Formation of Topological Defects

Total Page:16

File Type:pdf, Size:1020Kb

Formation of Topological Defects Formation of Topological Defects Tanmay Vachaspati Physics Department, Case Western Reserve University, Cleveland OH 44106-7079, USA. In these lectures, I review cosmological phase transitions and the topological as- pects of spontaneous symmetry breaking. I then discuss the formation of walls, strings and monopoles during phase transitions including lattice based studies of defect formation and recent attempts to go beyond the lattice. The close connec- tion of defect formation with percolation is described. Open problems and possible future directions are mentioned. 1 Motivation and Introduction An exciting development in cosmology has been the realization that the uni- verse may behave very much like a condensed matter system. After all, the cosmos is the arena where very high energy particle physics is relevant and this is described by quantum field theory which is also the very tool used in condensed matter physics. In condensed matter systems we have seen a rich array of phenomenon and we expect that the cosmos has seen an equally rich past. A routine ob- servation in condensed matter (and daily life!) is that of symmetry breaking which is the basis of all schemes in particle physics to achieve unification of forces. Symmetry breaking would lead to phase transitions in the early uni- verse, making their study crucial to our understanding of the cosmos. There are many cosmic theories that hinge on processes happening during phase tran- sitions. These include a large number of inflationary models, baryogenesis and structure formation. arXiv:hep-ph/9710292v1 9 Oct 1997 Many of the concepts that have gone into the explosion of cosmology in the last two decades are linked to each other. As an example, consider the birth of the inflationary idea. The success of the electroweak model led particle physi- cists to attempt to unify the strong force with the electroweak forces by pos- tulating Grand Unified Theories (GUTs). In such theories, a number of phase transitions occur and, based on mathematical results on the topology of group manifolds, it is known that GUTs always contain topological defects known as magnetic monopoles. The occurence of phase transitions in cosmology then tells us that monopoles must have formed in the early universe 1. In fact, standard cosmology then predicts an over-abundance of magnetic monopoles in our present universe that is clearly in conflict with observations 3. This head-on confrontation of particle physics and cosmology led Guth 2 to come 1 up with the idea of an inflationary universe - an idea that is now deeply embed- ded in cosmology as it not only solves the monopole problem but also several other unrelated problems that standard (pre-inflationary) cosmology did not address. Magnetic monopoles are one example of topological defects that can arise during phase transitions. But topological defects can occur in other varieties as well. They can be one dimensional, in which case they are called “strings”. If they are two dimensional, they are called “domain walls”. Magnetic monopoles and domain walls are two kinds of topological defects that have unpleasant cosmological consequences unless they are kept very light or are somehow eliminated at some early epoch (for example, by inflation). Cosmic strings are believed to be more benevolent and may even have been responsible for structure formation in the universe if they were formed at the GUT phase transition. The study of topological defects is fascinating for several reasons. As in the example of magnetic monopoles and inflation above, they can provide im- portant constraints on particle physics models and cosmology. On the other hand, if a GUT topological defect is found, it would provide a direct window 35 on the universe at about 10− secs. In a manner of speaking, a part of the early universe is trapped in the interior of the defect - much like dinosaur fossils trapped in amber. GUT topological defects would also shed light on the problem of how galaxies were formed. Their discovery would give us im- portant constraints on the symmetry structure of very high energy particle physics - this is non-perturbative information. In addition, it would give us information about phase transitions in the early universe, giving confidence in our understanding of the thermal history of the universe. Also, the topologi- cal defects would most likely have tremendous astrophysical impact since they are generally very massive and have unusual gravitational and electromagnetic properties. In the early 80’s, people would talk of the marriage of particle physics and cosmology. I actually think there is something wrong with this picture since a third party is also involved. This is condensed matter physics. When it comes to understanding cosmological phase transitions, we are forced to consider the corresponding advances in condensed matter physics since many of the ideas are the same. Topological defects have been studied by condensed matter physicists for many, many years. If we want experimental input in our theories of the very early universe, we must go to the condensed matter laboratory. This is a growing area of research - condensed matter experiments are being inspired by cosmological questions, and, cosmologists are revising their theories based on experimental input. 