasaccepted.Theinvertebrate communitiespresentineachpondwereexpectedtobesimilarbecausethepondswere locatedincloseproximity,receivedwaterfromthesamesource,andhadaccesstothe same‘stock’invertebratepopulationsfromnearbypondsattheLAERF.Community differencesduetoplantspecieswereprobablydisruptedbythemixedplantingsineach pond.Placementoffourdifferentplantspecieswithinthesamepondandinclose proximitycouldincreasethechancesofinvertebrateemigrationandimmigrationamong plantsandthereforehomogenizeinvertebratecommunities(Chilton,1990).

InvertebrateCollections

HerbivoresandNonconsumptiveInvertebrateDamage

Allinvertebratescollectedweregroupedintofunctionalfeedinggroupsand consequentlynineherbivoreswereidentified(Table4).Ofthese,fiveweremost prevalent;Synclita,Paraponyx,Donacia,Rhopalosiphum,andHydrellia.

Table4.Invertebratescollectedandidentifiedasherbivores. Order Family Genus LifeStage Coleoptera Chrysomelidae Donacia LarvaeandAdults Coleoptera Haliplidae Haliplus LarvaeandAdults Coleoptera Hydrophilidae Berosus Adults Diptera Ephydridae Hydrellia Larvae Hemiptera Aphidiae Rhopalosiphum LarvaeandAdults Lepidoptera Noctuidae Archanara Larvae Lepidoptera Pyralidae Synclita Larvae Lepidoptera Pyralidae Paraponyx Larvae Trichoptera Leptoceridae Nectopsyche Larvae

44 LarvaefromthegeneraSynclitaandParaponyx(Lepidoptera:Pyralidae)notonly feedonaquaticmacrophytes,butalsouseplantmattertoconstructportablecases

(Figure22).Synclitalarvaewereobservedlivinginfreefloatingportablecasesfrom andfeedingonfloatingleavesofP. nodosus,P. illinoensis,andN. mexicana.In contrast,Paraponyxlarvaewereobservedbelowthewater’ssurfaceincasesmade

fromsubmersedleavesofP. illinoensisandV. americana,butwerenotobserved

activelyfeeding.Plantsutilizedforcaseconstructionarenotnecessarilyfoodplants

(Habeck,1974),butbasedonobservations,Paraponyxfeedingprobablyoccurred

underthewater’ssurfaceonsubmersedleaves.InFlorida,Paraponyxhavebeen

associatedwith25differentplantspeciesin17families(Habeck,1974)andingeneral,

pyralidsareconsideredtohavethehighestlevelsofpolyphagyofinsectsthatfeedon

aquaticplants(Stoopsetal.,1998).

Figure22.Synclitalarvaecutpiecesofplantmatterfromfloatingleavesinhalfcircle

shapestoconstructportablecases.AfloatingleafofP.nodosusispicturedhere.

45 ThegenusDonacia(Coleoptera:Chrysomelidae)encompassestwosubgenera

DonaciaandDonaciomimawhichinclude10and21Nearcticspeciesrespectively

(Rileyetal.,2002).ChrysomelidsofthegenusDonaciaaretypicallyfoundonfloating

oremergentvegetationandcanexhibithostspecificfeedingaswellaspolyphagy

(Marx,1957;Croninetal.,1998).AllknownhostplantsofthesubgenusDonaciaare

dicotyledonsincludingBrasenia,Nuphar,andNymphaea,whileDonaciomima prefer

suchasScirpusandTypha,butalsohostonNymphaeaadicotyledon

(Rileyetal.,2002).Duringthisstudy,Donacia adults,larvae,andeggswerecommonly

foundonN. mexicana,butwerenotobservedonanyothermacrophytespecies.Adults

fedonfloatingleavesofN. mexicanaandremainedonvegetationabovethewater’s

surface(Figure23).Eggswereovipositedinconcentricrowsontheundersideof

floatingleaves,throughaholechewedintheleaf(Figure24).Donacialarvaeliveand

feednearsedimentonroots,rhizomes,orstems(Hoffman,1940)fortheentirelarval

stagewhichcanbefor2ormoreyears(WhiteandBrigham,1996).Withoutspecies

identificationIcannotbesureoffeedingselectivityofDonaciaencountered,yetduring

thisandpreviousstudiesattheLAERF,Donaciaexhibitedafeedingpreferencefor

plantsoftheNymphaeaceaefamily;includingN. odorataandN. mexicana(Nachtriebet

al.,2007).

