Vernonieae: Asteraceae) III: Restoration of the Genus Strobocalyx and the New Genus Tarlmounia

Total Page:16

File Type:pdf, Size:1020Kb

Vernonieae: Asteraceae) III: Restoration of the Genus Strobocalyx and the New Genus Tarlmounia PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 121(1):19–33. 2008. Studies on the Gymnantheminae (Vernonieae: Asteraceae) III: restoration of the genus Strobocalyx and the new genus Tarlmounia Harold Robinson*, Sterling C. Keeley, John J. Skvarla, and Raymund Chan (HR) Department of Botany, NHB 166, National Museum of Natural History, P.O. Box 37012, Smithsonian Institution, Washington, D.C. 20013-7012, e-mail: [email protected]; (SK) Department of Botany, University of Hawaii, Manoa, 3190 Maile Way, #101, Honolulu, Hawaii, 96822-2279, e-mail: [email protected]; (JS) Department of Botany and Microbiology, and Oklahoma Biological Survey, University of Oklahoma, Norman, Oklahoma. 73018-6131, e-mail: [email protected]; (RC) Department of Botany, NHB 166, National Museum of Natural History, P.O. Box 37012, Smithsonian Institution, Washington, D.C. 20013-7012, e-mail: [email protected] Abstract.—The genus Strobocalyx is resurrected from the synonymy of Gymnanthemum and Vernonia, and the genus Tarlmounia is described. Both of these Asian and Malaysian genera have distinct stylar nodes, blunt stylar hairs and specialized tricolporate, echinate pollen. Strobocalyx is typified by the Asian and Indonesian S. arborea, and combinations are provided for the 6 other East Asian and Malaysian species: Vernonia bockiana, V. chunii, V. esculenta, V. solanifolia, V. sylvatica and V. vidalii. Tarlmounia contains only Vernonia elliptica. A continuing series of papers by the sensu Robinson (1999a), with its woody senior author during the last quarter habit and usually imbricated involucre century has segregated many reasonably with rather deciduous inner bracts. The phyletic units from the old, traditional, first of these latest studies resurrected the aphyletic, core genus Vernonia Schreb. Asiatic genus Monosis DC. in Wight and its relatives. The series was summa- (Robinson & Skvarla 2006) which was rized up to a point in two papers, distinct in its leaf shape and its lophate Robinson (1999a), making an initial pollen. This was only a first step in effort at reorganizing genera of the correcting the overly broad concept of Eastern Hemisphere Vernonieae, and Gymnanthemum. The present study and a Robinson (1999b), dealing in more detail simultaneous study of the somewhat with Western Hemisphere members of the similar Asian and Malaysian genus De- tribe. The work is also broadly summa- caneuropsis (Robinson & Skvarla, 2007) rized in less detail in Robinson (2007). further refine the group. These treatments were all based on The present paper deals with the phenetic studies made prior to the use of groups that include two Southeast Asian DNA sequence data. Partly because of species for which Keeley et al. (2007) have these molecular data, further evaluations obtained DNA sequences, Vernonia ar- of some larger genera have begun. The borea Buch.-Ham., a large tree (Fig. 1), present series continues to deal with the and the type of the genus Strobocalyx shrubby or arborescent Gymnanthemum (Blume in DC.) Spach., and Vernonia Cass. in the subtribe Gymnantheminae elliptica DC. in Wight, a straggling shrub or sprawling vine. The sequences indicate * Corresponding author. that the two species are rather close to 20 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON each other, but that they are remote from Results the mostly African and Madagascaran genus Gymnanthemum into which V. Two genera are accepted in the present arborea Buch.-Ham. was placed by Ro- treatment, Strobocalyx for V. arborea and binson (1999a). The distinction of both its relatives, and the new genus Tarlmou- species from Gymnanthemum has been nia for V. elliptica. The primary charac- confirmed by study of certain structural teristics on which the genera are based are features, pollen, sweeping hairs of the as follows. style, the basal stylar node, and the Trichomes.