Generalized Cantor Expansions

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Cantor Expansions Rose-Hulman Undergraduate Mathematics Journal Volume 5 Issue 1 Article 4 Generalized Cantor Expansions Joseph Galante University of Rochester, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Galante, Joseph (2004) "Generalized Cantor Expansions," Rose-Hulman Undergraduate Mathematics Journal: Vol. 5 : Iss. 1 , Article 4. Available at: https://scholar.rose-hulman.edu/rhumj/vol5/iss1/4 Generalized Cantor Expansions Joseph Galante University of Rochester 1 Introduction In this paper, we will examine the various types of representations for the real and natural numbers. The simplest and most familiar is base 10, which is used in everyday life. A less common way to represent a number is the so called Cantor expansion. Often presented as exercises in discrete math and computer science courses [8.2, 8.5], this system uses factorials rather than exponentials as the basis for the representation. It can be shown that the expansion is unique for every natural number. However, if one views factorials as special type of product, then it becomes natural to ask what happens if one uses other types of products as bases. It can be shown that there are an uncountable number of representations for the natural numbers. Additionally this paper will show that it is possible to extend the concept of mixed radix base systems to the real numbers. A striking conclusion is that when the proper base is used, all rational numbers in that base have terminating expansions. In such base systems it is then possible to tell whether a number is rational or irrational just by looking at its digits. Such a method could prove useful in providing easy irrationality proofs of mathematical constants. 2 Motivation 2.1 Definition The Cantor expansion of the natural number n is n = ak * k!+a(k − 1) *(k −1)!+.... + a2 * 2!+a1 *1! where all the ai (digits) satisfy 0 ≤ ai ≤ i This definition is standard and found in several sources [see 8.2, 8.5]. The identity n−1 n! = 1+ ∑i(i!) (Equation 2.1.1) i=0 is crucial for the Cantor Expansion since it allows “carries” to occur. When adding numbers, Equation 2.2.1 provides a meaning to advance to the next term in the base. 2.2 Example 23 = 3*3!+2*2!+1*1! 24 = 23 + 1 = 3*3!+2*2!+1*1! + 1 = 4! 1 It is reasonably easy to show via induction that all natural numbers have a unique Cantor expansion. Rather than prove uniqueness at this time, we will offer a generalization of this concept, and then show that the regular Cantor expansion is a special case. 3 Generalization Knowing that identity 2.1.1 is the key, it is conceivable that a more general identity will yield a more general result. Realizing that the original expansion relies on factorials and their properties, a generalization should therefore rely on defining a new and more general product. Rather than multiplying together the sequence of numbers 1,2,3,4…, we will consider functions which multiply positive integers in a given list. 3.1 Lemma Let S = {1, x1, x2,…| where xi is a natural number strictly greater than one}. (Note that the index for the first element will be n=0.) If p(n) is the nth element of S (note n p(0)=1) and P(n) = ∏ p(i) , then our generalized identity becomes i=0 n P(n +1) = 1+ ∑( p(i +1) −1)P(i) (Equation 3.1.1) i=0 An inductive proof of Lemma 3.1 is presented in section 7.1. Using the generalized identity we can extend the concept of a Cantor expansion. 3.2 Definition The generalized Cantor expansion (GCE) of the natural number n with respect to the ordered sequence S is n = ak * P(k) + a(k − 1) * P(k −1) + .... + a1 * P(1) + a0 * P(0) (Equation 3.2.1) 0 ≤ ai < p(i + 1), 0 ≤ i ≤ k where S, p, and P are as defined above in Lemma 3.1. The sequence S is referred to as the base set or base sequence. It is important to note that the order of the elements in S matters, and the ak‘s are called the digits of n in its GCE representation. Notation varies, but in this paper we will use the format (ak …a0)S where S is the base set or sometimes just (ak …a0) when the base set is implied. Other notations use matrix format to combine the digits and base sets [see 8.13]. Lastly, as an example, we often measure time itself using a limited form of a mixed radix system, which has a base set corresponding to S={1,60,60,12,...