2 In these lectures, my aim is to discuss the formation of topological de- fects and to bring the reader to a point where the most relevant questions are apparent. The existing work on topological defects paints a certain picture of their formation but there are some limitations. I will describe both the picture and the limitations. I will start out by describing phase transitions and the “effective potential” way of treating them in field theory. Then I will describe why topological defects come about and finally get to the work on their formation in a phase transition. It is impossible to describe every aspect of this subject within these lectures especially since the subject branches out into a large variety of different areas of research. The references provided in the bibliography should help the reader dive deeper into whichever area he/she chooses to pursue. 2 Phase Transitions 2.1 Effective Potential: Formalism In statistical mechanics, the basic quantity one tries to find is the partition function Z βH Z = e− X where β = 1/T and the sum is over all states with energy H. From the partition function one can derive the Helmholtz free energy A by A Z = e− and the derivatives of A then lead to the thermodynamic functions. To discuss phase transitions, one performs a Legendre transform on the Helmholtz free energy to get the Gibbs free energy G. For a gas, we have G(P,T )= A + P V while for an ensemble of spins, G(M,T )= A + HM where H is the external magnetic field and M is the magnetization of the system. In the magnetic system, we have ∂G = H ∂M 3 and so, in the absence of an external magnetic field, the minima of G describe the various phases of the system. In field theory, these concepts carry over almost word for word 6. For the time being we restrict ourselves to the zero temperature case. Then, in analogy with the partition function, one defines the generating functional in the presence of an external current J(x) (analogous to the external magnetic field) T Z[J]= Dφexp[i dt d3x( [φ]+ J(x)φ(x))] (1) Z Z0 Z L where, the time integration is over a large but finite interval and is a suitable Lagrangian density for the system. In other words, L iH Z[J]=< Ω e− T Ω > exp[ E[J]] (2) | | ≡ − where, Ω > is the vacuum state and H is the Hamiltonian. The energy functional| E[J] is the analog of the Helmholtz free energy. (Note however that E is not really an energy - for example, it does not have the dimensions of energy.) Now, we find, i ( + φ) δE[J] Dφe L J φ(x) = R δJ(x) −R i ( + φ) Dφe L J R = < ΩRφ(x) Ω > | | J φ (x) ≡ − cl which is (minus) the order parameter. Next we get the effective action, which is the analog of the Gibbs free energy, by Legendre transforming the energy functional: 4 Γ[φcl]= E[J] d yJ(y)φcl(y) . − − Z To obtain the value of the order parameter for any given external current, we need to solve: δΓ[φ ] cl = J(x) δφcl(x) − and, in particular, when the external current vanishes, the phases are described by the extrema of the effective action. So far we have taken the external current to be a function of space but, in practice, the current is taken to be a constant and φcl is also constant. Then, in this restricted case, only non-derivative terms can be present in the effective 4 action and the effective action leads to an effective potential with quantum corrections: 1 V (φ ) Γ[φ ] eff,q cl ≡− cl VT where, is the spacetime volume. VT These issues and, in particular, the correspondence between statistical mechanics and field theory, are described very clearly in the textbooks by Peskin and Schroeder 6 and Rivers 7. 2.2 Effective Potential: Quantum Corrections The actual calculation of the quantum effective potential is done by using perturbation theory 8,9. The general result is as follows. For the model: 1 1 = D φ Dµφ V (φ ) F a F aµν + L 2 µ i i − i − 4 µν LF where ∂ φ = (∂ ieAa T a)φ µ µ − µ F a = ∂ Aa ∂ Aa + ef Ab Ac µν µ ν − ν µ abc µ ν = iψγ¯ µD ψ ψ¯Γ ψφ LF µ − i i in conventional notation, the one loop correction to the potential is the Coleman- Weinberg correction: 1 µ2 M 2 m2 V (φ)= [Tr(µ4ln ) + 3Tr(M 4ln ) 4Tr(m4ln )] .