—Hairs on the leaves in absence of a well-developed median shield Strobocalyx vary from the long, simple, in the involucral bracts. Revised generic uniseriate form with short basal cells and dispositions of the two species and the a long nonseptate apical cell in Strobo- current understanding of generic limits calyx arborea (Fig. 3A) and S. solanifolia are presented here. The DNA sequence and in other Strobocalyx spp. The latter data (Keeley et al. 2007) offer an extra are sometimes asymmetrical at the base. problem by placing the two Southeast These differ from the very short-stalked, Asian species in close relation to Amer- very long-armed T-shaped form in the ican members of the tribe, a result apparently closely related Tarlmouna el- requiring some discussion. liptica (Fig. 3B). This places Strobocalyx and the related Tarlmounia among the groups in the Vernonieae with simple- or Materials and Methods T-shaped trichomes, in contrast to groups Specimens examined are from the with stellate, spurred, or scale-like tri- U.S. National Herbarium in Washington, chomes such as the New World Piptocar- D.C. Examination of microscopic char- phinae or Sipolisiinae. acters involved use of Hoyer’s Solution Inflorescences.—The shape of the in- (Anderson 1954). florescence in Strobocalyx is generally Preparation of pollen for scanning corymbiform with obvious cymose devel- electron microscopy (SEM) consisted of opment at the apex. The shape is not acetolysis (Erdtman 1960) followed by the strictly pyramidal as in Monosis (Robin- osmium–thiocarbohydrazide repeat pro- son & Skvarla, 2006). The length of cedure (Chissoe et al. 1995) and finally the peduncles varies from almost none pulse sputter coating with a gold/palladi- in S. sylvatica to elongate in S. chunii. um (60/40) target (Chissoe & Skvarla The receptacles may or may not have 1996). Examination was with JEOL 880, hairs. In no case does the inflorescnce Leica 440, and Amray 1810 scanning become very dense. The corollas never electron microscopes, all equipped with have elongate slender bases as in Decan- lanthanum hexaboride (LaB6) electron europsis (Robinson & Skvarla, 2007). sources. The microscopes used were at The achenes of Strobocalyx have been the University of Oklahoma and in the traditionally described as 5-ribbed or 5- SEM laboratory of the United States angled, contrasting with the 10-ribbed National Museum of Natural History in condition in most other Gymanthemum- Washington. like Vernonieae of the Eastern Hemi- The results of the DNA study and the sphere. Careful examination shows 10 methods used are reported in Keeley et al. ribs in almost all achenes, but many of (2007). The phyletic tree included here these may be faint or totally suppressed. (Fig. 2) is simplified from the phylogenet- In Tarlmounia the inflorescences are ic tree of the Vernonieae in the latter elongate and thyrsiform, the achenes paper. are 5-ribbed with little or no evidence of VOLUME 121, NUMBER 1 21 Fig. 1. Coauthor Raymund Chan standing next to Strobocalyx arborea (Buch.-Ham.) Sch. Bip. (approx. 20 m tall) in Bukit Timah Nature Reserve, Singapore (Photo by Michele Chan, plant material for study collected by Shawn Lum). extra ribs. The pappus in all species Style.—In the present study of the examined shows some shorter outer Gymnantheminae, distinctions are em- bristles, although these are not in a highly phasized between Strobocalyx, Gym- differentiated series. nanthemum and Monosis, all placed in 22 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON Fig. 2. Simplified phylogenetic tree of Vernonieae derived from DNA sequence data from Keeley et al. (2007). Tree shows positions of Strobocalyx Group of Malaysia that is remote from typical Gymnanthemum of Africa with which it was previous associated. Transverse line in middle of page separates primarily Old World Vernonieae (below) from primarily New World Vernonieae (above). Note position of Old World Strobocalyx Group within the primarily New World Vernonieae. Original from which tree is derived (Keeley et al. 2007) Bayesian analysis of combined data set (ITS, ndhF, trnL-F) run for 1 million generations with model TIM + 1 + G, log-likelihood score 