Modelling the Population Dynamics of Temora Longicornis in the Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contribution of Herbivory to the Diet of Temora Longicornis (Müller) In
Contribution of herbivory to Temora longicornis diet Contribution of herbivory to the diet of Temora longicornis (Müller) in Belgian coastal waters Elvire Antajan1*, Stéphane Gasparini2, Marie-Hermande Daro1, Michèle Tackx3 1 Laboratorium voor ecologie en systematiek, Vrij Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium. 2 Laboratoire d’Océanographie de Villefranche, BP28, F-06234 Villefranche sur mer, France. 3 Laboratoire d'Ecologie des Hydrosystèmes (LEH), 29 rue Jeanne Marvig F-31055 Toulouse, France. Abstract The contribution of herbivory to the diet of Temora longicornis (Müller), an omnivorous calanoid copepod, and the degree of food limitation to its production were investigated in relation to microplankton availability during 2001 in Belgian coastal waters. The gut fluorescence method was combined with egg production measurements to estimate herbivorous and total feeding, respectively. Diatoms were the main phytoplankton component during the sampling period and constituted, with the colonial haptophyte Phaeocystis globosa, the bulk of phytoplankton biomass during the spring bloom. HPLC gut pigment analysis showed that diatoms were the main phytoplankton group ingested, whereas no evidence for ingestion of P. globosa and nanoflagellates was found. Further, our results showed higher phytoplankton ingestion by T. longicornis in spring, when small, chain-forming diatom species such as Thalassiosira spp. and Chaetoceros spp. were abundant, than in summer, when larger species such as Guinardia spp. and Rhizosolenia spp. dominated the diatom community. We showed that T. longicornis could be regarded as mainly herbivorous during fall and winter, while during spring and summer they needed heterotrophic food to meet their energetic demands for egg production. The phytoplankton spring bloom, either during diatom dominance or during P. -
The Paradox of Diatom-Copepod Interactions*
MARINE ECOLOGY PROGRESS SERIES Vol. 157: 287-293, 1997 Published October 16 Mar Ecol Prog Ser 1 NOTE The paradox of diatom-copepod interactions* Syuhei an', Carolyn ~urns~,Jacques caste13,Yannick Chaudron4, Epaminondas Christou5, Ruben ~scribano~,Serena Fonda Umani7, Stephane ~asparini~,Francisco Guerrero Ruiz8, Monica ~offmeyer~,Adrianna Ianoral0, Hyung-Ku Kang", Mohamed Laabir4,Arnaud Lacoste4, Antonio Miraltolo, Xiuren Ning12, Serge ~oulet~~**,Valeriano ~odriguez'~,Jeffrey Runge14, Junxian Shi12,Michel Starr14,Shin-ichi UyelSf**:Yijun wangi2 'Plankton Laboratory, Faculty of Fisheries. Hokkaido University, Hokkaido, Japan 2~epartmentof Zoology, University of Otago, Dunedin, New Zealand 3Centre dfOceanographie et de Biologie Marine, Arcachon, France 'Station Biologique. CNRS, BP 74. F-29682 Roscoff, France 'National Centre for Marine Research, Institute of Oceanography, Hellinikon, Athens, Greece "niversidad de Antofagasta, Facultad de Recursos del Mar, Instituto de Investigaciones Oceonologicas, Antofagasta, Chile 'Laboratorio di Biologia Marina, University of Trieste, via E. Weiss 1, 1-34127 Trieste. Italy 'Departamento de Biologia Animal Vegetal y Ecologia, Facultad de Ciencias Experimentales, Jaen, Spain '~nstitutoArgentino de Oceanografia. AV. Alem 53. 8000 Bahia Blanca, Argentina 'OStazioneZoologica, Villa comunale 1, 1-80121 Napoli, Italy "Korea Iter-University Institute of Ocean Science. National Fisheries University of Pusan. Pusan. South Korea I2second Institute of Oceanography, State Oceanic Administration, 310012 Hangzhou, -
(Danube-Drava National Park, Hungary): Rare and Alien Species
Opusc. Zool. Budapest, 2015, 46(2): 183–197 Microcrustacean diversity in the Gemenc-Béda-Karapancsa Floodplains (Danube-Drava National Park, Hungary): rare and alien species A. KISS, E. ÁGOSTON-SZABÓ, M. DINKA & Á. BERCZIK Anita Kiss, Edit Ágoston-Szabó, Mária Dinka & Árpád Berczik, Centre for Ecological Research of HAS Danube Research Institute, H-1113, Budapest, Karolina út 29. Hungary, [email protected], agoston- [email protected], [email protected], [email protected] Abstract. The composition of microcrustacean fauna was investigated in different water bodies of Gemenc-Béda-Karapancsa Floodplains with special regard to the distribution of alien and rare taxa. Between 2002 and 2013 101 taxa (57 Cladocera, 27 Copepoda, 17 Ostracoda,) were recorded from the water bodies with differing degrees of connectivity to the main river (eu-, para-, plesio- and paleopotamon). 18 species are reported for the first time from the area of Danube-Drava National Park and among them Daphnia ambigua, Pleuroxus denticulatus and Eurytemora velox are allochtonous species in Hungary. E. velox and P. denticulatus have persistent populations in the area, but their contribution to floodplain biodiversity is still not significant. Daphnia ambigua has only local and temporal populations and its presence is confined to the disconnected side of the floodplain. The abundance of thirty species was very low and their distribution pattern in the floodplain is different. The microcrustacean diversity of the plesiopotamal side arms is remarkable, particularly in the Nyéki-Holt-Danube. Keywords. Alien species, Cladocera, Copepoda, Ostracoda, species richness, Gemenc-Béda-Karapancsa Floodplains. INTRODUCTION form an UNESCO Biosphere Reserve. -