} and has the common format of “hh:mm:ss.” 3.3 Theorem Given a base set S, any natural numbers can be written in generalized Cantor expansion. Proof The proof is by induction. It is easy to see that Equation 3.1.1 holds for n=0 and 1. That is, 0=0*P(0) and 1=1*P(0) since P(0)=1 and p(1)>1. 2 Now assume the first n natural numbers can be written in GCE form. We need to show that (n+1) can be written this way as well. So we know then that: n = ak * P(k) + a(k − 1) * P(k −1) + .... + a1 * P(1) + a0 * P(0) for 0 ≤ ai < p(i + 1), 0 ≤ i ≤ k where ak is the first nonzero digit of n, so that n ≥ P(k) . (If the first term was zero, we could consider a smaller number of terms and re-label subscripts accordingly.) We break the inductive step up into two cases. See 3.5 for concrete examples of the cases. th Case I: There exists a place i strictly less than k, such that the i digit ai is strictly less than p(i+1)-1. This case will cover the addition of one to a number n without any arithmetic carries into the kth place. We want the number n to have some digit before the kth place which when one is added to it, will not produce a carry. Using this idea we see that the digits of n satisfy for some i, n > ai * P(i) + .... + a0 * P(0) = y The number y will always be strictly less than n since n will always have an additional nonzero term which y does not, namely the term ak*P(k). When adding one, the strict inequality, becomes only the inequality n ≥ ai * P(i) + .... + a0 * P(0) +1 By the inductive hypothesis, we see that there exists a valid generalized Cantor expansion for y since n≥ y. Thus we can rewrite y+1 as y +1 = ai * P(i) + .... + a0 * P(0) + 1 = (ai' ) * P(i) + .... + (a0' ) * P(0) Our initial assumption about ai will tell us that it will not grow larger than p(i+1)-1 from a carry and so the rewrite will not require using another place. It now follows that n +1 = ak * P(k) + .... + (ai + 1)P(i + 1) + (ai * P(i) + .... + a0 * P(0) + 1) n + 1 = ak * P(k) + .... + (ai + 1)P(i + 1) + (ai' ) * P(i) + .... + (a0' ) * P(0) which is a valid generalized Cantor expansion. Case II: Digits in all places except the kth place are equal to p(i+1)-1. This case covers a series of carries that terminates at the greatest digit place of the number, or possibly advances to the next place. In this case n = ak * P(k) + ( p(k) −1) * P(k −1) + .... + ( p(1) −1) * P(0) 3 Therefore, n + 1 = ak * P(k) + ( p(k) −1) * P(k −1) + .... + ( p(1) −1) * P(0) + 1 = ak * P(k) + P(k) from Lemma 3.1 = (ak +1) * P(k) + 0* P(k −1) + ... + 0* P(0) which is a valid generalized Cantor expansion if ak+1< p(k+1) Otherwise, if ak+1=p(k+1) then n = ( p(k + 1) −1) * P(k) + ( p(k) −1) * P(k −1) + .... + ( p(1) −1) * P(0) and n + 1 = ( p(k + 1) −1) * P(k) + ( p(k) −1) * P(k −1) + .... + ( p(1) −1) * P(0) + 1 n + 1 = 1* P(k + 1) + 0 * P(k) + .... + 0 * P(0) from Lemma 3.1 which is a valid generalized Cantor expansion. Therefore by the principle of induction, we can conclude that all natural numbers can be ▄ expressed in a generalized Cantor expansion. Now that we know every natural number has a generalized Cantor expansion, the question of uniqueness arises. 3.4 Theorem The generalized Cantor expansion of a natural number is unique. The proof of this theorem uses induction and is complicated slightly by needing several different cases. The proof is found in appendix section 7.3 for the curious reader. 3.5 Examples 3.5.1 – Base 10, S={1,10,10,10…} Example of Case 1 Let n=32378 in regular base 10, and then n+1 = 32378 + 1 = 32379. The addition of the number one does not produce a carry which changes the digit in the leftmost place. Thus we can think of n as 30000+2378, and n+1 as 30000+2378+1. In the proof, we used the inductive hypothesis to argue that 2378 is strictly less than n, and so 2378+1 is less than or equal to n, and so has a valid expansion, in this case 2379. Then 30000+2379=32379 = n+1 is also valid as an expansion.