46 Figure23.AnadultDonaciaisshownrestingonN. mexicana.Theholesontheleaf

werecreatedbyDonaciaadultsforfeedingandovipositing.

47 Figure24.Donaciaeggsarelaidinconcentricrowsontheundersideofleaves,through

aholechewedintheleaf.

Rhopalosiphum(Hemiptera:Aphididae)wereobservedonallthreefloating leavedplants:P. nodosus,P. illinoensisandN. mexicana.Asmentionedpreviously, theseaphidsoverwinteraseggsontreesthenmigratetoaquaticenvironmentsduring midtolatesummer.Duringthecolonizingphasefemalesareovoviviparousandcan givebirthto24youngaday(Centeretal.,1999).Aphidsfeedonplantnutrientsby piercingthroughplanttissuedirectlyintophloemtubes(Blackman,1974).Whilenot problematicinsmallnumbers,largeaphidcoloniesarecapableofremovingenoughof

48 theplant’snutrientssothattheplantprematurelybreaksdownplanttissuetoreplenish itsnutrientsupply.Thisdirectlyhaltsplantgrowthandcanultimatelycausedeath

(Blackman,1974).Aphidcolonieswerepresentinlargeenoughnumberstocompletely coverfloatingleavesofbothPotamogetonspeciesaswellasthelargerleavesofN. mexicana.

ThedietofadultsofgenusHydrellia(Diptera:Ephydridae)isnotwellunderstood, butlarvaeareknowntofeedonthemesophyllofplantsbyminingleaves(Deonier,

1971).Inaquaticenvironments,Hydrellialarvaearemostcommonlyencounteredon plantsfromfamily(Deonier,1971).Hydrelliamineswereobserved onthefloatingandsubmersedleavesofbothusedinthisstudy,P. illinoensis and P. nodosus(Figure25).ThreedifferentHydrellia specieswerecollected fromthestudyponds,includingtwonativespecies,H. bilobiferaCressonandH. discursaDeonier,andoneintroducedspecies,H. pakistanaeDeonier.Hydrellia bilobiferaandH. discursaadultsarecommonlyobservedattheLAERFperchingon floatingleavesofawiderangeofplants,andlarvaeareknowntofeedon potamogetonsaswellasHydrilla verticillata(L.f.)Royle,anexotic,submersedplant

(Centeretal.,1999).NativeHydrelliahavebeenwelldescribedbyDeonier(1971)yet fewaccountsexistdocumentingtheeffectsthatleafmineshaveonaquaticplants.

Hydrellia pakistanae,anAsiannative,wasintroducedtotheUnitedStatesforbiological controlofH. verticillata(Centeretal.,1999)andiscurrentlyrearedinoutdoorpondsat theLAERF.Hydrellia pakistanaeisconsideredhostspecifictoH. verticillataand thereforemoreresearchiswarrantedtodetermineifadultswereemergingfromnative plantsinthestudypond.

49 Figure25.AHydrellialarvaeisshownmininginafloatingleafofP. nodosus.

Nonconsumptivedamagewasnotrestrictedtoinvertebrateherbivores.Various eggswereobservedonmacrophytesinthestudyponds,yeteggslaidbyodonates weremostprominent(Figure26).Odonateeggswerefoundinfloatingleavesand stemsofP. nodosus, P. illinoensis, and N. mexicana.Eggsweredepositedinshallow indentionswhichleftaholeintheplanttissueoncelarvaeemerged.Theseholeswere numerousandsometimescompletelycoveredaleaf.Oneanisopteranandone zygopteranfamily,AeshnidaeandCoenagrionidaerespectively,wererearedfromegg infestedleaves.

50 Figure26.OdonateeggsimbeddedinafloatingleafofP. illinoensis.

PercentInvertebrateLeafDamage

Statisticallysignificantdifferenceswerenotattainedforanyplantspeciesbased onharvestandonlyoneplant,P. nodosus,displayedstatisticalsignificancedueto treatment(Table5).Thenullhypothesisthattherewouldbenodifferencesinpercent invertebrateleafdamagefromthetwotreatmentswasrejectedforP. nodosusand acceptedforV. americana,P. illinoensisandN. mexicana.