Decadal Changes in Zooplankton Abundance and Phenology of Long Island Sound Reflect Interacting Changes In
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306040987 Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in... Article in Marine environmental research · August 2016 DOI: 10.1016/j.marenvres.2016.08.003 CITATIONS READS 0 123 2 authors: Edward Rice Gillian Stewart National Oceanic and Atmospheric Administr… City University of New York - Queens College 7 PUBLICATIONS 29 CITATIONS 43 PUBLICATIONS 750 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Spatial differences in the Zooplankton Community of the Hudson River and New York City Waters View project MEDFLUX View project All content following this page was uploaded by Edward Rice on 23 August 2016. The user has requested enhancement of the downloaded file. Marine Environmental Research 120 (2016) 154e165 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in temperature and community composition Edward Rice a, b, Gillian Stewart a, b, * a School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA b School of Earth and Environmental Sciences, Queens College, and The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY, 10016, USA article info abstract Article history: Between 1939 and 1982, several surveys indicated that zooplankton in Long Island Sound, NY (LIS) Received 29 April 2016 appeared to follow an annual cycle typical of the Mid-Atlantic coast of North America. -
Strain-Related Physiological and Behavioral Effects of Skeletonema Marinoi on Three Common Planktonic Copepods
Strain-related physiological and behavioral effects of Skeletonema marinoi on three common planktonic copepods The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Md Amin, Roswati, Marja Koski, Ulf Båmstedt, and Charles Vidoudez. 2011. “Strain-related physiological and behavioral effects of Skeletonema marinoi on three common planktonic copepods.” Marine Biology 158 (1): 1965-1980. doi:10.1007/s00227-011-1706-7. http://dx.doi.org/10.1007/s00227-011-1706-7. Published Version doi:10.1007/s00227-011-1706-7 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879558 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Mar Biol (2011) 158:1965–1980 DOI 10.1007/s00227-011-1706-7 ORIGINAL PAPER Strain-related physiological and behavioral effects of Skeletonema marinoi on three common planktonic copepods Roswati Md Amin • Marja Koski • Ulf Ba˚mstedt • Charles Vidoudez Received: 9 February 2011 / Accepted: 16 April 2011 / Published online: 6 May 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Three strains of the chain-forming diatom positive effect on either egg production (A. tonsa)or Skeletonema marinoi, differing in their production of hatching success (P. elongatus), while other measured polyunsaturated aldehydes (PUA) and nutritional food compounds (PUA, other long-chain polyunsaturated fatty components, were used in experiments on feeding, egg acids) of the algae had no obvious effects. -
Species of the Genera Temora and Tortanus from Indonesian Coastal Waters
Berk. Penel. Hayati: 14 (125–135), 2009 SPECIES OF THE GENERA TEMORA AND TORTANUS FROM INDONESIAN COASTAL WATERS Mulyadi Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences Jl. Raya Bogor Km. 46 Cibinong 16911, Indonesia E-mail: [email protected] ABSTRACT During taxonomic studies on the pelagic copepods of Indonesian waters, three species of Temora, T. discaudata Giesbrecht, 1882, T. discaudata n. var. and T. turbinata (Dana, 1849), and three species of Tortanus, T. (Tortanus) barbatus, T. (Tortanus) forcipatus and T. (Tortanus) gracilis were described and figured on specimens collected from 8 sites along Indonesian coastal waters. Descriptions, measurements and figures are given for those species, along with a review of their distribution over the world oceans, and with taxonomic remarks, ecological notes, and restricted synonymies. Key words: taxonomy, Temora, Tortanus, Indonesian waters INTRODUCTION MATERIALS AND METHODS Family Temoridae Giesbrecht, 1893 comprises of The present plankton samples were obtained from 8 35 species from four genera, Epischura Forbes, 1882; sites during 1994–2007 (Figure 1). Sampling was done Eurytemora Giesbrecht, 1881; Heterocope Sars, 1863; and by surface and vertical hauls (10 m and 20 m depth to the Temora Baird, 1850. The genus Temora presently comprises surface) with plankton net (0.33 mm mesh size, 0.45 m of five species (Boxshall & Halsey, 2004). Among them two mouth diameter). The samples were fixed and preserved species, T. discaudata Giesbrecht, 1882 and T. turbinata in 5% buffered formaldehyde/sea water solution. As far (Dana, 1849) have been reported from Indonesian waters as possible, the specimens were identified to species level. -
