Decadal Changes in Zooplankton Abundance and Phenology of Long Island Sound Reflect Interacting Changes In

Total Page:16

File Type:pdf, Size:1020Kb

Decadal Changes in Zooplankton Abundance and Phenology of Long Island Sound Reflect Interacting Changes In See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306040987 Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in... Article in Marine environmental research · August 2016 DOI: 10.1016/j.marenvres.2016.08.003 CITATIONS READS 0 123 2 authors: Edward Rice Gillian Stewart National Oceanic and Atmospheric Administr… City University of New York - Queens College 7 PUBLICATIONS 29 CITATIONS 43 PUBLICATIONS 750 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Spatial differences in the Zooplankton Community of the Hudson River and New York City Waters View project MEDFLUX View project All content following this page was uploaded by Edward Rice on 23 August 2016. The user has requested enhancement of the downloaded file. Marine Environmental Research 120 (2016) 154e165 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in temperature and community composition Edward Rice a, b, Gillian Stewart a, b, * a School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA b School of Earth and Environmental Sciences, Queens College, and The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY, 10016, USA article info abstract Article history: Between 1939 and 1982, several surveys indicated that zooplankton in Long Island Sound, NY (LIS) Received 29 April 2016 appeared to follow an annual cycle typical of the Mid-Atlantic coast of North America. Abundance peaked Received in revised form in both early spring and late summer and the peaks were similar in magnitude. In recent decades, this 3 August 2016 cycle appeared to have shifted. Only one large peak tended to occur, and summer copepod abundance Accepted 5 August 2016 was consistently reduced by ~60% from 1939 to 1982 levels. In other Mid-Atlantic coastal systems such a Available online 8 August 2016 dramatic shift has been attributed to the earlier appearance of ctenophores, particularly Mnemiopsis leidyi, during warmer spring months. However, over a decade of surveys in LIS have consistently found Keywords: M. leidyi Long Island Sound near-zero values in biomass during spring months. Our multiple linear regression model in- Zooplankton dicates that summer M. leidyi biomass during this decade explains <25% of the variation in summer Phenology copepod abundance. During these recent, warmer years, summer copepod community shifts appear to Warming explain the loss of copepod abundance. Although Acartia tonsa in 2010e2011 appeared to be present all Copepods year long, it was no longer the dominant summer zooplankton species. Warmer summers have been Ctenophores associated with an increase in cyanobacteria and flagellates, which are not consumed efficiently by A. tonsa. This suggests that in warming coastal systems multiple environmental and biological factors interact and likely underlie dramatic alterations to copepod phenology, not single causes. Published by Elsevier Ltd. 1. Introduction August, September) abundance equaling or exceeding that in the spring (April, May, June) (Kremer, 1994). In coastal and marine systems, a key link between primary However, zooplankton can also respond very quickly to physical producers and higher trophic levels are the zooplankton forcings associated with climate change, such as changes in tem- (Wickstead, 1976). The zooplankton of the Mid-Atlantic is numer- perature, salinity, or stratification (Richardson, 2008). Such changes ically dominated by copepods - microcrustaceans that graze upon appear to be occurring in Northeast and Mid-Atlantic coastal sys- phytoplankton, microzooplankton and juveniles (nauplii) of their tems. Annual regional warming of surface waters at the rate of 1 own species as well as nauplii of other copepod species (Turner, 0.03e0.04 C yrÀ has been reported for Long Island Sound (LIS), 2004). Copepods dominate the gut contents of larval cod, Narragansett Bay, and Massachusetts Bay (Sullivan et al., 2001; haddock, and anchovy, and thus serve as an important link in Nixon et al., 2004; Rice and Stewart, 2013)(Fig 1A, Williams, aquatic foodwebs from phytoplankton and microzooplankton to 1981, Fig 1B; Lewis and Needall, 1987). larval fish (Turner, 1984). In Mid-Atlantic coastal systems, copepod In Narragansett Bay, this warming has been associated with a abundance has historically been bimodal, with peak summer (July, unimodal zooplankton abundance pattern of reduced summer copepod abundance and a single spring copepod abundance peak (Oviatt, 2004; Costello et al., 2006; Beaulieu et al., 2013). These * Corresponding author. School of Earth and Environmental Sciences, Queens changes were attributed to greater overlap between copepod prey College, City University of New York, Flushing, New York 11367, USA and The and the ctenophore Mnemiopsis leidyi (a gelatinous secondary Graduate Center, City University of New