51 Table5.ResultsfromtwowayANOVAsperformedtoidentifychangesinpercent

invertebrateleafdamageduetoharvestandtreatment.

Harvest* PlantSpecies Harvest Treatment Treatment F p F p F p N. mexicana 0.0650 0.9374 0.5742 0.4632 0.1428 0.8684 V. americana 0.7731 0.4899 0.1223 0.7346 0.5496 0.5954 P. illinoensis 1.7336 0.1939 2.7600 0.1071 0.0395 0.9613 P. nodosus 0.2506 0.7800 9.6060 0.0042 0.1664 0.8475 ConsumptiveaswellasnonconsumptiveinvertebratedamagewererareonV.

americanainbothtreatedandnontreatedareas.Meaninvertebratedamagewas

0.99%intreatedand1.09%innontreatedsamples.Similarresultsofreduced

herbivorytoV. americanawerefoundinapreviouspondstudy(Nachtriebetal.,2007),

yetherbivoredamagehasbeenobservedonplantsincultureattheLAERF.Itappears

thatherbivoresfeedingonthisspeciesdidnotcolonizethepondsduringthe

experimentaltimeframeoffourmonths.

Fortheremainingthreeplantspecies(P. nodosus,P. illinoensis,andN.

mexicana)tissuedamageintreatedareaswasrare,whileplantswithinnontreated areasexhibitedsubstantiallevelsofdamageduetoinsects,primarilyfeeding, ovipositing,andcasemaking(Figure27,28,and29).Yet,theseobservationsdonot agreewiththequantitativedatainwhichP. nodosuswastheonlyplantspeciestoattain statisticalsignificance(Table4).Meaninvertebratedamagebetweentreatments

(treated:nontreated)foreachplantspecieswereasfollows;P. nodosus1.1%:9.8%,P. illinoensis3.5%:8.6%,andN. mexicana11.2%:15.0%.ForP. illinoensisandN. mexicananontreateddamagelevelswerenotsignificantlydifferentthantreated.

52 Variousauthorshavemadenoteofsimilardifficultiesinmeasuringinvertebratedamage

levels.

Figure27.Treated(a)andnontreated(b)N. mexicanaatharvestIII.

53 Figure28.Treated(a)andnontreated(b)P. nodosusatharvestIII.

54 Figure29.Treated(a)andnontreated(b)P. illinoensisatharvestIII.

55 WhilestudyingNuphar luteum(L.)Sibth&Sm.,awaterlily,WallaceandO’Hop

(1985)documentedthatleafturnoverratewashigheratasitethatexperienced

herbivorybyPyrrhalta nymphaeae(L.),thewaterlilyleafbeetle,asopposedtoasite wherethebeetleswereabsent.Attheherbivoresiteleavesdiedfaster,butwere replacedquicklyasifplantgrowthwascompensatingforherbivorylosses.Ifherbivory causesincreasedleafturnoverrates,whenrandomlyselectingleavestomeasure invertebratedamagethereisahigherchancethatnew,lessdamagedleaveswillbe presentsinceolderleaveswithhigherdamagelevelshaveprobablydecomposed.

JacobsenandSandJensen(1992)agreedthatherbivorycouldbeunderestimated unlessleafturnoverwastakenintoaccount.Tocorrectforthisproblem,new undamagedleavescanbemarkedsothatinvertebratedamagecanbemeasured throughoutthelifeoftheleaf.Thisgivesahigherchancethatmaximumlevelsof herbivorycanberecorded.Invertebratedamagelevelsmeasuredduringthisstudy wereprobablyunderestimatedsinceleaveswererandomlyselectedandonlymeasured atharvesttimes.

MacrophyteBiomass

DryweightsofV. americanafrombothtreatmentareasdecreasedthroughoutthe

studyandbiomassbetweentreatmentswasnotsignificantlydifferentatthefinalharvest

(harvestIII)(Figure30).AtharvestIIImeanbiomassesbetweentreatmentswere

approximately0.60gapart.Toachievestatisticalsignificancebetweentreatmentsata

powerof0.95withthesamestandarddeviationandmeans,asamplesizeof1,161

wouldberequired.Biomassdecreaseswerenotattributedtoherbivoryornon

consumptivedamagewhichwererare.Vallisneria americanaisasubmersed

56 macrophyteandtypicallydistributesitsbiomassuniformlythroughoutthewatercolumn.

