Copepod Egg Production in Long Island Sound, USA, As a Function of the Chemical Composition of Seston
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contribution of Herbivory to the Diet of Temora Longicornis (Müller) In
Contribution of herbivory to Temora longicornis diet Contribution of herbivory to the diet of Temora longicornis (Müller) in Belgian coastal waters Elvire Antajan1*, Stéphane Gasparini2, Marie-Hermande Daro1, Michèle Tackx3 1 Laboratorium voor ecologie en systematiek, Vrij Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium. 2 Laboratoire d’Océanographie de Villefranche, BP28, F-06234 Villefranche sur mer, France. 3 Laboratoire d'Ecologie des Hydrosystèmes (LEH), 29 rue Jeanne Marvig F-31055 Toulouse, France. Abstract The contribution of herbivory to the diet of Temora longicornis (Müller), an omnivorous calanoid copepod, and the degree of food limitation to its production were investigated in relation to microplankton availability during 2001 in Belgian coastal waters. The gut fluorescence method was combined with egg production measurements to estimate herbivorous and total feeding, respectively. Diatoms were the main phytoplankton component during the sampling period and constituted, with the colonial haptophyte Phaeocystis globosa, the bulk of phytoplankton biomass during the spring bloom. HPLC gut pigment analysis showed that diatoms were the main phytoplankton group ingested, whereas no evidence for ingestion of P. globosa and nanoflagellates was found. Further, our results showed higher phytoplankton ingestion by T. longicornis in spring, when small, chain-forming diatom species such as Thalassiosira spp. and Chaetoceros spp. were abundant, than in summer, when larger species such as Guinardia spp. and Rhizosolenia spp. dominated the diatom community. We showed that T. longicornis could be regarded as mainly herbivorous during fall and winter, while during spring and summer they needed heterotrophic food to meet their energetic demands for egg production. The phytoplankton spring bloom, either during diatom dominance or during P. -
The Paradox of Diatom-Copepod Interactions*
MARINE ECOLOGY PROGRESS SERIES Vol. 157: 287-293, 1997 Published October 16 Mar Ecol Prog Ser 1 NOTE The paradox of diatom-copepod interactions* Syuhei an', Carolyn ~urns~,Jacques caste13,Yannick Chaudron4, Epaminondas Christou5, Ruben ~scribano~,Serena Fonda Umani7, Stephane ~asparini~,Francisco Guerrero Ruiz8, Monica ~offmeyer~,Adrianna Ianoral0, Hyung-Ku Kang", Mohamed Laabir4,Arnaud Lacoste4, Antonio Miraltolo, Xiuren Ning12, Serge ~oulet~~**,Valeriano ~odriguez'~,Jeffrey Runge14, Junxian Shi12,Michel Starr14,Shin-ichi UyelSf**:Yijun wangi2 'Plankton Laboratory, Faculty of Fisheries. Hokkaido University, Hokkaido, Japan 2~epartmentof Zoology, University of Otago, Dunedin, New Zealand 3Centre dfOceanographie et de Biologie Marine, Arcachon, France 'Station Biologique. CNRS, BP 74. F-29682 Roscoff, France 'National Centre for Marine Research, Institute of Oceanography, Hellinikon, Athens, Greece "niversidad de Antofagasta, Facultad de Recursos del Mar, Instituto de Investigaciones Oceonologicas, Antofagasta, Chile 'Laboratorio di Biologia Marina, University of Trieste, via E. Weiss 1, 1-34127 Trieste. Italy 'Departamento de Biologia Animal Vegetal y Ecologia, Facultad de Ciencias Experimentales, Jaen, Spain '~nstitutoArgentino de Oceanografia. AV. Alem 53. 8000 Bahia Blanca, Argentina 'OStazioneZoologica, Villa comunale 1, 1-80121 Napoli, Italy "Korea Iter-University Institute of Ocean Science. National Fisheries University of Pusan. Pusan. South Korea I2second Institute of Oceanography, State Oceanic Administration, 310012 Hangzhou, -
Decadal Changes in Zooplankton Abundance and Phenology of Long Island Sound Reflect Interacting Changes In