220,656.5. Posterior probability values given above line, bootstrap values (1000 replicates) from majority rule consensus NJ tree (minimum evolution) constructed using same model given below line. Lengths of lines altered. Gymnanthemum in Robinson (1999a). of the style, but these are few and the Two of the useful characters involve the node is, at best, scarcely developed. style. In Strobocalyx the base of the style Sweeping hairs on the upper shaft and has a distinct expanded node. This is also branches of the style are blunt in Strobo- true of Monosis. Tarlmounia has a conical calyx and Tarlmounia. In contrast, they style base with a narrow basal annulus of are pointed in Gymnanthemum and Mono- thickened cells. In contrast, typical Gym- sis, and in some other elements that have nanthemum,withG. coloratum (Willd.) H. been placed in the broad concept of Rob. & B. Kahn and G. amygdalinum Gymnanthemum. The blunt hairs can be (Del.) Sch.Bip. ex Walp., has no evident seen in a distorted form using SEM, but basal stylar node. Other species of true they are easily observed under the light Gymnanthemum, such as G. myrianthum microscope. This character is not restrict- (Hook. f.) H. Rob. and G. theophrastifo- ed to Strobocalyx and Tarlmounia, which lium (Schweinf. ex Oliv. & Hiern) H. have nonlophate pollen, but also occurs Rob., have differentiated cells at the base in numerous species of the Eastern VOLUME 121, NUMBER 1 23 Fig. 3. SEM of trichomes from abaxial surfaces of leaf blades. A, Strobocalyx arborea showing simple hairs (Tonkin, Pe´telot 6624,US);B,Tarlmounia elliptica showing short-stalked T-shaped hairs (Sri Lanka, Grierson 1013, US). Hemisphere such as Decaneuropsis cu- have ordinary Type A pollen (see discus- mingiana (Benth.) H. Rob. & Skvarla, sion below). and in most members of the Piptocarphi- Pollen.—Strobocalyx and Tarlmounia nae in the Western Hemisphere which have tricolporate, echinate, nonlophate 24 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON pollen with perforated tectum continuous layer (Figs.
Recommended publications
  • Plant Systematics Economic Botany and Ethnobotany
    CORE PAPER- VIII PLANT SYSTEMATICS ECONOMIC BOTANY AND ETHNOBOTANY UNIT - III Rubiaceae Systematic position Class-Dicotyledons Sub class -Gamopetalae Series –Inferae Order - Rubiales Family-Rubiaceae Distribution of Rubiaceae: It is commonly known as Madder or Coffee family. It includes 6000 species and 500 genera. In India it is represented by 551 species. The members of this family are distributed in tropics, sub-tropics and temperate regions. Vegetative characters Habit and Habitatat. Trees -Adina cordifolia Shrubs- Gardenia (mostly), some are twinners- Paederia Climbers -Uncaria Herbs -Gallium Epiphytic eg Hymenopogon parasiticus Helophytic, or mesophytic, or xerophytic, or hydrophytic (Limnosipanea). Majority are perennials a few annuals, cultrivated as well as wild Root –branched tap root Stem- aerial,erect or weak, cylindrical or angular herbaceous Gallium or woody ,armed with spines Randia dementorum ,glabrous,pubescent hairy or smooth Stephegyne, branched, dichasial cymein Gallium. Leaf - Cauline and ramal Leaves stipulate. Stipules interpetiolar (between the petioles , or intrapetiolar; between the petiole and axis .leafy Gallium divided Borreria hair like Pentas sometimes fused to form a sheath GardeniaPetiolate, subsessile or sessile Gallium Leaves opposite Cinchona or whorled Gallium simple; Lamina entire; Cinchona opposite decussate Ixora ), reticulate Floral characters: Inflorescence- Flowers aggregated in ‘inflorescences’, or solitary (less often); in cymes, or in panicles, Cinchona or in heads (rarely, e.g. Morindeae, Gardenia). The ultimate inflorescence units compound cyme MussaendaInflorescences with involucral bracts (when capitate), or without involucral bracts; Flowers -Bracteate Gardenia ebracteate Cinchona Bracts persistant –Hymenopogan Pedicellate,subsessile Gardenia sessile RandinBracteolate or ebracteolate, complete or incomplete actinomorphic,, Rarely Zygomorphic Randeletin bisexual unisexual Coprosma , epigynous regular; mostly 4 merous, or 5 merous; cyclic; tetracyclic.