Recommended publications
  • Dynamical Directions in Numeration Tome 56, No 7 (2006), P
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Guy BARAT, Valérie BERTHÉ, Pierre LIARDET & Jörg THUSWALDNER Dynamical directions in numeration Tome 56, no 7 (2006), p. 1987-2092. <http://aif.cedram.org/item?id=AIF_2006__56_7_1987_0> © Association des Annales de l’institut Fourier, 2006, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 56, 7 (2006) 1987-2092 DYNAMICAL DIRECTIONS IN NUMERATION by Guy BARAT, Valérie BERTHÉ, Pierre LIARDET & Jörg THUSWALDNER (*) Abstract. — This survey aims at giving a consistent presentation of numer- ation from a dynamical viewpoint: we focus on numeration systems, their asso- ciated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to β-numeration and its gener- alisations, abstract numeration systems and shift radix systems, as well as G-scales and odometers.
    [Show full text]
  • Basic Computer Arithmetic
    BASIC COMPUTER ARITHMETIC TSOGTGEREL GANTUMUR Abstract. First, we consider how integers and fractional numbers are represented and manipulated internally on a computer. The focus is on the principles behind the algorithms, rather than on implementation details. Then we develop a basic theoretical framework for analyzing algorithms involving inexact arithmetic. Contents 1. Introduction 1 2. Integers 2 3. Simple division algorithms 6 4. Long division 11 5. The SRT division algorithm 16 6. Floating point numbers 18 7. Floating point arithmetic 21 8. Propagation of error 24 9. Summation and product 29 1. Introduction There is no way to encode all real numbers by using finite length words, even if we use an alphabet with countably many characters, because the set of finite sequences of integers is countable. Fortunately, the real numbers support many countable dense subsets, and hence the encoding problem of real numbers may be replaced by the question of choosing a suitable countable dense subset. Let us look at some practical examples of real number encodings. ● Decimal notation. Examples: 36000, 2:35(75), −0:000072. ● Scientific notation. Examples: 3:6⋅104, −72⋅10−6. The general form is m⋅10e. In order to have a unique (or near unique) representation of each number, one can impose a normalization, such as requiring 1 ≤ ∣m∣ < 10. 2 −1 ● System with base/radix β. Example: m2m1m0:m−1 = m2β +m1β +m0 +m−1β . The dot separating the integer and fractional parts is called the radix point. ● Binary (β = 2), octal (β = 8), and hexadecimal (β = 16) numbers. ● Babylonian hexagesimal (β = 60) numbers.
    [Show full text]
  • On the First Occurrences of Gaps Between Primes in a Residue Class
    On the First Occurrences of Gaps Between Primes in a Residue Class Alexei Kourbatov JavaScripter.net Redmond, WA 98052 USA [email protected] Marek Wolf Faculty of Mathematics and Natural Sciences Cardinal Stefan Wyszy´nski University Warsaw, PL-01-938 Poland [email protected] To the memory of Professor Thomas R. Nicely (1943–2019) Abstract We study the first occurrences of gaps between primes in the arithmetic progression (P): r, r + q, r + 2q, r + 3q,..., where q and r are coprime integers, q > r 1. ≥ The growth trend and distribution of the first-occurrence gap sizes are similar to those arXiv:2002.02115v4 [math.NT] 20 Oct 2020 of maximal gaps between primes in (P). The histograms of first-occurrence gap sizes, after appropriate rescaling, are well approximated by the Gumbel extreme value dis- tribution. Computations suggest that first-occurrence gaps are much more numerous than maximal gaps: there are O(log2 x) first-occurrence gaps between primes in (P) below x, while the number of maximal gaps is only O(log x). We explore the con- nection between the asymptotic density of gaps of a given size and the corresponding generalization of Brun’s constant. For the first occurrence of gap d in (P), we expect the end-of-gap prime p √d exp( d/ϕ(q)) infinitely often. Finally, we study the gap ≍ size as a function of its index in thep sequence of first-occurrence gaps. 1 1 Introduction Let pn be the n-th prime number, and consider the difference between successive primes, called a prime gap: pn+1 pn.