York, USA. consumer), increased grazing by zooplankton of primary E-mail address: [email protected] (G. Stewart). http://dx.doi.org/10.1016/j.marenvres.2016.08.003 0141-1136/Published by Elsevier Ltd. E. Rice, G. Stewart / Marine Environmental Research 120 (2016) 154e165 155 Fig. 1. A. LIS locations and survey stations referenced in this article. Deevey (1956) stations referenced elsewhere are numbered (where indicated). Base map is from Williams (1981). The Central Basin extends from 73100 (Bridgeport) to roughly 72350 (The mouth of the Connecticut River). B. Location of the Central basin of LIS (1A stations are in the shaded box) in relation to coastal systems referenced in this article. Narragansett Bay is between Rhode Island and Massachusetts. The Thames River Estuary is north of Fisher's Island. Base map is from Lewis and Needall (1987). producers, and greater respiration losses by producers during found that the rate of copepod production was an order of warmer winter and spring months (Oviatt, 2004). magnitude higher than the predation rate, and ctenophore preda- Several aspects of M. leidyi life history support the hypothesis tion alone was unable to control copepod populations. More recent that M. leidyi can cause the loss of summer zooplankton: 1) it is a research by Vliestra (2014) in the Thames River estuary (adjacent to key predator of copepods during summer along Mid-Atlantic coasts LIS) found that the predation impact of M. leidyi on copepods was a 2) M. leidyi is tolerant of a wide range of environmental conditions, maximum of 2.2% of the standing stock of copepods per day. and 3) M. leidyi is able to feed on a large size range of particles and Other hydrodynamic, biotic and climatic factors may resolve the organisms (Purcell, 2009). However, estimates of M. leidyi preda- discrepancy. During years in which cnidarian predators of M. leidyi 1 tion rates on copepods can range widely, from 0.3% to 58.7% dÀ are absent from the Chesapeake Bay estuary, Purcell and Decker (Purcell, 2009). In coastal Rhode Island, Kremer (1979) found that (2005) found M. leidyi predation impact increased to 45% of the M. leidyi could typically remove 10e11% of daily copepod abun- copepod community per day. The climatic factors that appeared to dance during summers. In Chesapeake Bay, Purcell et al. (1994) increase M. leidyi predation on copepods were low salinity (which 156 E. Rice, G. Stewart / Marine Environmental Research 120 (2016) 154e165 reduces cnidarian abundance) and higher spring temperatures than those during surveys after 1985. Our intent is to test the hy- (Sullivan et al., 2001; Oviatt, 2004). Increased abundance and pothesis that a summer decline in LIS copepod abundance can be predatory impact of gelatinous zooplankton (such as M. leidyi) has conclusively linked to earlier appearance of ctenophores in spring thus been suggested as a consequence of a warmer, overfished, and as annual temperatures warm. eutrophic coastal ocean (Mills, 1995; Richardson et al., 2009). In addition, more enclosed coastal waters (with longer residence 2. Methods times) also promote ctenophore abundance (Vansteenbrugge et al., 2015). To test whether earlier appearance of ctenophores in 2.1. Historic surveys warming coastal systems causes a loss of summer copepods re- quires a long-term data set of physical factors, zooplankton, and To establish a historical context for analysis of copepod and their ctenophore predators. ctenophore abundance, previous surveys of the Central Basin One system with such a record is LIS, a large, semi-enclosed, (Table 1) were obtained from archival and published sources. partially mixed estuary at the northern end of the Virginian Where tabular data was not available (Deevey, 1956; Capriulo et al., biogeographic community (Deevey, 1956; Pelletier et al., 2012). 2002), the program DataThief (freeware graphical interpolation Since 1938, the zooplankton community of the Central Basin of LIS software) was used to reconstruct numbers from figures for 4 of 18 fi has been surveyed and quanti ed roughly every 15 years, with the annual surveys available. Although these surveys varied somewhat most continuous series of surveys beginning in 1991 (Riley, 1941; in parameters, intensity, scope, and specific location, they provide Deevey, 1956; Carlson, 1978; Peterson, 1985; Capriulo et al., 2002; the only baseline data for analysis of current trends. Dam and McManus, 2009). During 1952e1953, Deevey (1956) The copepod surveys can be divided into three classes based on noted that the LIS gelatinous zooplankton community was mainly net size: (1) a 202 mm mesh, (2) a 150e158 mm mesh, and (3) a comprised of M. leidyi and the cnidarians Aurelia Aurelia and 119 mm mesh. Since the focus of this article is changes in phenology Chrysaora quinquecirrha. Deevey (1956) noted that M. leidyi was and not absolute abundance, we have normalized each survey's abundant during late summer 1952e1953, but could only speculate data by dividing the monthly abundance by the annual mean fl that the in ux of M.