    [Show full text]
  • Lyonia 7(1) 2004 - Conservation of Biological and Cultural Diversity in the Andes and the Amazon Basin - Flora and Vegetation
    Lyonia 7(1) 2004 - Conservation of Biological and Cultural Diversity in the Andes and the Amazon Basin - Flora and Vegetation Volume 7(1) December 2004 ISSN: 0888-9619 odd-right: 2 Introduction Scientists widely agree that species extinction has heavily accelerated in the last decades. The majority of the worlds species are found in tropical forests, covering a mere ten percent of the planets surface. A grave problem for the conservation of diversity is the still very fragmentary knowledge of the ecology of most species. The Andes and the Amazon Basin represent one of the most important Biodiversity-Hotspots on Earth. Attempts of sustainable management and conservation must integrate local communities and their traditional knowledge. Management decisions need to include the high importance of natural resources in providing building materials, food and medicines for rural as well as urbanized communities. The traditional use of forest resources, particularly of non-timber products like medicinal plants, has deep roots not only in indigenous communities, but is practiced in a wide section of society. The use of medicinal herbs is often an economically inevitable alternative to expensive western medicine. The base knowledge of this traditional use is passed from one generation to the next. Especially the medical use represents a highly dynamic, always evolving process, where new knowledge is constantly being obtained, and linked to traditional practices. An increased emphasis is being placed en possible economic benefits especially of the medicinal use of tropical forest products instead of pure timber harvesting, an approach particularly appealing to countries with difficult economic conditions. Most research efforts, due to lack of manpower, time end resources, focus only on either biodiversity assessments or ethnobotanical inventories, or try to implement management and use measures without having a sound scientific base to do so.
    [Show full text]
  • Download This Article As
    Int. J. Curr. Res. Biosci. Plant Biol. (2019) 6(10), 33-46 International Journal of Current Research in Biosciences and Plant Biology Volume 6 ● Number 10 (October-2019) ● ISSN: 2349-8080 (Online) Journal homepage: www.ijcrbp.com Original Research Article doi: https://doi.org/10.20546/ijcrbp.2019.610.004 Some new combinations and new names for Flora of India R. Kottaimuthu1*, M. Jothi Basu2 and N. Karmegam3 1Department of Botany, Alagappa University, Karaikudi-630 003, Tamil Nadu, India 2Department of Botany (DDE), Alagappa University, Karaikudi-630 003, Tamil Nadu, India 3Department of Botany, Government Arts College (Autonomous), Salem-636 007, Tamil Nadu, India *Corresponding author; e-mail: [email protected] Article Info ABSTRACT Date of Acceptance: During the verification of nomenclature in connection with the preparation of 17 August 2019 ‗Supplement to Florae Indicae Enumeratio‘ and ‗Flora of Tamil Nadu‘, the authors came across a number of names that need to be updated in accordance with the Date of Publication: changing generic concepts. Accordingly the required new names and new combinations 06 October 2019 are proposed here for the 50 taxa belonging to 17 families. Keywords Combination novum Indian flora Nomen novum Tamil Nadu Introduction Taxonomic treatment India is the seventh largest country in the world, ACANTHACEAE and is home to 18,948 species of flowering plants (Karthikeyan, 2018), of which 4,303 taxa are Andrographis longipedunculata (Sreem.) endemic (Singh et al., 2015). During the L.H.Cramer ex Gnanasek. & Kottaim., comb. nov. preparation of ‗Supplement to Florae Indicae Enumeratio‘ and ‗Flora of Tamil Nadu‘, we came Basionym: Neesiella longipedunculata Sreem.
    [Show full text]
  • Crop Reports
    CROP REPORTS Classification, origin, and environmental requirements Stokes aster initially was described and classified as Carthamus laevis by J. Hill in 1769. The genus Stokesia was Crop described by L’Héritier de Brutelle (1788), who proposed that the type specimen used by J. Hill to describe C. laevis should be selected as the type Reports specimen for the new genus Stokesia. L’Héritier de Brutelle (1788) also re- ferred to S. cyanea but failed to describe the species; therefore, the name S. cyanea is illegitimate. The final authority re- Stokes Aster (12,13-epoxy-cis-9-octadecenoic) garding the nomenclature of stokes as- acid, a fatty acid that is converted to ter is Greene (1893), who stated that epoxy oil products for use in the manu- the proper binomial for the specimen 1 facture of plastics and adhesives called C. laevis by J. Hill and S. cyanea by Lyn A. Gettys and (Campbell, 1981; Kleiman, 1990). Oil L’Héritier de Brutelle should be Stokesia Dennis J. Werner2 content in seeds can be as high as 40%, laevis. The genus is named for the En- with about 70% of this oil being vernolic glish botanist Jonathan Stokes (1755- acid (Gunn and White, 1974). In the 1831). 1980s, the annual global market for Stokesia is one of about 950 genera ADDITIONAL INDEX WORDS. Stokesia seed-derived epoxy oils was between laevis, Asteraceae, Vernonieae, oilseed in the aster family (Asteraceae Dumont) crop, native plant, propagation 45 and 90 billion tons (40.8 and 81.6 and is monotypic, with S. laevis the only × 109 t) per year (Campbell, 1981; species (Bailey, 1949; Els, 1994; Greene, Princen, 1983).