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306040987 Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in... Article in Marine environmental research · August 2016 DOI: 10.1016/j.marenvres.2016.08.003 CITATIONS READS 0 123 2 authors: Edward Rice Gillian Stewart National Oceanic and Atmospheric Administr… City University of New York - Queens College 7 PUBLICATIONS 29 CITATIONS 43 PUBLICATIONS 750 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Spatial differences in the Zooplankton Community of the Hudson River and New York City Waters View project MEDFLUX View project All content following this page was uploaded by Edward Rice on 23 August 2016. The user has requested enhancement of the downloaded file. Marine Environmental Research 120 (2016) 154e165 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in temperature and community composition Edward Rice a, b, Gillian Stewart a, b, * a School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA b School of Earth and Environmental Sciences, Queens College, and The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY, 10016, USA article info abstract Article history: Between 1939 and 1982, several surveys indicated that zooplankton in Long Island Sound, NY (LIS) Received 29 April 2016 appeared to follow an annual cycle typical of the Mid-Atlantic coast of North America. -
Temora Baird, 1850
Temora Baird, 1850 Iole Di Capua Leaflet No. 195 I April 2021 ICES IDENTIFICATION LEAFLETS FOR PLANKTON FICHES D’IDENTIFICATION DU ZOOPLANCTON ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Series editor: Antonina dos Santos and Lidia Yebra Prepared under the auspices of the ICES Working Group on Zooplankton Ecology (WGZE) This leaflet has undergone a formal external peer-review process Recommended format for purpose of citation: Di Capua, I. 2021. Temora Baird, 1850. ICES Identification Leaflets for Plankton No. 195. 17 pp. http://doi.org/10.17895/ices.pub.7719 ISBN number: 978-87-7482-580-7 ISSN number: 2707-675X Cover Image: Inês M. Dias and Lígia F. de Sousa for ICES ID Plankton Leaflets This document has been produced under the auspices of an ICES Expert Group. The contents therein do not necessarily represent the view of the Council. © 2021 International Council for the Exploration of the Sea. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy. i | ICES Identification Leaflets for Plankton 195 Contents 1 Summary ......................................................................................................................... 1 2 Introduction .................................................................................................................... 1 3 Distribution .................................................................................................................... -
Application of Next-Generation Sequencing For
animals Article Application of Next-Generation Sequencing for the Determination of the Bacterial Community in the Gut Contents of Brackish Copepod Species (Acartia hudsonica, Sinocalanus tenellus, and Pseudodiaptomus inopinus) Yeon-Ji Chae 1, Hye-Ji Oh 1,* , Kwang-Hyeon Chang 1 , Ihn-Sil Kwak 2 and Hyunbin Jo 3,* 1 Department of Environmental Science and Engineering, Kyung Hee University, Yongin 1732, Korea; [email protected] (Y.-J.C.); [email protected] (K.-H.C.) 2 Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea; [email protected] 3 Institute for Environment and Energy, Pusan National University, Busan 46241, Korea * Correspondence: [email protected] (H.-J.O.); [email protected] (H.J.); Tel.: +82-10-9203-2036 (H.-J.O.); +82-10-8807-7290 (H.J.) Simple Summary: Copepods are important components of marine coastal food chains, supporting fishery resources by providing prey items mainly for fish. Copepods interact with small microorgan- isms via feeding on phytoplankton. DNA methods can determine the gut contents of copepods and provide important information regarding how copepods interact with phytoplankton and bacteria. In the present study, we designed a method for extracting the gut content DNA from small-sized Citation: Chae, Y.-J.; Oh, H.-J.; copepods that are important in coastal and brackish areas. Based on DNA analyses, Rhodobacter- Chang, K.-H.; Kwak, I.-S.; Jo, H. aceae, which is common in marine waters and sediments, was most abundant in the gut contents Application of Next-Generation of the three copepod species (Acartia hudsonica, Sinocalanus tenellus, and Pseudodiaptomus inopinus). Sequencing for the Determination of However, the detailed composition of bacteria was different among species and locations. -