Recommended publications
  • Anyon Theory in Gapped Many-Body Systems from Entanglement
    Anyon theory in gapped many-body systems from entanglement Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bowen Shi, B.S. Graduate Program in Department of Physics The Ohio State University 2020 Dissertation Committee: Professor Yuan-Ming Lu, Advisor Professor Daniel Gauthier Professor Stuart Raby Professor Mohit Randeria Professor David Penneys, Graduate Faculty Representative c Copyright by Bowen Shi 2020 Abstract In this thesis, we present a theoretical framework that can derive a general anyon theory for 2D gapped phases from an assumption on the entanglement entropy. We formulate 2D quantum states by assuming two entropic conditions on local regions, (a version of entanglement area law that we advocate). We introduce the information convex set, a set of locally indistinguishable density matrices naturally defined in our framework. We derive an isomorphism theorem and structure theorems of the information convex sets by studying the internal self-consistency. This line of derivation makes extensive usage of information-theoretic tools, e.g., strong subadditivity and the properties of quantum many-body states with conditional independence. The following properties of the anyon theory are rigorously derived from this framework. We define the superselection sectors (i.e., anyon types) and their fusion rules according to the structure of information convex sets. Antiparticles are shown to be well-defined and unique. The fusion rules are shown to satisfy a set of consistency conditions. The quantum dimension of each anyon type is defined, and we derive the well-known formula of topological entanglement entropy.
    [Show full text]
  • Field Theory of Topological Defects an Introduction to Solitons and Cosmology
    Field Theory of Topological Defects An Introduction to Solitons and Cosmology Viktor G. Matyas Abstract Topological defects are physical structures that may have arose during phase transitions in the early universe. In this report we provide a concise mathematical background in Group Theory and Algebraic Topology, which we use to systematically study soliton-like solutions to field equations. We then provide a link between these solutions and spontaneous symmetry breaking, which we use to explain how these defects might have formed during the early stages of the universe. We explicitly analyse multiple topo- logical defects such as Kinks and Vortices, and discuss the consequences they might have towards many aspects of modern cosmology and particle physics. Contents 1 Introduction 2 2 Topology and Homotopy Theory 2 2.1 Topological Spaces .................................... 2 2.2 Homotopy Classes and Groups .............................. 4 3 Lie Groups and Geometry 5 3.1 Groups, Representations and Orbits ........................... 5 3.2 Lie Groups and Manifolds ................................ 6 4 Field Theory and Solitons 7 4.1 Lagrangian Field Theory ................................. 7 4.2 Gauge Theory ...................................... 7 4.3 The Vacuum and Spotaneous Symmetry Breaking .................... 9 4.4 Vacuum Topology and Solitons .............................. 10 4.5 Bogomolny Bounds .................................... 11 5 Kinks 12 5.1 The φ4 Kink ....................................... 12 5.2 The Sine-Gordon Kink
    [Show full text]
  • Falaco Solitons 1
    Falaco Solitons 1 Falaco Solitons — Cosmic strings in a swimming pool. R. M. Kiehn Physics Department, University of Houston, Houston, TX 77004 USA. http://www.cartan.pair.com Updated May 10, 2004 ––––––––––––––––––––––––––––––––––––— Abstract: A new dynamical bifurcation mechanism finally explains the forma- tion of topological defects experimentally observed and defined in 1986 as Falaco Solitons. The Falaco Solitons are topologically universal phenomena created ex- perimentally by a macroscopic rotational dynamics in a continuous media with a discontinuity surface, such as that found in a swimming pool. The topologically coherent structure of Falaco Solitons replicates certain features found at all phys- ical scales, from spiral arm galaxies and cosmic strings to microscopic hadrons. The easy to replicate experiment indicates the creation of "stationary" thermo- dynamic states (or solitons) far from equilibrium, which are locally unstable but are globally stabilized. Several exact solutions to the Navier-Stokes equations are demonstrated to admit bifurcations to Falaco Solitons. It is conjectured that the universal coherent topological features of the Falaco Solitons can appear as cosmological realizations of Wheeler’s wormholes, could represent spin pairing mechanisms in the microscopic Fermi surface, and exhibit the confinement prob- lem of sub microscopic quarks on the end of a string, or are perhaps realizations of sub-submicroscopic strings connecting branes. Keywords: Falaco Solitons, Hopf Breathers, Cosmic Strings, Global Stability ––––––––––––––––––––––––––––––––––––— c CSDC Inc. 2004 Falaco Solitons 2 1 The Falaco Soliton - A Topological Defect in a swim- ming pool. 1.1 Preface During March of 1986, while visiting an old friend in Rio de Janeiro, Brazil, the present au- thor became aware of a significant topological event involving solitons that can be replicated experimentally by almost everyone with access to a swimming pool.