Recommended publications
  • Contribution of Herbivory to the Diet of Temora Longicornis (Müller) In
    Contribution of herbivory to Temora longicornis diet Contribution of herbivory to the diet of Temora longicornis (Müller) in Belgian coastal waters Elvire Antajan1*, Stéphane Gasparini2, Marie-Hermande Daro1, Michèle Tackx3 1 Laboratorium voor ecologie en systematiek, Vrij Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium. 2 Laboratoire d’Océanographie de Villefranche, BP28, F-06234 Villefranche sur mer, France. 3 Laboratoire d'Ecologie des Hydrosystèmes (LEH), 29 rue Jeanne Marvig F-31055 Toulouse, France. Abstract The contribution of herbivory to the diet of Temora longicornis (Müller), an omnivorous calanoid copepod, and the degree of food limitation to its production were investigated in relation to microplankton availability during 2001 in Belgian coastal waters. The gut fluorescence method was combined with egg production measurements to estimate herbivorous and total feeding, respectively. Diatoms were the main phytoplankton component during the sampling period and constituted, with the colonial haptophyte Phaeocystis globosa, the bulk of phytoplankton biomass during the spring bloom. HPLC gut pigment analysis showed that diatoms were the main phytoplankton group ingested, whereas no evidence for ingestion of P. globosa and nanoflagellates was found. Further, our results showed higher phytoplankton ingestion by T. longicornis in spring, when small, chain-forming diatom species such as Thalassiosira spp. and Chaetoceros spp. were abundant, than in summer, when larger species such as Guinardia spp. and Rhizosolenia spp. dominated the diatom community. We showed that T. longicornis could be regarded as mainly herbivorous during fall and winter, while during spring and summer they needed heterotrophic food to meet their energetic demands for egg production. The phytoplankton spring bloom, either during diatom dominance or during P.