Swimming Behaviour of Developmental Stages of the Calanoid Copepod Temora Longicornis at Different Food Concentrations
MARINE ECOLOGY PROGRESS SERIES Vol. 126: 153-161, l995 Published October 5 Mar Ecol Prog Ser 1 Swimming behaviour of developmental stages of the calanoid copepod Temora longicornis at different food concentrations Luca A. van Duren*, John J. Videler Department of Marine Biology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands ABSTRACT: The swimming behaviour of developmental stages of the marine calanoid copepod Ten~oralongicol-nis was studied uslng 2-dimens~onalobservations under a microscope and a 3-dimen- sional filming technique to analyze swimming mode, swimming speed and swimming trajectories under different food concentrat~ons.The nauplii swam intermittently in a stop-and-go fashion The swirnmlng behaviour of the smallest feeding stage (N2) did not change with different food concentra- tions. The largest nauplius stages reacted to an increased food concentration by increasing the per- centage of time spent swimming. All copepodid stages swam continuously, their mouthparts moving nearly loo%, of the time. Copepodids can therefore only increase their feeding effort by increasing their limb beat frequency. Adult females showed low swimming speeds at very low food concentra- tions, higher swimming speeds at intermediate concentrations and low swimmlng speeds at very high food concentrations. This agreed with expectations based on the optimal foraging theory Males behaved differently from the females. Not only was the average swimming speed of males higher at similar food conditions, but they also maintained a very high swimming speed at very high food con- centrations. This increased swimming activity in the males may be linked to a mate seeking strategy. Neither males nor females showed any obvious differences in turning behaviour at different food con- centrations. -
AGUIDE to Frle DEVELOPMENTAL STAGES of COMMON COASTAL
A GUIDE TO frlE DEVELOPMENTAL STAGES OF COMMON COASTAL, GeORGES BANK AND GULF OF MAINE COPEPODS BY Janet A. Murphy and Rosalind E. Cohen National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, MA 02543 Laboratory Reference No. 78-53 Table of Contents List of Plates i,,;i,i;i Introduction '. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Acarti a cl aus; .. 2 Aca rtia ton sa .. 3 Aca rtia danae .. 4 Acartia long; rem; s co e"" 5 Aetidi us artllatus .. 6 A1teutha depr-e-s-s-a· .. 7 Calanu5 finmarchicus .............•............................ 8 Calanus helgolandicus ~ 9 Calanus hyperboreus 10 Calanus tenuicornis .......................•................... 11 Cal oca 1anus pavo .....................•....•....•.............. 12 Candaci a armata Ii II .. .. .. .. .. .. .. .. .. .. 13 Centropages bradyi............................................ 14 Centropages hama tus .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 15 ~ Centropages typi cus " .. " 0 16 Clausocalanus arcuicornis ..............................•..•... 17 Clytemnestra rostra~ta ................................•.•........ 18 Corycaeus speciosus........................................... 19 Eucalanus elongatu5 20 Euchaeta mar; na " . 21 Euchaeta norveg; ca III co .. 22 Euchirel1a rostrata . 23 Eurytemora ameri cana .......................................•.. 24 Eurytemora herdmani , . 25 Eurytemora hi rundoi des . 26 Halithalestris croni ..................•...................... -
S41598-020-66730-2.Pdf