    [Show full text]
  • On the Relationship Between Topological and Geometric Defects E-Mail: [email protected] and [email protected]
    Journal of Physics: Condensed Matter TOPICAL REVIEW Related content - Characteristics and controllability of On the relationship between topological and vortices in ferromagnetics, ferroelectrics, and multiferroics geometric defects Yue Zheng and W J Chen - Multiferroics of spin origin Yoshinori Tokura, Shinichiro Seki and To cite this article: Sinéad M Griffin and Nicola A Spaldin 2017 J. Phys.: Condens. Matter 29 343001 Naoto Nagaosa - Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets M J P Gingras and P A McClarty View the article online for updates and enhancements. This content was downloaded from IP address 128.3.150.53 on 12/09/2017 at 23:26 IOP Journal of Physics: Condensed Matter Journal of Physics: Condensed Matter J. Phys.: Condens. Matter J. Phys.: Condens. Matter 29 (2017) 343001 (8pp) https://doi.org/10.1088/1361-648X/aa7b5c 29 Topical Review 2017 On the relationship between topological © 2017 IOP Publishing Ltd and geometric defects JCOMEL Sinéad M Griffin1,2,4 and Nicola A Spaldin3,5 343001 1 Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America S M Griffin and N A Spaldin 2 Department of Physics, University of California Berkeley, Berkeley, CA 94720, United States of America 3 Materials Theory, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland On the relationship between topological and geometric defects E-mail: [email protected] and [email protected] Printed in the UK Received 15 March 2017, revised 16 June 2017 Accepted for publication 23 June 2017 Published 25 July 2017 CM Abstract 10.1088/1361-648X/aa7b5c The study of topology in solids is undergoing a renaissance following renewed interest in the properties of ferroic domain walls as well as recent discoveries regarding skyrmionic lattices.