Conference Booklet.Pdf
International Scientific Conference Book of Abstracts Use of molecular-genetic and morphological methods to study the taxonomy, phylogeny, biogeography, and ecology ofEurytemora species International Scientific Conference May 13–17, 2019. Saint Petersburg, Russia Мероприятие проводится при финансовой поддержке The eventРоссийского is sponsored фонда by фундаментальныхRussian Foundation исследований for Basic Research projectпроект № 19-04-2004819-04-20048 Programme Monday, May 13. Arrival and Welcome Party Tuesday, May 14 10.00 Registration 11.00 Opening ceremony Speech by the Director of ZIN RAS Sergei Sinev Session 1: Phylogeny (Chairs: Carol Eunmi Lee, Victor Alekseev) 11.20 Carol Eunmi Lee. “Species” concepts in the Eurytemora affinis species complex 12.00 Coffee break 12.20 Vjacheslav Ivanenko, Korzhavina O.A., Nikinin M.A. Integrative taxonomy and phylogeny of copepods 13.00 Natalia I. Abramson. Genome — wide association studies: new challenge in ecological and evolutionary studies 13.40 Lunch 14.40 Tour of the Zoological Museum 15.30 Natalia Sukhikh, Carol Eunmi Lee, Ekaterina Abramova, Vincent Castric, Elena Fefilova, Sami Souissi, Victor Alekseev. A comparative analysis of genetic differentiation of Eurytemora species using CO1, ITS and 18SrRNA genes with an emphasis on E.affinis species complex 15.50 Imran Parvez, Md. Ashraful Alam. Phylogenetic relationships of cyprinid fishes (Cyprinidae) inferred from morphological traits and mitochondrial gene cytochrome b in Bangladesh 16.10 Coffee break Session 2: Biogeography (Chairs: Jiang-Shiou Hwang, Elena Kochanova) 16.30 Victor Alekseev. Cosmopolite species versus cryptic species two paradigms in copepod biogeography in molecular-genetic epoch and the future of morphological taxonomy 2 17.10 Elena Kochanova, Natalia Sukhikh, Victor Alekseev. -
Temora Baird, 1850
Temora Baird, 1850 Iole Di Capua Leaflet No. 195 I April 2021 ICES IDENTIFICATION LEAFLETS FOR PLANKTON FICHES D’IDENTIFICATION DU ZOOPLANCTON ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Series editor: Antonina dos Santos and Lidia Yebra Prepared under the auspices of the ICES Working Group on Zooplankton Ecology (WGZE) This leaflet has undergone a formal external peer-review process Recommended format for purpose of citation: Di Capua, I. 2021. Temora Baird, 1850. ICES Identification Leaflets for Plankton No. 195. 17 pp. http://doi.org/10.17895/ices.pub.7719 ISBN number: 978-87-7482-580-7 ISSN number: 2707-675X Cover Image: Inês M. Dias and Lígia F. de Sousa for ICES ID Plankton Leaflets This document has been produced under the auspices of an ICES Expert Group. The contents therein do not necessarily represent the view of the Council. © 2021 International Council for the Exploration of the Sea. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy. i | ICES Identification Leaflets for Plankton 195 Contents 1 Summary ......................................................................................................................... 1 2 Introduction .................................................................................................................... 1 3 Distribution .................................................................................................................... -
Production of the Copepod Eurytemora Affinis in the Bristol Channel
Vol. 7: 21-31, 1982 MARINE ECOLOGY - PROGRESS SERIES Published January 1 Mar. Ecol. Prog. Ser. I I Production of the Copepod Eurytemora affinis in the Bristol Channel P. H. Burkill and T. F. Kendall Natural Environment Research Council, Institute for Marine Environmental Research. Prospect Place, Plymouth PL1 3DH. United Kingdom ABSTRACT: A shipboard method for determining development rates of copepods under prevailing conditions of food and temperature in situ is described. Abundance and development rates of Eurytemora affinis were determined at a site towards the seaward edge of its range in the Bristol Channel during 3 seasons of the year. Production of E. affinisvaried between 0.05 and 0.61 pg dry weight m-3 d-' in January and May when the numbers of this copepod were, respectively, 1.42 and 4.83 rnJ. Population P/B quotients varied between 0.03 and 0.13 d-' giving