    [Show full text]
  • Tree and Tree-Like Species of Mexico: Asteraceae, Leguminosae, and Rubiaceae
    Revista Mexicana de Biodiversidad 84: 439-470, 2013 Revista Mexicana de Biodiversidad 84: 439-470, 2013 DOI: 10.7550/rmb.32013 DOI: 10.7550/rmb.32013439 Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae Especies arbóreas y arborescentes de México: Asteraceae, Leguminosae y Rubiaceae Martin Ricker , Héctor M. Hernández, Mario Sousa and Helga Ochoterena Herbario Nacional de México, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70- 233, 04510 México D. F., Mexico. [email protected] Abstract. Trees or tree-like plants are defined here broadly as perennial, self-supporting plants with a total height of at least 5 m (without ascending leaves or inflorescences), and with one or several erect stems with a diameter of at least 10 cm. We continue our compilation of an updated list of all native Mexican tree species with the dicotyledonous families Asteraceae (36 species, 39% endemic), Leguminosae with its 3 subfamilies (449 species, 41% endemic), and Rubiaceae (134 species, 24% endemic). The tallest tree species reach 20 m in the Asteraceae, 70 m in the Leguminosae, and also 70 m in the Rubiaceae. The species-richest genus is Lonchocarpus with 67 tree species in Mexico. Three legume genera are endemic to Mexico (Conzattia, Hesperothamnus, and Heteroflorum). The appendix lists all species, including their original publication, references of taxonomic revisions, existence of subspecies or varieties, maximum height in Mexico, and endemism status. Key words: biodiversity, flora, tree definition. Resumen. Las plantas arbóreas o arborescentes se definen aquí en un sentido amplio como plantas perennes que se pueden sostener por sí solas, con una altura total de al menos 5 m (sin considerar hojas o inflorescencias ascendentes) y con uno o varios tallos erectos de un diámetro de al menos 10 cm.
    [Show full text]
  • Compositae: Cichorioideae
    Systematic Botany (2011), 36(1): pp. 191–208 © Copyright 2011 by the American Society of Plant Taxonomists DOI 10.1600/036364411X553270 A Monograph of the Small Tribe Platycarpheae (Compositae: Cichorioideae) V. A. Funk , 1 , 3 and Marinda Koekemoer 2 1 U.S. National Herbarium, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, U.S.A. 2 South African National Biodiversity Institute, Private Bag X101, Pretoria 0001, South Africa 3 Author for correspondence ( [email protected] ) Communicating Editor: Victoria Sosa Abstract— The tribe Platycarpheae has three species; they are found from South Africa, to Namibia and Botswana. The three species have traditionally been placed in a single genus but were recently divided into two ( Platycarpha and Platycarphella ). All have ‘secondary heads’ formed by tightly clustered heads on the crown of the rhizome. The three species are easily separated from one another based on characters such as leaf type, head size, style and corolla length, and pollen type. Morphological and molecular data support Platycarpheae as a monophyl- etic group within the subfamily Cichorioideae but no firm sister-group relationship has been determined. The three species form a monophyl- etic group on a long branch: Platycarphella carlinoides and Platycarphella parvifolia share more characters and are sister-taxa; Platycarpha glomerata has the largest number of unique features and is the sister taxon to the other two species. The distributions and flowering times of the three spe- cies are different. Platycarphella carlinoides is the most widespread of the species and grows in northwestern South Africa, the central highlands of Namibia, and southwestern Botswana; its peak flowering time is March-July.