www.nature.com/scientificreports OPEN Passenger for millenniums: association between stenothermic microcrustacean and suctorian epibiont - the case of Eurytemora lacustris and Tokophyra sp Łukasz Sługocki1,2 ✉ , Maciej Karpowicz3, Agnieszka Kaczmarczyk-Ziemba4, Joanna Kozłowska3, Ingvar Spikkeland5 & Jens Petter Nilssen6 Epibionts often colonize the exoskeleton of crustaceans, which sometimes results in the development of a long-term relationship between them. Our present work confrmed that a specifc epibiont is closely associated with the pelagic calanoid copepod Eurytemora lacustris, regardless of the region, which suggests a preserved interaction between these species. Molecular analyses revealed that the epibiont belongs to the genus Tokophrya. We also found that the level of basibiont colonization is related to its size and identifed that the most intensely inhabited body parts are those located near the center of the copepod body. We hypothesize that the relationship between Eurytemora (basibiont) and Tokophrya (epibiont) was established during the Quaternary period, following which these two populations were fragmented into lakes where they survived in close interaction. In addition, we suppose that the close relationship between the two species indicates the coevolution of stenotherms. Further studies on the interactions between Eurytemora lacustris and Tokophrya are required in order to gain insight into the long-term relationship between the copepods and the epibionts. Protozoan epibionts have ofen been reported to colonize the exoskeleton of crustaceans1,2. In addition, epibi- onts can afect the host communities by modulating the interaction between a host and the environment3. Te colonization of a basibiont by an epibiont also leads to a signifcant change in the body surface of the former. -
Effect of Temperature on Temora Longicornis Swimming Behaviour: Illustration of Seasonal Effects in a Temperate Ecosystem
Vol. 16: 149–162, 2012 AQUATIC BIOLOGY Published online July 31 doi: 10.3354/ab00438 Aquat Biol Effect of temperature on Temora longicornis swimming behaviour: illustration of seasonal effects in a temperate ecosystem Maud Moison1,2,3,4,*, François G. Schmitt2,3,4, Sami Souissi2,3,4 1Leibniz Institut of Marine Sciences, IFM-GEOMAR, 24105 Kiel, Germany 2Université Lille Nord de France, 59000 Lille, France 3Université des Sciences et Technologies de Lille (USTL), Laboratoire d'Océanologie et de Géosciences (LOG), 62930 Wimereux, France 4Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8187, 62930 Wimereux, France ABSTRACT: The present study investigated the effect of temperature on male and female swim- ming activity of the calanoid copepod Temora longicornis, sampled during winter (February) and summer (August) in the English Channel coastal ecosystem. Video recordings were conducted at 3 temperatures representative of those to which these organisms are normally exposed (13, 16 and 20°C) and one extreme-event temperature (24°C). Examinations of instantaneous velocity and symbolic analysis (i.e. dynamics of swimming states discretized from time series of instantaneous velocity) showed that T. longicornis changed its behaviour when confronted with environmental temperature variations. Swimming speed increased as temperature increased. In warmer water, this copepod displayed higher swimming activity, break periods were less frequent, and the fre- quency of jumps increased. This phenomenon was amplified when the environmental tempera- ture was increased to 24°C. These observations revealed a considerable tolerance to high temper- atures and an ability to adjust to environmental temperature changes. The ‘summer population’ was less active in the low temperature range, but the swimming speed reached a higher value at higher temperatures than that shown by the ‘winter population’. -
Migratory and Grazing Behavior of Copepods and Vertical Distribution of Phytoplankton