    [Show full text]
  • Ramanujan, Robin, Highly Composite Numbers, and the Riemann Hypothesis
    Contemporary Mathematics Volume 627, 2014 http://dx.doi.org/10.1090/conm/627/12539 Ramanujan, Robin, highly composite numbers, and the Riemann Hypothesis Jean-Louis Nicolas and Jonathan Sondow Abstract. We provide an historical account of equivalent conditions for the Riemann Hypothesis arising from the work of Ramanujan and, later, Guy Robin on generalized highly composite numbers. The first part of the paper is on the mathematical background of our subject. The second part is on its history, which includes several surprises. 1. Mathematical Background Definition. The sum-of-divisors function σ is defined by 1 σ(n):= d = n . d d|n d|n In 1913, Gr¨onwall found the maximal order of σ. Gr¨onwall’s Theorem [8]. The function σ(n) G(n):= (n>1) n log log n satisfies lim sup G(n)=eγ =1.78107 ... , n→∞ where 1 1 γ := lim 1+ + ···+ − log n =0.57721 ... n→∞ 2 n is the Euler-Mascheroni constant. Gr¨onwall’s proof uses: Mertens’s Theorem [10]. If p denotes a prime, then − 1 1 1 lim 1 − = eγ . x→∞ log x p p≤x 2010 Mathematics Subject Classification. Primary 01A60, 11M26, 11A25. Key words and phrases. Riemann Hypothesis, Ramanujan’s Theorem, Robin’s Theorem, sum-of-divisors function, highly composite number, superabundant, colossally abundant, Euler phi function. ©2014 American Mathematical Society 145 This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 146 JEAN-LOUIS NICOLAS AND JONATHAN SONDOW Figure 1. Thomas Hakon GRONWALL¨ (1877–1932) Figure 2. Franz MERTENS (1840–1927) Nowwecometo: Ramanujan’s Theorem [2, 15, 16].
    [Show full text]
  • ON the PRIMALITY of N! ± 1 and 2 × 3 × 5 ×···× P
    MATHEMATICS OF COMPUTATION Volume 71, Number 237, Pages 441{448 S 0025-5718(01)01315-1 Article electronically published on May 11, 2001 ON THE PRIMALITY OF n! 1 AND 2 × 3 × 5 ×···×p 1 CHRIS K. CALDWELL AND YVES GALLOT Abstract. For each prime p,letp# be the product of the primes less than or equal to p. We have greatly extended the range for which the primality of n! 1andp# 1 are known and have found two new primes of the first form (6380! + 1; 6917! − 1) and one of the second (42209# + 1). We supply heuristic estimates on the expected number of such primes and compare these estimates to the number actually found. 1. Introduction For each prime p,letp# be the product of the primes less than or equal to p. About 350 BC Euclid proved that there are infinitely many primes by first assuming they are only finitely many, say 2; 3;:::;p, and then considering the factorization of p#+1: Since then amateurs have expected many (if not all) of the values of p# 1 and n! 1 to be prime. Careful checks over the last half-century have turned up relatively few such primes [5, 7, 13, 14, 19, 25, 32, 33]. Using a program written by the second author, we greatly extended the previous search limits [8] from n ≤ 4580 for n! 1ton ≤ 10000, and from p ≤ 35000 for p# 1top ≤ 120000. This search took over a year of CPU time and has yielded three new primes: 6380!+1, 6917!−1 and 42209# + 1.
    [Show full text]
  • Sum of Divisors of the Primorial and Sum of Squarefree Parts
    International Mathematical Forum, Vol. 12, 2017, no. 7, 331 - 338 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7113 Two Topics in Number Theory: Sum of Divisors of the Primorial and Sum of Squarefree Parts Rafael Jakimczuk Divisi´onMatem´atica,Universidad Nacional de Luj´an Buenos Aires, Argentina Copyright c 2017 Rafael Jakimczuk. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduc- tion in any medium, provided the original work is properly cited. Abstract Let pn be the n-th prime and σ(n) the sum of the positive divisors of n. Let us consider the primorial Pn = p1:p2 : : : pn, the sum of its Qn positive divisors is σ(Pn) = i=1(1 + pi). In the first section we prove the following asymptotic formula n 6 σ(P ) = Y(1 + p ) = eγ P log p + O (P ) : n i π2 n n n i=1 Let a(k) be the squarefree part of k, in the second section we prove the formula π2 X a(k) = x2 + o(x2): 30 1≤k≤x We also study integers with restricted squarefree parts and generalize these results to s-th free parts. Mathematics Subject Classification: 11A99, 11B99 Keywords: Primorial, divisors, squarefree parts, s-th free parts, average of arithmetical functions 332 Rafael Jakimczuk 1 Sum of Divisors of the Primorial In this section p denotes a positive prime and pn denotes the n-th prime. The following Mertens's formulae are well-known (see [5, Chapter VI]) 1 1 ! X = log log x + M + O ; (1) p≤x p log x where M is called Mertens's constant.