Macrophyteswhichinhabitwaterclosertothesurfaceorthosethathavefloatingleaves

canhaveacompetitiveadvantageforlight.TitusandStephens(1983)documented

reducedgrowthofV. americanawhilegrowinginthepresenceofChara vulgarisL.(a macroalga)andP. amplifoliusTuckerman.Smart(1991)alsodocumented establishmentdifficultyinpondsattheLAERFinthepresenceofC. vulgarisandNajas guadalupensis(Sprengel)Magnus.Furthermore,biomassofV. americanawas negativelycorrelatedtobiomassofC. vulgarisinapreviouspondstudyattheLAERF

(Nachtriebetal.,2007).DuringthisstudyC. vulgarisandN. guadalupensis,species endemictotheLAERF,commonlyinhabitedV. americanacages.Thefloatingleavesof

P. nodosus,P. illinoensis,andN. mexicanawerealsocapableofshadingaseach speciescommonlymigratedintonearbyV.americanacages(Figure31).Dryweights ofallplantsharvestedfromV. americanareplicateswerequantified,butasignificant correlationwasnotattained.Regardless,invertebratedamagedoesnotexplain biomassdecreasesandthepresenceofhighlymixedplantcommunitiesleadstothe conclusionthatduringthefourmonthdurationofthisstudy,V. americanawasunableto overcomecompetitivepressuresofnearbymacrophytes.

57 Figure30.Mean(±0.95confidenceinterval)drybiomass(g)ofV. americanacollected pertreatmentareaateachharvest.AonewayANOVAwasperformedatharvestIII, treatment:p=0.689,F=0.163,DF=1,28.

58 Figure31.Treated(a)andnontreated(b)V. americanaatharvestIII.

59 DryweightsofN. mexicanafrombothtreatmentareasincreasedthroughoutthe studyandbiomassbetweentreatmentswasnotsignificantlydifferentatthefinalharvest

(harvestIII)(Figure32).AtharvestIIImeanbiomassesbetweenthetwotreatments wereapproximately11gapart.Toachievestatisticalsignificancebetweentreatments atapowerof0.95withthesamestandarddeviationandmeans,asamplesizeof92 wouldberequired.Highlevelsofherbivoryandnonconsumptivedamagefrom

Donaciaadults,Synclitalarvae,Rhopalosiphumaphids,andodonateeggswere apparentonnontreatedN. mexicana,butchangesinleafdensitywithincageswere lessobvioussincenewleaveswerecontinuouslyemergingwhilehighlydamaged leavesweredecaying.Asmentionedpreviously,WallaceandO’Hop(1985) documentedincreasedleafturnoverratesinNuphar luteuminthepresenceof herbivores.Observationsfromthisstudyimplythatleafturnoverrateincreasedinnon treatedN. mexicanaplantswhichweresubjecttovarioustypesofinvertebratedamage.

Thiswouldmakeitdifficulttodeterminebiomassdifferencesbetweentreatmentsand couldresultinunderestimatesoftheimpactofinvertebratestoN. mexicana.In contrast,treatedN. mexicanaplantsweremostlyvoidofanysignsofinvertebrate

damageotherthanRhopalosiphumaphids.Aphidswerepresentinbothtreatment areasinlargequantitiesatharvestII&IIIandpossiblyslowedplantgrowthbydraining nutrients.Withoutaphidsintreatedsamplesbiomassmayhaveincreasedatarate greaterthannontreatedplants.Thereforeeventhoughplantconditionsfromthetwo treatmentswerewidelydifferent,combinedeffectsofincreasedleafturnoverratein nontreatedplantsandaphidherbivoryintreatedplantsmadeitdifficulttoidentify biomassdifferenceduetotheimpactofinvertebratesonN. mexicana.

60 Figure32.Mean(±0.95confidenceinterval)drybiomass(g)ofN. mexicanacollected

pertreatmentareaateachharvest.AonewayANOVAwasperformedatharvestIII,

treatment:p=0.144,F=2.258,DF=1,28.