    [Show full text]
  • Boundary and Defect CFT: Open Problems and Applications
    Boundary and Defect CFT: Open Problems and rspa.royalsocietypublishing.org Applications Research N. Andrei1, A. Bissi2, M. Buican3, J. Cardy4;5, P. Dorey6, N. Drukker7, Article submitted to journal J. Erdmenger8, D. Friedan1;9, D. Fursaev10, A. Konechny11;12, C. Kristjansen13, Subject Areas: Theoretical Physics, Mathematical I. Makabe7, Y. Nakayama14, A. O’Bannon15, Physics R. Parini16, B. Robinson15, S. Ryu17, Keywords: C. Schmidt-Colinet18, V. Schomerus19, Conformal Field Theory, Boundaries and Defects, Non-Perturbative C. Schweigert20, and G.M.T. Watts7 Effects, Holographic Duality, 1 Supersymmetry Dept. of Phys., Rutgers Univ., Piscataway, NJ, USA. 2Dept. of Phys. and Astro., Uppsala Univ., SE 3 Author for correspondence: CRST and SPA, Queen Mary Univ. of London, UK B. Robinson 4Dept. of Phys., Univ. of California, Berkeley, CA, USA e-mail: [email protected] 5All Souls College, Oxford, UK 6Dept. of Math. Sci., Durham Univ., UK 7Dept. of Maths, King’s College London, UK 8Julius-Maximilians-Univ. Würzburg, DE 9 Natural Science Inst., Univ. of Iceland, IS 10Dubna State Univ., Dubna, RU 11Dept. of Maths, Heriot-Watt Univ., Edinburgh, UK 12Maxwell Inst. for Math. Sci., Edinburgh, UK 13Niels Bohr Inst., Copenhagen Univ., , DK 14Dept. of Phys., Rikkyo Univ., Tokyo, JP 15STAG Research Centre, Univ. of Southampton, UK 16Department of Mathematics, University of York, UK 17J. Franck Inst. & KCTP., Univ. of Chicago, IL, USA 18Arnold Sommerfeld Center, Univ. München, DE arXiv:1810.05697v1 [hep-th] 12 Oct 2018 19DESY Theory Group, DESY Hamburg, Hamburg, DE 20Fachbereich Math., Univ. Hamburg, Hamburg, DE Proceedings of the workshop “Boundary and Defect Conformal Field Theory: Open Problems and Applications,” Chicheley Hall, Buckinghamshire, UK, 7-8 Sept.
    [Show full text]
  • Experimental Evidence for Maximal Surfaces in a 3 Dimensional Minkowski Space
    Experimental Evidence for Maximal Surfaces in a 3 Dimensional Minkowski Space. R. M. Kiehn Emeritus Professor of Physics Physics Department, University of Houston, Houston, TX 77004 USA. http://www.cartan.pair.com c CSDC Inc. 2005 Draft° 2 Updated June 12, 2005 –––––––––––––––––––––––––– Abstract: Conventional physical dogma, justified by the local success of Newtonian dynamics for particles, assigns a Euclidean metric with signature (plus, plus, plus) to the three spatial di- mensions. Minimal surfaces are of zero mean curvature and neg- ative Gauss curvature in a Euclidean space, which supports affine evolutionary processes. However, experimental evidence now in- dicates that the non-affine dynamics of a fluid admits a better description in terms of a 3 dimensional space with a Minkowski metric of signature (plus, plus, minus). Three dimensional spaces with a Minkowski metric admit maximal surfaces of zero mean curvature, with conical or isolated singularities, and with posi- tive Gauss curvature, in contrast to Euclidean 3D metrics. Such properties are also associated with the Hopf map, which generates two surfaces of zero mean curvature and positive Gauss curvature in a 4D Euclidean space. Falaco Solitons, easily created as topo- logical defects in a swimming pool, are experimental artifacts of maximal surfaces (of zero mean curvature, but positive Gauss curvature) in a 3D Minkowski space. The topological defects in the otherwise flat surface of fluid density discontinuity appear as a pair of zero mean curvature surfaces, with a conical singularity at each end. The two conical singularies of the Falaco Soliton pair appear to be connected with a 1D string under tension.
    [Show full text]
  • Topological Defects in Cosmology
    Topological defects in cosmology Ossi Tapio February 4, 2013 Abstract In this dissertation I study topological defects by performing numerical sim- ulations of classical scalar field theories in one spatial dimension. I devise three methods of counting defect densities and run multiple simulations to find out how different counting methods compare. I discover a difference that might help in the interpretation of future simulations of topological defects. I also run multiple simulations with varying parameters to see how the density of topological defects changes under different conditions. With this data I observe that a low rate of energy damping will have interesting and surprising effects on the defect density. Introduction The standard theory of beginning of the Universe is the so called Hot Big Bang model. This theory stipulates that all matter and space was at the beginning of time compressed to an extremely small and extremely hot point and that this point started to expand and cool. In the very early state of the Universe, the energy density was so enormous that all interactions were indistinguishable from each other. Approximately 10−43 seconds after the Big Bang a phase transition occurred, triggered by the dilution of the en- ergy density, causing gravity to separate from rest of the interactions. The Universe kept expanding and cooling and 10−36 seconds after the Big Bang the strong interactions separated from the electroweak interactions and phe- nomenon known as cosmic inflation happened. This phase transition sepa- rating the strong interaction from the electroweak interaction should have created a large number of magnetic monopoles and anti-monopoles.