    [Show full text]
  • Various Arithmetic Functions and Their Applications
    University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2016 Various Arithmetic Functions and their Applications Florentin Smarandache University of New Mexico, [email protected] Octavian Cira Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Applied Mathematics Commons, Logic and Foundations Commons, Number Theory Commons, and the Set Theory Commons Recommended Citation Smarandache, Florentin and Octavian Cira. "Various Arithmetic Functions and their Applications." (2016). https://digitalrepository.unm.edu/math_fsp/256 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Octavian Cira Florentin Smarandache Octavian Cira and Florentin Smarandache Various Arithmetic Functions and their Applications Peer reviewers: Nassim Abbas, Youcef Chibani, Bilal Hadjadji and Zayen Azzouz Omar Communicating and Intelligent System Engineering Laboratory, Faculty of Electronics and Computer Science University of Science and Technology Houari Boumediene 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria Octavian Cira Florentin Smarandache Various Arithmetic Functions and their Applications PONS asbl Bruxelles, 2016 © 2016 Octavian Cira, Florentin Smarandache & Pons. All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying or using any information storage and retrieval system without written permission from the copyright owners Pons asbl Quai du Batelage no.
    [Show full text]
  • Prime Harmonics and Twin Prime Distribution
    Prime Harmonics and Twin Prime Distribution Serge Dolgikh National Aviation University, Kyiv 02000 Ukraine, [email protected] Abstract: Distribution of twin primes is a long stand- in the form: 0; p−1;:::;2;1 with the value of 0 the highest ing problem in the number theory. As of present, it is in the cycle of length p. Trivially, the positions with the not known if the set of twin primes is finite, the problem same value of the modulo p are separated by the minimum known as the twin primes conjecture. An analysis of prime of p odd steps. modulo cycles, or prime harmonics in this work allowed For a prime p, the prime harmonic function hp(x) can be to define approaches in estimation of twin prime distri- defined on IN1 as the modulo of x by p in the above format: butions with good accuracy of approximation and estab- lish constraints on gaps between consecutive twin prime Definition 1. A single prime harmonic hp(x) is defined for pairs. With technical effort, the approach and the bounds an odd integer x ≥ 1 as: obtained in this work can prove sufficient to establish that hp(1) := (p − 1)=2 the next twin prime exists within the estimated distance, hp(n + 1) := hp(n) - 1, hp(n) > 0 leading to the conclusion that the set of twin primes is un- hp(n + 1) := p − 1, hp(n) = 0 limited and reducing the infinitely repeating distance be- Clearly, h (x) = 0 ≡ p j x. tween consecutive primes to two.
    [Show full text]
  • Multiplication Modulo N Along the Primorials with Its Differences And
    Multiplication Modulo n Along The Primorials With Its Differences And Variations Applied To The Study Of The Distributions Of Prime Number Gaps A.K.A. Introduction To The S Model Russell Letkeman r. letkeman@ gmail. com Dedicated to my son Panha May 19, 2013 Abstract The sequence of sets of Zn on multiplication where n is a primorial gives us a surprisingly simple and elegant tool to investigate many properties of the prime numbers and their distributions through analysis of their gaps. A natural reason to study multiplication on these boundaries is a construction exists which evolves these sets from one primorial boundary to the next, via the sieve of Eratosthenes, giving us Just In Time prime sieving. To this we add a parallel study of gap sets of various lengths and their evolution all of which together informs what we call the S model. We show by construction there exists for each prime number P a local finite probability distribution and it is surprisingly well behaved. That is we show the vacuum; ie the gaps, has deep structure. We use this framework to prove conjectured distributional properties of the prime numbers by Legendre, Hardy and Littlewood and others. We also demonstrate a novel proof of the Green-Tao theorem. Furthermore we prove the Riemann hypoth- esis and show the results are perhaps surprising. We go on to use the S model to predict novel structure within the prime gaps which leads to a new Chebyshev type bias we honorifically name the Chebyshev gap bias. We also probe deeper behavior of the distribution of prime numbers via ultra long scale oscillations about the scale of numbers known as Skewes numbers∗.