BothPotamogetonspeciesfollowedsimilartrendsthroughoutthestudyand biomassbetweentreatmentswassignificantlydifferentatthefinalharvest(harvestIII)

(Figures33&34).BiomassfrombothtreatmentareasincreasedfromharvestI–IIas plantsbecameestablishedinthepondsandinvertebrateswerenotpresentinhigh enoughquantitiestogreatlyimpactplantgrowth.Treatedplantbiomassremained stableintothefinalharvestandgrowthmayhavebeenslowedbytheincreased presenceofRhopalosiphumaphids.Incontrast,nontreatedbiomassdecreased

61 followingharvestIIasplantssustainedhighlevelsofinvertebratedamagemostlyfrom

Rhopalosiphumaphids,Synclita,Paraponyx,andHydrellialarvae.Nontreated biomassesofP. nodosusandP. illinoensiswerereducedby40%and63%respectively whencomparedtotreateddryweightsatthefinalharvest.Invertebrateherbivoryand nonconsumptivedamagewereshowntosignificantlyimpactbothPotamogeton species.

Differencesinplantbiomassthroughoutthestudyandbetweentreatmentsatthe finalharvest(harvestIII)variedbasedonplantspecies.Thenullhypothesisthatthere wouldbenodifferencesindrybiomassbetweentreatmentsatharvestIIIwasaccepted forV. americanaandN. mexicana.Vallisneria americanawasdifficulttoestablishin bothtreatmentareas,possiblyduetolightcompetitionfromotherspecies,andsignsof invertebratedamagewererare.Incontrast,N. mexicanaexhibitedhighlevelsof invertebratedamage,primarilyherbivory,casemaking,andovipositing.Yetbiomass differenceswerehardtoperceivepossiblyduetoincreasedleafturnoverrateinnon treatedreplicatesandslowedgrowthduetoaphidsintreatedreplicates.Thenull hypothesiswasrejectedforP. nodosusandP. illinoensis.Nontreatedbiomassesof bothPotamogetonspeciesweresignificantlylessthantreatedatharvestIII.

62 Figure33.Mean(±0.95confidenceinterval)drybiomass(g)ofP. nodosuscollected

pertreatmentareaateachharvest.AonewayANOVAwasperformedatharvestIII,

treatment:p=0.003,F=10.568,DF=1,28.Meanswiththesameletterarenot

significantlydifferent.

63 Figure34.Mean(±0.95confidenceinterval)drybiomass(g)ofP. illinoensiscollected

pertreatmentareaateachharvest.AonewayANOVAwasperformedatharvestIII,

treatment:p=0.010,F=7.668,DF=1,28.Meanswiththesameletterarenot

significantlydifferent.

64 CHAPTER5

CONCLUSIONS

Themainobjectiveofthisstudywastoinvestigatetheimpactofinvertebratesto fournativemacrophytes,V. americana,P. nodosus,P. illinoensis,andN. mexicana.

Twotreatmentareas,anontreatedcontrolandaninsecticidetreatment,werecreated inthreepondssothatcomparisonscouldbemadebetweenplantswithandwithout invertebrateinteractions.Theinsecticideeffectivelyremovedmostinvertebrates includingEphemeroptera,Coleoptera,Diptera,Trichoptera,Lepidoptera,Odonata,and

Hemipterawhenaphidcountswereexcluded.Tenherbivoretaxawerecollectedduring thedurationofthestudyincluding;Synclita,Paraponyx,Donacia,Rhopalosiphum,and

Hydrellia.Invertebratecommunitiescollectedfromthefourmacrophytesdidnotshow similaritiesbasedonplantorpond.Instead,communitieswereseparatedintotwomain groupingsbasedontreatment.Nontreatedinvertebratecommunitiesweremore diversethantreatedinthisparticularstudysinceinsecticideapplicationsremovedmost invertebratesfromtreatedsamples.