    [Show full text]
  • Topological Defects and Cosmology
    PRAMANA Indian Academy of Sciences Vol. 51, Nos 1 & 2, --journal of July/August 1998 physics pp. 191-204 Topological defects and cosmology ROBERT H BRANDENBERGER Physics Department, Brown University, Providence, RI 02912, USA Abstract. Many particle physics models of matter admit solutions corresponding to stable or long-lived topological defects. In the context of standard cosmology it is then unavoidable that such defects will form during phase transitions in the very early Universe. Certain types of defects lead to disastrous consequences for cosmology, others may play a useful role, as possible seeds for the formation of structure in the Universe, or in mediating baryon number violating processes. In all cases, topological defects lead to a fruitful interplay between particle physics and cosmology. Keywords. Cosmic strings; cosmology; structure formation; baryogenesis. PACS No. 98.80 1. Introduction Most aspects of high energy physics beyond the standard model can only be tested by going to energies far greater than those which present accelerators can provide. Fortunately, the marriage between particle physics and cosmology has provided a way to 'experimentally' test the new theories of fundamental forces. The key realization is that physics of the very early Universe may explain the origin of the structure on the scales of galaxies and beyond. It now appears that a rich set of data concerning the nonrandom distribution of matter on a wide range of cosmological scales, and on the anisotropies in the cosmic microwave background (CMB), may potentially be explained by high energy physics. Topological defects provide one class of mechanisms for generating the initial density fluctuations [1].
    [Show full text]
  • Topological Defect Arrays in Nematic Liquid Crystals Assisted by Polymeric Pillar Arrays: Effect of the Geometry of Pillars
    crystals Article Topological Defect Arrays in Nematic Liquid Crystals Assisted by Polymeric Pillar Arrays: Effect of the Geometry of Pillars MinSu Kim and Francesca Serra * Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-410-516-0248 Received: 23 March 2020; Accepted: 16 April 2020; Published: 18 April 2020 Abstract: Topological defects that spontaneously occur in condensed matter and structured fluids such as liquid crystals are useful for their elastic and optical properties, but often the applicability of defect arrays to optics and photonic devices relies on the regularity and tunability of the system. In our recent work [Adv. Opt. Mater. 8, 1900991 (2020)], we showed the formation of regular, reconfigurable, and scalable patterns by exploiting the elastic response of a defect array in liquid crystals in the presence of a polymeric pillar array. In this work, we experimentally investigate the role of size and shape of the pillars on the defect array. We find that the pillar size and geometry provide additional means to regulate the response time, the threshold voltage for the defects’ formation, and the spatial arrangement of the defects. Keywords: liquid crystals; soft matter; defect arrays; diffraction 1. Introduction After mastering techniques to create perfect liquid crystal (LC) displays without any imperfections or defects, for the last 20 years physicists and engineers have looked for ways to control and utilize topological defects in LCs [1–3]. In nematic LCs, the long-range molecular order is represented by a headless vector called the director [4].