an annual P/B of 33 yr-l. For the later developmental stages, the proportion of animals moulting daily varied between 4 % and 33 %, depending on stage and season. The results are discussed In relation to the factors influencing population production at this site in the estuary; it is suggested that food and predation pressures may influence production more than salinity or estuarine flushing. When compared with published rates for this species fed ad-libiturn on algae in the laboratory, development rates of E. affinisin the field were only 10 %-82 %, suggesting that extrapolation of laboratory results to the field to estimated production should only be carried out with care. INTRODUCTION one order of magnitude higher than those which might be expected in the open sea (Harris and Paffenhofer, During the past half century, many efforts were 1976a). -
Observing Copepods Through a Genomic Lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace a Wyngaard6
Bron et al. Frontiers in Zoology 2011, 8:22 http://www.frontiersinzoology.com/content/8/1/22 DEBATE Open Access Observing copepods through a genomic lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace A Wyngaard6 Abstract Background: Copepods outnumber every other multicellular animal group. They are critical components of the world’s freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. -
Swimming Behaviour of Developmental Stages of the Calanoid Copepod Temora Longicornis at Different Food Concentrations
MARINE ECOLOGY PROGRESS SERIES Vol. 126: 153-161, l995 Published October 5 Mar Ecol Prog Ser 1 Swimming behaviour of developmental stages of the calanoid copepod Temora longicornis at different food concentrations Luca A. van Duren*, John J. Videler Department of Marine Biology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands ABSTRACT: The swimming behaviour of developmental stages of the marine calanoid copepod Ten~oralongicol-nis was studied uslng 2-dimens~onalobservations under a microscope and a 3-dimen- sional filming technique to analyze swimming mode, swimming speed and swimming trajectories under different food concentrat~ons.The nauplii swam intermittently in a stop-and-go fashion The swirnmlng behaviour of the smallest feeding stage (N2) did not change with different food concentra- tions. The largest nauplius stages reacted to an increased food concentration by increasing the per- centage of time spent swimming. All copepodid stages swam continuously, their mouthparts moving nearly loo%, of the time. Copepodids can therefore only increase their feeding effort by increasing their limb beat frequency. Adult females showed low swimming speeds at very low food concentra- tions, higher swimming speeds at intermediate concentrations and low swimmlng speeds at very high food concentrations. This agreed with expectations based on the optimal foraging theory Males behaved differently from the females. Not only was the average swimming speed of males higher at similar food conditions, but they also maintained a very high swimming speed at very high food con- centrations. This increased swimming activity in the males may be linked to a mate seeking strategy. Neither males nor females showed any obvious differences in turning behaviour at different food con- centrations. -
AGUIDE to Frle DEVELOPMENTAL STAGES of COMMON COASTAL
A GUIDE TO frlE DEVELOPMENTAL STAGES OF COMMON COASTAL, GeORGES BANK AND GULF OF MAINE COPEPODS BY Janet A. Murphy and Rosalind E. Cohen National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, MA 02543 Laboratory Reference No. 78-53 Table of Contents List of Plates i,,;i,i;i Introduction '. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Acarti a cl aus; .. 2 Aca rtia ton sa .. 3 Aca rtia danae .. 4 Acartia long; rem; s co e"" 5 Aetidi us artllatus .. 6 A1teutha depr-e-s-s-a· .. 7 Calanu5 finmarchicus .............•............................ 8 Calanus helgolandicus ~ 9 Calanus hyperboreus 10 Calanus tenuicornis .......................•................... 11 Cal oca 1anus pavo .....................•....•....•.............. 12 Candaci a armata Ii II .. .. .. .. .. .. .. .. .. .. 13 Centropages bradyi............................................ 14 Centropages hama tus .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 15 ~ Centropages typi cus " .. " 0 16 Clausocalanus arcuicornis ..............................•..•... 17 Clytemnestra rostra~ta ................................•.•........ 18 Corycaeus speciosus........................................... 19 Eucalanus elongatu5 20 Euchaeta mar; na " . 21 Euchaeta norveg; ca III co .. 22 Euchirel1a rostrata . 23 Eurytemora ameri cana .......................................•.. 24 Eurytemora herdmani , . 25 Eurytemora hi rundoi des . 26 Halithalestris croni ..................•......................