FewsignsofinvertebratedamagewereobservedonV. americanaand consequentlystatisticaldifferencesbetweentreatmentareasinpercentinvertebrateleaf damageandbiomasswerenotattained.Moreresearchshouldbeconductedtoseeif

V. americanapossessespropertiesthatmakeitanundesirablefoodsourcefor invertebrates.Substantiallevelsofinvertebrateleafdamagetonontreatedsamples wereobservedforN. mexicanaandbothPotamogetonspecies,yetstatistical significancewasonlyreachedforP. nodosus.Inordertodocumentmaximum herbivorylevelsinfuturestudies,leavesshouldbemarkedpriortodamageand

65 damagelevelsshouldberecordedthroughoutthelifeoftheleaf.Statisticallysignificant

differencesinbiomasswerenotmeasuredforN. mexicana.Observationsofplant growththroughoutthestudysuggestthatleafturnoverratemayhaveincreasedin plantssubjecttoherbivoryandRhopalosiphumaphidsmayhaveslowedthegrowthof treatedplants.Incombination,thesetwoeffectswouldmakeitdifficulttoidentify changesinbiomassforN. mexicana.Statisticallysignificantreductionsinbiomassdue toinvertebrateherbivoryandnonconsumptivedamagewereachievedforboth

Potamogetonspecies.ThebiomassesofP. nodosusandP. illinoensiswerereduced

by40%and63%respectively.Herbivory,oncethoughttobeinsignificanttoaquatic

macrophytes,wasshowntocausesubstantialreductioninbiomassintwooftheplant

speciesstudied.

66

APPENDIX

TAXA LIST OF ALL INVERTEBRATES COLLECTED

67

Lifestagesareabbreviatedasfollows:larvae(L), pupae (P), adult (A).

Life Class/Order Family Subfamily/Genus Stage(s) Gastropoda Planorbidae Helisoma Gastropoda Physidae Physa Oligochaeta Coleoptera Chrysomelidae Donacia L,A Coleoptera Dytiscidae Celina L Coleoptera Dytiscidae Cybister L Coleoptera Dytiscidae Dytiscus L Coleoptera Gyrinidae Dineutus L Coleoptera Haliplidae Haliplus L,A Coleoptera Hydrophilidae Berosus L,A Coleoptera Hydrophilidae Tropisternus L Coleoptera Noteridae Hydrocanthus L,A Diptera Ceratopogonidae Bezzia,Palypomyia L,P Diptera Ceratopogonidae Dasyhelea L Diptera Chironomidae Chironominae L,P Diptera Chironomidae Orthocladiinae L,P Diptera Chironomidae Tanypodinae L,P Diptera Ephydridae Hydrellia L Diptera Stratiomyidae Odontomyia L,A Diptera Tabanidae Chrysops L Ephemeroptera Baetidae Callibaetis L Ephemeroptera Caenidae Caenis L Hemiptera Aphidiae Rhopalosiphum L,A Hemiptera Belostomatidae Belostoma L Hemiptera Hebridae Merragata L,A Hemiptera Mesoveliidae Mesovelia L,A Hemiptera Naucoridae Limnocoris L Hemiptera Naucoridae Pelocoris L,A Hemiptera Notonectidae Notonecta L,A Hemiptera Veliidae Microvelia A Lepidoptera Noctuidae Archanara L Lepidoptera Pyralidae Synclita L,P Lepidoptera Pyralidae Paraponyx68 L,P,A Odonata Aeshnidae Anax L Coenagrion, Odonata Coenagrionidae Enallagma L Odonata Coenagrionidae Telebasis L Odonata Gomphidae Erpetogomphys L Odonata Libellulidae Libellula L Odonata Libellulidae Orthemis L Odonata Libellulidae Cordulia L Odonata Libellulidae Somatochlora L Trichoptera Hydroptilidae Oxythira L,P Trichoptera Hydroptilidae Hydroptila L,P Trichoptera Leptoceridae Nectopsyche L Trichoptera Leptoceridae Oecetis L,P

69 REFERENCES

Boavida,P.,Neuenschwander,P.,Herren,H.R.,1995.Experimentalassessmentofthe

impactoftheintroducedparasitoidGyranusoidea tebygiNoyesonthemango

mealybugRastrococcus invadensWilliams,byPhysicalExclusion.Biological

Control5,99103.

Blackman,R.,1974.Aphids.Ginn&CompanyLimited,LondonandAylesbury.

Center,T.D.,Dray,F.A.Jr.,Jubinsky,G.P.,Grodowitz,M.J.,1999.Insectsandother

arthropodsthatfeedonaquaticandwetlandplants.TechnicalBulletinNo.1870.

U.S.DepartmentofAgriculture,AgriculturalResearchService.