    [Show full text]
  • Plant Press, Vol. 18, No. 3
    Special Symposium Issue continues on page 12 Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 18 - No. 3 July-September 2015 Botany Profile Seed-Free and Loving It: Symposium Celebrates Pteridology By Gary A. Krupnick ern and lycophyte biology was tee Chair, NMNH) presented the 13th José of this plant group. the focus of the 13th Smithsonian Cuatrecasas Medal in Tropical Botany Moran also spoke about the differ- FBotanical Symposium, held 1–4 to Paulo Günter Windisch (see related ences between pteridophytes and seed June 2015 at the National Museum of story on page 12). This prestigious award plants in aspects of biogeography (ferns Natural History (NMNH) and United is presented annually to a scholar who comprise a higher percentage of the States Botanic Garden (USBG) in has contributed total vascular Washington, DC. Also marking the 12th significantly to flora on islands Symposium of the International Orga- advancing the compared to nization of Plant Biosystematists, and field of tropical continents), titled, “Next Generation Pteridology: An botany. Windisch, hybridization International Conference on Lycophyte a retired profes- and polyploidy & Fern Research,” the meeting featured sor from the Universidade Federal do Rio (ferns have higher rates), and anatomy a plenary session on 1 June, plus three Grande do Sul, was commended for his (some ferns have tree-like growth using additional days of focused scientific talks, extensive contributions to the systematics, root mantle or have internal reinforce- workshops, a poster session, a reception, biogeography, and evolution of neotro- ment by sclerenchyma instead of lateral a dinner, and a field trip.
    [Show full text]
  • Vernodalidimer L, a Sesquiterpene Lactone Dimer from Vernonia Extensa and Anti-Tumor Effects of Vernodalin, Vernolepin, and Vern
    Bioorganic Chemistry 92 (2019) 103197 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Vernodalidimer L, a sesquiterpene lactone dimer from Vernonia extensa and T anti-tumor effects of vernodalin, vernolepin, and vernolide on HepG2 liver cancer cells ⁎ Sanit Thongnesta, , Pornsuda Chawengrumb, Siriporn Keeratichamroenc, ⁎ Kriengsak Lirdprapamongkolc, Chatchakorn Eurtivongb, Jutatip Boonsombata, , Prasat Kittakoopb, Jisnuson Svastic, Somsak Ruchirawata,b,d a Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok 10210, Thailand b Program of Chemical Biology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand c Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand d The Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok 10400, Thailand ARTICLE INFO ABSTRACT This manuscript honors Professor Dr. HRH Vernonia extensa, known as “Phim Phai Lin” in Thai, is distributed in most regions of Thailand. The plant has Princess Chulabhorn Mahidol on the occasion been used in Ayurveda and traditionally used to treat malaria and cancer, and possesses several sesquiterpene of HRH’s 60th Birthday Anniversary lactones. This study aimed to investigate and identify the active constituents by bioactivity-based analysis, as Celebration. well as to evaluate the cytotoxic activity of V. extensa by MTT or XTT assays in ten cancer cell lines (Liver HepG2 and S102; Bile duct HuCCA-1; Leukemia HL-60 and MOLT-3; Lung A549 and H69AR; Breast MDA-MB-231 and Keywords: T47D; Cervical HeLa). Bioactivity-guided fractionation and semi-preparative HPLC purification were used to Vernonia extensa separate the bioactive constituents. Apoptosis-inducing activity and cell cycle inhibitory effect of selected active Asteraceae Sesquiterpenoids compounds were determined on HepG2 cells by flow cytometric analysis.