BULLETIN OF MARINE SCIENCE, 43(3): 710-729, 1988 16510 MIGRATORY AND GRAZING BEHAVIOR OF COPEPODS AND VERTICAL DISTRIBUTION OF PHYTOPLANKTON M. H. D a r o Vlaams instituut voor de Zas ABSTRACT H a n d e r sMarine institute verticai distribution and grazing activity of copepods was studied during the summer of 1985 throughout the North Sea. In most areas, copepods did not vertically migrate and their vertical distribution followed that of the phytoplankton which was restricted to the upper 20-30 m. This behavior may be a consequence of barely sufficient or limiting food concentrations (about 200 mg-m-3). The diel grazing patterns as a function of variations in phytoplankton are described for the dominant Zooplankton species:Calanus finmarchicus, Oithona similis, Temora longicornis, Pseudocalanus elongatus, spp., AcartiaCentropages hamatus, Microsetella spp. The nocturnal behavior of Zooplankton is one of the most fascinating subjects v: of plankton literature. The most abundant near-surface Zooplankton catches occur at night and in general the gut content of most of the species is also higher at night (Stearns, 1986). It has been often suggested that these two features are linked (Gauld, 1951; Sushkina, 1962; Daro, 1980). However, recent papers demonstrate i that nocturnal vertical migration is not a fixed behavioral attribute, but can be related to season (Sameoto, 1984; Townsend et al., 1984; Landry and Hassett, 1985; Vidal and Smith, 1986), location (Williams and Lindley, 1980; Williams and Conway, 1984), and physiological events such as breeding or mating (Endo, 1984; Williams and Fragopoulu, 1985). In different areas with similar climatic and environmental conditions, the same species can simultaneously show different patterns of vertical distribution (Sameoto, 1984; Vidal and Smith, 1986). -
Acartiidae Sars, G.O. 1903
Acartiidae Sars G.O, 1903 Genuario Belmonte Leaflet No. 194 I February 2021 ICES IDENTIFICATION LEAFLETS FOR PLANKTON FICHES D’IDENTIFICATION DU ZOOPLANCTON Revised version of Leaflet No. 181 ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Series editor: Antonina dos Santos and Lidia Yebra Prepared under the auspices of the ICES Working Group on Zooplankton Ecology (WGZE) This leaflet has undergone a formal external peer-review process Recommended format for purpose of citation: Belmonte, G. 2021. Acartiidae Sars G.O, 1903. ICES Identification Leaflets for Plankton No. 194. 29 pp. http://doi.org/10.17895/ices.pub.7680 ISBN number: 978-87-7482-555-5 ISSN number: 2707-675X Cover Image: Inês M. Dias and Lígia F. de Sousa for ICES ID Plankton Leaflets This document has been produced under the auspices of an ICES Expert Group. The contents therein do not necessarily represent the view of the Council. © 2021 International Council for the Exploration of the Sea. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy. |ii ICES Identification Leaflets for Plankton No. -
Download the File
COMPARISON OF MITOCHONDRIAL AND NUCLEAR GENETIC VARIATION OF COMMON ACARTIA SPECIES IN THE SAN FRANCISCO ESTUARY A Thesis submitted to the faculty of San Francisco State University AS In partial fulfillment of the requirements for 3 G the Degree Master of Science In Biology: Ecology, Evolution, and Conservation Biology by KeChaunte Amrie Johnson San Francisco, California December 2017 Copyright by KeChaunte Amrie Johnson 2017 CERTIFICATION OF APPROVAL I certify that I have read COMPARISON OF MITOCHONDRIAL AND NUCLEAR GENETIC VARIATION OF COMMON ACARTIA SPECIES IN THE SAN FRANCISCO ESTUARY by KeChaunte Amrie Johnson, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Biology: Ecology, Evolution and Conservation Biology at San Francisco State University. C. Sarah Cohen, Ph.D. Professor, Biology Wim Kimmerer, Ph.D. Eric Routman, Ph.D. Professor, Biology COMPARISON OF MITOCHONDRIAL AND NUCLEAR GENETIC VARIATION OF COMMON ACARTIA SPECIES IN THE SAN FRANCISCO ESTUARY KeChaunte Amrie Johnson San Francisco, California 2017 Delineation of Acartia spp. is essential to assess the biodiversity of copepods in marine ecosystems. Previous phylogenetic analyses show lack of monophyly for A.tonsa and A.hudsonica. Reported average DNA sequence divergence among some Acartia spp. includes >16% for mitochondrial cytochrome oxidase c (COI) and 13%-25% for 18S rRNA. We investigated the genetic diversity of SFE Acartia in comparison to other Acartia spp. sequences from Genbank. Copepods were collected from the SFE across a range of temperatures and salinities and sequenced at COI and nuclear 18S loci for Bayesian phylogenetic comparison.