Chilton,E.W.II,1990.Macroinvertebratecommunitiesassociatedwiththreeaquatic

macrophytes(Ceratophyllum demersum,Myriophyllum spicatum,andVallisneria

americana)inLakeOnalaska,Wisconsin.JournalofFreshwaterEcology5(4),

455466.

Cronin,G.,Wissing,K.D.,Lodge,D.M.,1998.Comparativefeedingselectivityof

herbivorousinsectsonwaterlilies:aquaticvs.semiterrestrialinsectsand

submersedvs.floatingleaves.FreshwaterBiology39,243257.

Deonier,D.L.,1971.AsystematicandecologicalstudyofnearcticHydrellia(Diptera:

Ephydridae).SmithsonianInstitutionPress,Washington.

Dibble,E.D.,Killgore,K.J.,Harrel,S.L.,1996.Assessmentoffishplantinteractions.In:

Miranda,L.E.,DeVries,D.R.(Eds.),Multidimensionalapproachestoreservoir

fisheriesmanagement.AmericanFisheriesSocietySymposium16,347356.

Dick,G.O.,Smart,R.M.,Keiser,E.D.,1995.Populationsofturtlesandtheirpotential

impactsonaquaticplantsinGuntersvilleReservoir,Alabama.JointAgency

70 GuntersvilleProjectAquaticPlantManagement,TennesseeValleyAuthority

Report.

Doyle,R.D.,Smart,R.M.,1995.Competitiveinteractionsofnativeplantswithnuisance

speciesinGuntersvilleReservoir,Alabama.In:Proceedings,29thAnnual

Meeting,AquaticPlantControlResearchProgram.MiscellaneousPaperA953.

Vicksburg,MS:U.S.ArmyEngineerWaterwaysExperimentStation,pp.237242.

Doyle,R.D.,Smart,R.M.,Guest,C.,Bickell,K.,1997.Establishmentofnativeaquatic

plantsforfishhabitat:testplantingsintwonorthTexasreservoirs.Lakeand

ReservoirManagement13,259269.

EuropeanandMediterraneanPlantProtectionOrganization(EPPO),2006.Hydrocotyle

ranunculoides. EPPOBulletin36(1),36.doi:10.1111/j.1365338.2006.00945.x.

Habeck,D.H.,1974.CaterpillarsofParaponyxinrelationtoaquaticplantsinFlorida.

HyacinthControlJournal12,1517.

Harley,K.L.S.,Forno,I.W.,1992.Biologicalcontrolofweedsahandbookfor

practitionersandstudents.InkataPress,Melbourne.

Heitmeyer,M.E.,Vohs,P.A.Jr.,1984.Distributionandhabitatuseofwaterfowl

winteringinOklahoma.JournalofWildlifeManagement48,5162.

Hoffman,C.E.,1940.LimnologicalrelationshipsofsomenorthernMichiganDonaciini

(Chrysomelidae;Coleoptera).TransactionsofAmericanMicroscopicalSociety59

(3),259274.

Jacobsen,D.,SandJensen,K.,1992.Herbivoryofinvertebratesonsubmerged

macrophytesfromDanishfreshwaters.FreshwaterBiology28,301308.

Lodge,D.M.,1991.Herbivoryonfreshwatermacrophytes.AquaticBotany41,195224.

71 Marx,E.J.F.,1957.AReviewoftheSubgenusDonaciaintheWesternHemisphere

(Coleoptera,Donaciidae).BulletinoftheAmericanMuseumofNaturalHistory

112(3).

Nachtrieb,J.G.,Grodowitz,M.J.,Smart,R.M.,2007.Impactofinvertebrateherbivory

onnativeaquaticmacrophytes.APCRPBC09,U.S.ArmyEngineerResearch

andDevelopmentCenter,Vicksburg,MS.

Newman,R.M.,1991.Herbivoryanddetritivoryonfreshwatermacrophytesby

invertebrates:Areview.JournaloftheNorthAmericanBenthologicalSociety10,

89114.

Riley,E.G.,Clark,S.M.,Flowers,R.W.,Gilbert,A.J.,2002.ChrysomelidaeLatreille

1802.In:Arnett,R.H.Jr.,Thomas,M.C.,Skelley,P.E.,Frank,J.H.(Eds.),

AmericanBeetlesVolume2Polyphaga:ScarabaeoideathroughCurculionoidea.