    [Show full text]
  • Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
    Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in
    [Show full text]
  • Diversity of Tree Communities in Mount Patuha Region, West Java
    BIODIVERSITAS ISSN: 1412-033X (printed edition) Volume 11, Number 2, April 2010 ISSN: 2085-4722 (electronic) Pages: 75-81 DOI: 10.13057/biodiv/d110205 Diversity of tree communities in Mount Patuha region, West Java DECKY INDRAWAN JUNAEDI♥, ZAENAL MUTAQIEN♥♥ Bureau for Plant Conservation, Cibodas Botanic Gardens, Indonesian Institutes of Sciences (LIPI), Sindanglaya, Cianjur 43253, West Java, Indonesia, Tel./Fax.: +62-263-51223, email: [email protected]; [email protected] Manuscript received: 21 March 2009. Revision accepted: 30 June 2009. ABSTRACT Junaedi DI, Mutaqien Z (2010) Diversity of tree communities in Mount Patuha region, West Java. Biodiversitas 11: 75-81. Tree vegetation analysis was conducted in three locations of Mount Patuha region, i.e. Cimanggu Recreational Park, Mount Masigit Protected Forest, and Patengan Natural Reserve. Similarity of tree communities in those three areas was analyzed. Quadrant method was used to collect vegetation data. Morisita Similarity index was applied to measure the similarity of tree communities within three areas. The three areas were dominated by Castanopsis javanica A. DC., Lithocarpus pallidus (Blume) Rehder and Schima wallichii Choisy. The similarity tree communities were concluded from relatively high value of Similarity Index between three areas. Cimanggu RP, Mount Masigit and Patengan NR had high diversity of tree species. The existence of the forest in those three areas was needed to be sustained. The tree communities data was useful for further considerations of conservation area management around Mount Patuha. Key words: Mount Patuha, tree communities, plant ecology, remnant forest. INTRODUCTION stated that the conservation status of tropical mountain rainforests of West Java has reached threatened conditions.
    [Show full text]
  • THE ANDEAN SPECIES of PILEA by Ellsworth P. Killip INTRODUCTION
    THE ANDEAN SPECIES OF PILEA By Ellsworth P. Killip INTRODUCTION Pilea is by far the largest genus of Urticaceae. Weddell in his final monograph 1 of the family recognized 159 species as valid, about 50 of which were said to occur in the Andes of South America. That these species had a very limited range of distribution was indicated by the fact that more than 30 were known from only a single collection and that only 9 of the others were in any sense widely distributed in the Andean countries. Two, P. microphyUa and P. pubescens, occurred throughout the American Tropics, and P. kyalina and P. dendrophUa extended eastward in South America. In the 50 years following the publication of this monograph only 10 species were described from the Andean region. Because of the large number of specimens of Pilea collected by expeditions to the Andes sponsored by the Smithsonian Institution, the New York Botanical Garden, the Gray Herbarium and the Arnold Arboretum of Harvard University, the Field Museum of Natural History, and the Academy of Natural Sciences, Philadelphia, which were submitted to me for identification but which could not be assigned to any known species, I began the preparation of a mono- graph of all the Andean species. This was completed in 1935 but unfortunately could not be printed in its entirety at that time. Instead, a greatly abridged paper was published,2 which contained a key to all the Andean species, descriptions of 30 new ones, and a few changes of name and of rank. In this there was no opportunity to present descriptions of the earlier species or to discuss their synonymy.
    [Show full text]
  • Towards a Phylogenetic Classification of Lychnophorinae (Asteraceae: Vernonieae)
    Benoît Francis Patrice Loeuille Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) São Paulo, 2011 Benoît Francis Patrice Loeuille Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Botânica. Orientador: José Rubens Pirani São Paulo, 2011 Loeuille, Benoît Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) Número de paginas: 432 Tese (Doutorado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica. 1. Compositae 2. Sistemática 3. Filogenia I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. Comissão Julgadora: Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Prof. Dr. José Rubens Pirani Orientador To my grandfather, who made me discover the joy of the vegetal world. Chacun sa chimère Sous un grand ciel gris, dans une grande plaine poudreuse, sans chemins, sans gazon, sans un chardon, sans une ortie, je rencontrai plusieurs hommes qui marchaient courbés. Chacun d’eux portait sur son dos une énorme Chimère, aussi lourde qu’un sac de farine ou de charbon, ou le fourniment d’un fantassin romain. Mais la monstrueuse bête n’était pas un poids inerte; au contraire, elle enveloppait et opprimait l’homme de ses muscles élastiques et puissants; elle s’agrafait avec ses deux vastes griffes à la poitrine de sa monture et sa tête fabuleuse surmontait le front de l’homme, comme un de ces casques horribles par lesquels les anciens guerriers espéraient ajouter à la terreur de l’ennemi.
    [Show full text]