    [Show full text]
  • The Mayan Long Count Calendar Thomas Chanier
    The Mayan Long Count Calendar Thomas Chanier To cite this version: Thomas Chanier. The Mayan Long Count Calendar. 2015. hal-00750006v11 HAL Id: hal-00750006 https://hal.archives-ouvertes.fr/hal-00750006v11 Preprint submitted on 8 Dec 2015 (v11), last revised 16 Dec 2015 (v12) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Mayan Long Count Calendar Thomas Chanier∗1 1 Universit´ede Brest, 6 avenue Victor le Gorgeu, F-29285 Brest Cedex, France The Mayan Codices, bark-paper books from the Late Postclassic period (1300 to 1521 CE) contain many astronomical tables correlated to ritual cycles, evidence of the achievement of Mayan naked- eye astronomy and mathematics in connection to religion. In this study, a calendar supernumber is calculated by computing the least common multiple of 8 canonical astronomical periods. The three major calendar cycles, the Calendar Round, the Kawil and the Long Count Calendar are shown to derive from this supernumber. The 360-day Tun, the 365-day civil year Haab’ and the 3276-day Kawil-direction-color cycle are determined from the prime factorization of the 8 canonical astronomical input parameters.
    [Show full text]
  • On Prime Numbers and Related Applications
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-12, October 2019 On Prime Numbers and Related Applications V Yegnanarayanan, Veena Narayanan, R Srikanth Abstract: In this paper we probed some interesting aspects of Our motivating factor for this work stems from the classic primorial and factorial primes. We did some numerical analysis result of called Prime Number Theorem which beautifully about the distribution of prime numbers and tabulated our models the statistical behavioral pattern of huge primes viz., findings. Also, we pointed out certain interesting facts about the utility value of the study of prime numbers and their distributions chance for an arbitrarily picked 푛휖푁 to be a prime number is in control engineering and Brain networks. inverse in proportion to log(푛). Keywords: Factorial primes, Primorial primes, Prime numbers. II. RESULTS AND DISCUSSIONS I. INTRODUCTION A. Discussion on Primorial and Factorial Primes The irregular distribution of prime numbers makes it Our journey is driven by fascinating characteristics of difficult for us to presume and discover. Euclid about 2300 primordial primes and factorial primes. A primordial years before established that primes are infinitely many. Till function denoted 푃# is the product of all primes till P and date we are not aware of a formula for finding the nth 푛 includes P. The factorial function is 푛! = 푖=1 푖. A natural prime. It appears as if they are randomly embedded in N and curiosity pushes us to probe large primes. In order to do this, may be because of this that sequences of primes do not tend we need to get an idea by analyzing numbers such as to emanate from naturally happening processes.
    [Show full text]
  • An Amazing Prime Heuristic
    AN AMAZING PRIME HEURISTIC CHRIS K. CALDWELL 1. Introduction The record for the largest known twin prime is constantly changing. For example, in October of 2000, David Underbakke found the record primes: 83475759 · 264955 ± 1: The very next day Giovanni La Barbera found the new record primes: 1693965 · 266443 ± 1: The fact that the size of these records are close is no coincidence! Before we seek a record like this, we usually try to estimate how long the search might take, and use this information to determine our search parameters. To do this we need to know how common twin primes are. It has been conjectured that the number of twin primes less than or equal to N is asymptotic to Z N dx 2C2N 2C2 2 ∼ 2 2 (log x) (log N) where C2, called the twin prime constant, is approximately 0:6601618. Using this we can estimate how many numbers we will need to try before we find a prime. In the case of Underbakke and La Barbera, they were both using the same sieving software (NewPGen1 by Paul Jobling) and the same primality proving software (Proth.exe2 by Yves Gallot) on similar hardware{so of course they choose similar ranges to search. But where does this conjecture come from? In this chapter we will discuss a general method to form conjectures similar to the twin prime conjecture above. We will then apply it to a number of different forms of primes such as Sophie Germain primes, primes in arithmetic progressions, primorial primes and even the Goldbach conjecture.
    [Show full text]