CRCPress,BocaRatonLondonNewYorkWashington,D.C.,pp.617691.

SandJensen,K.,Madsen,T.V.,1989.Invertebratesgrazesubmergedrooted

macrophytesinlowlandstreams.Oikos55,420423.

Savino,J.F.,Stein,R.A.,1982.Predatorpreyinteractionsbetweenlargemouthbass

andbluegillsasinfluencedbysimulated,submergedvegetation.Transactions

oftheAmericanFisheriesSociety111,225266.

Schooler,S.,Julien,M.,Walsh,G.C.,2006.PredictingtheresponseofCabomba

carolinianapopulationstobiologicalcontrolagentdamage.AustralianJournal

ofEntomology45,327330.

Sculthorpe,S.P.,1967.Thebiologyofaquaticvascularplants.EdwardArnold,

London.

72 Shelford,V.E.,1918.Conditionsofexistence.In:Ward,H.B.,Whipple,G.C.(Eds.),

Freshwaterbiology.JohnWiley,NewYork,pp.2160.

Smart,R.M.,1991.Lewisvilleaquaticecosystemresearchfacility:progressreport.

In:Proceedings,25thannualmeeting,aquaticplantcontrolresearchprogram.

MiscellaneousPaperA913,USArmyEngineerWaterwaysExperimentStation,

Vicksburg,MS,pp.2223.

Smart,R.M.,1995.Preemption:animportantdeterminantofcompetitivesuccess.In:

Proceedings,29thannualmeeting,aquaticplantcontrolresearchprogram.

MiscellaneousPaperA953,U.S.ArmyEngineerWaterwaysExperiment

Station,Vicksburg,MS.pp.231236.

Smart,R.M.,Barko,J.W.,McFarland,D.G.,1994.CompetitionbetweenHydrilla

verticillataandVallisneria americanaunderdifferentenvironmentaleonditions.

TechnicalReportA941,U.S.ArmyEngineerResearchandDevelopment

Center,Vicksburg,MS.

Smart,R.M.,Dick,G.O.,Doyle,R.D.,1998.Techniquesforestablishingnativeaquatic

plants.JournalofAquaticPlantManagement36,4449.

Smart,R.M.,Madsen,J.D.,Snow,J.R.,Dick,G.O.,Honnell,D.R.,1995.Physicaland

environmentalcharacteristicsofexperimentalpondsattheLewisvilleaquatic

ecosystemresearchfacility.MiscellaneousPaperA952,U.S.ArmyEngineer

WaterwaysExperimentStation,Vicksburg,MS.

Soszka,G.J.,1975.Ecologicalrelationsbetweeninvertebratesandsubmerged

macrophytesinthelakelittoral.EkologiaPolska23,393415.

73 Stoops,C.A.,Adler,P.H.,McCreadie,J.W.,1998.EcologyofaquaticLepidoptera

(Crambidae:Nymphulinae)inSouthCarolina,USA.Hydrobiologia379,3340.

Titus,J.E.,Stephens,M.D.,1983.Neighborinfluencesandseasonalgrowthpatterns

forVallisneria americanainaMesotrophicLake.Oecologia56,2329.

U.S.ArmyEngineerResearchandDevelopmentCenter(ERDC),2005.Aquaticplant

informationsystem(APIS).http://el.erdc.usace.army.mil/aqua/apis/apishelp.html.

Wallace,J.B.,O’Hop,J.,1985.Lifeonafastpad:waterlilyleafbeetleimpactonwater

Lilies.Ecology66(5),15341544.

Westfall,M.J.Jr.,Tennessen,K.J.,1996.Odonata.In:Merritt,R.W.,Cummins,K.W.

(Eds.),AnintroductiontotheaquaticinsectsofNorthAmerica.Kendall/Hunt

PublishingCompany,Dubuque,Iowa,pp.164216.

White,D.S.,Brigham,W.U.,1996.Coleoptera.In:Merritt,R.W.,Cummins,K.W.(Eds.),

AnintroductiontotheaquaticinsectsofNorthAmerica.Kendall/HuntPublishing

Company,Dubuque,Iowa,pp.399473.

Zar,J.H.,1999.Biostatisticalanalysisfourthedition.PrenticeHall,UpperSaddleRiver,

NewJersey.

74