    [Show full text]
  • Cosmic Strings and Topological Defects
    Cosmic Strings and Topological Defects Jiawen Liu December 9, 2012 Abstract In this review article, we point out spontaneous symmetry breaking is closely related to the emergence of the topological defects. Basic definitions and dynamics of the domain walls are introduced in the second section. Finally, we worked out an example of the spherical domain wall by using semi-classical approach. 1 1 Introduction Cosmic strings are one dimensional topological defects which may arise from a symmetry breaking phase transition of the early universe. Consider the geometry of the early universe is a non-connected vacuum manifold, M. Cosmic strings are characterized by non-trivial fundamental group of the manifold, M(π1(M) 6= I), which is an analog of the topological defect of two dimensional vortex. The manifold, M is not contractible which means the singularity corresponding to a hole cannot be removed by continuous deformation. There are other topological defects in the curved spacetime such as monopoles, domain walls, and textures. This expository article is mainly focused on the basics of the cosmic strings and topological defects. We basically give a short account of the theory based on the book by Vilenkin and Shellard. The article is organized as follows. First, introduce the origin of the topological defects in the uni- verse. In the book, they argue that the symmetry of Higgs fields (scalar fields) break because of the non-zero expectation value of the ground state. Hence, we can heuristically determine that the manifold has some non-trivial topological properties. Second, we explain the concept of domain walls and their non-trivial topological properties.
    [Show full text]
  • Interacting Quantum Field Theories and Topological Defects
    Interacting Quantum Field Theories and Topological Defects A. Flachi and V. Vitagliano Department of Physics & Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521, Japan In this talk we present a recent analysis of interacting quantum field theories on a curved manifold with a topological defect constructed by geometrically deforming a lattice. We present an explicit example where curvature and boundary conditions compete in altering the way the quantum vacuum is destabilized. We show that the competing action of the locally induced curvature and of boundary conditions generated by the non-trivial topology allows configurations where symmetries can be spontaneously broken close to the defect core. Inspired by this effect, we propose a novel mechanism to induce a superconducting phase by triggering particle condensation along cosmic strings. As the energy scales of a physical system become higher, non-perturbative effects get into the game and the system is said to have entered an strongly coupled regime. Remarkable examples of strongly coupled systems include QCD, high temperature superconductors and the very primordial plasma filling the universe a few instants after the big bang. Interactions are also important in describing the propagation of conducting electrons in graphene. Precise study of strong coupled dynamics is only possible at the cost of demanding numerical simulations. On the other hand, general phenomenological guidelines for the study of strongly coupled systems can be precisely draft exploiting mathematical considerations on the underlying symmetries. The physics of symmetry breaking, in fact, notably relies on exact mathematical statements which are intimately non-perturbative, as in the case of the Goldstone theorem.
    [Show full text]
  • Topological Quantum Field Theory and the Geometric Langlands Correspondence
    Topological Quantum Field Theory and the Geometric Langlands Correspondence Thesis by Kevin Setter In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2013 (Defended August 24, 2012) ii c 2013 Kevin Setter All Rights Reserved iii Dedicated with love and gratitude to my parents. iv Acknowledgments I would like to thank my advisor Anton Kapustin, whose ideas are central to this thesis, from whom I learned an immense amount, and who kept me on track during the writing process with guidance and support. Thank you to Sergei Gukov for his guidance and support as well. Many thanks to Carol Silberstein and the members of the theory group, especially Ketan Vyas, Paul Cook, Jie Yang, Sakura Schafer-Namecki, Tudor Dimofte, Miguel Bandres, Itamar Yaakov, Brian Willett, and Denis Bashkirov for discussions and support. Thank you to Lee Coleman and Cristina Dezan for their copious insights into life and more. I acknowledge the generous support of the Jack Kent Cooke Foundation. Warm gratitude to my gym buddies Chris Wegg and Nate Bode, and to my friends Lucia Cordeiro-Drever, Esi Alizadeh, Laura Book, Tristan Smith, and Hernan Garcia, for their support and inspiration during my time at Caltech. Much love and gratitude to my parents for their tireless support and understanding. Finally, my deepest gratitude to Camilla Berretta | So are you to my thoughts as food to life / Or as sweet-season'd showers are to the ground. v Abstract In the pioneering work [1] of A. Kapustin and E. Witten, the geometric Langlands program of number theory was shown to be intimately related to duality of GL-twisted N = 4 super Yang-Mills theory compactified on a Riemann surface.
    [Show full text]