    [Show full text]
  • The Paradox of Diatom-Copepod Interactions*
    MARINE ECOLOGY PROGRESS SERIES Vol. 157: 287-293, 1997 Published October 16 Mar Ecol Prog Ser 1 NOTE The paradox of diatom-copepod interactions* Syuhei an', Carolyn ~urns~,Jacques caste13,Yannick Chaudron4, Epaminondas Christou5, Ruben ~scribano~,Serena Fonda Umani7, Stephane ~asparini~,Francisco Guerrero Ruiz8, Monica ~offmeyer~,Adrianna Ianoral0, Hyung-Ku Kang", Mohamed Laabir4,Arnaud Lacoste4, Antonio Miraltolo, Xiuren Ning12, Serge ~oulet~~**,Valeriano ~odriguez'~,Jeffrey Runge14, Junxian Shi12,Michel Starr14,Shin-ichi UyelSf**:Yijun wangi2 'Plankton Laboratory, Faculty of Fisheries. Hokkaido University, Hokkaido, Japan 2~epartmentof Zoology, University of Otago, Dunedin, New Zealand 3Centre dfOceanographie et de Biologie Marine, Arcachon, France 'Station Biologique. CNRS, BP 74. F-29682 Roscoff, France 'National Centre for Marine Research, Institute of Oceanography, Hellinikon, Athens, Greece "niversidad de Antofagasta, Facultad de Recursos del Mar, Instituto de Investigaciones Oceonologicas, Antofagasta, Chile 'Laboratorio di Biologia Marina, University of Trieste, via E. Weiss 1, 1-34127 Trieste. Italy 'Departamento de Biologia Animal Vegetal y Ecologia, Facultad de Ciencias Experimentales, Jaen, Spain '~nstitutoArgentino de Oceanografia. AV. Alem 53. 8000 Bahia Blanca, Argentina 'OStazioneZoologica, Villa comunale 1, 1-80121 Napoli, Italy "Korea Iter-University Institute of Ocean Science. National Fisheries University of Pusan. Pusan. South Korea I2second Institute of Oceanography, State Oceanic Administration, 310012 Hangzhou,
    [Show full text]
  • Temora Baird, 1850
    Temora Baird, 1850 Iole Di Capua Leaflet No. 195 I April 2021 ICES IDENTIFICATION LEAFLETS FOR PLANKTON FICHES D’IDENTIFICATION DU ZOOPLANCTON ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Series editor: Antonina dos Santos and Lidia Yebra Prepared under the auspices of the ICES Working Group on Zooplankton Ecology (WGZE) This leaflet has undergone a formal external peer-review process Recommended format for purpose of citation: Di Capua, I. 2021. Temora Baird, 1850. ICES Identification Leaflets for Plankton No. 195. 17 pp. http://doi.org/10.17895/ices.pub.7719 ISBN number: 978-87-7482-580-7 ISSN number: 2707-675X Cover Image: Inês M. Dias and Lígia F. de Sousa for ICES ID Plankton Leaflets This document has been produced under the auspices of an ICES Expert Group. The contents therein do not necessarily represent the view of the Council. © 2021 International Council for the Exploration of the Sea. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy. i | ICES Identification Leaflets for Plankton 195 Contents 1 Summary ......................................................................................................................... 1 2 Introduction .................................................................................................................... 1 3 Distribution ....................................................................................................................
    [Show full text]
  • Swimming Behaviour of Developmental Stages of the Calanoid Copepod Temora Longicornis at Different Food Concentrations
    MARINE ECOLOGY PROGRESS SERIES Vol. 126: 153-161, l995 Published October 5 Mar Ecol Prog Ser 1 Swimming behaviour of developmental stages of the calanoid copepod Temora longicornis at different food concentrations Luca A. van Duren*, John J. Videler Department of Marine Biology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands ABSTRACT: The swimming behaviour of developmental stages of the marine calanoid copepod Ten~oralongicol-nis was studied uslng 2-dimens~onalobservations under a microscope and a 3-dimen- sional filming technique to analyze swimming mode, swimming speed and swimming trajectories under different food concentrat~ons.The nauplii swam intermittently in a stop-and-go fashion The swirnmlng behaviour of the smallest feeding stage (N2) did not change with different food concentra- tions. The largest nauplius stages reacted to an increased food concentration by increasing the per- centage of time spent swimming. All copepodid stages swam continuously, their mouthparts moving nearly loo%, of the time. Copepodids can therefore only increase their feeding effort by increasing their limb beat frequency. Adult females showed low swimming speeds at very low food concentra- tions, higher swimming speeds at intermediate concentrations and low swimmlng speeds at very high food concentrations. This agreed with expectations based on the optimal foraging theory Males behaved differently from the females. Not only was the average swimming speed of males higher at similar food conditions, but they also maintained a very high swimming speed at very high food con- centrations. This increased swimming activity in the males may be linked to a mate seeking strategy. Neither males nor females showed any obvious differences in turning behaviour at different food con- centrations.
    [Show full text]
  • AGUIDE to Frle DEVELOPMENTAL STAGES of COMMON COASTAL
    A GUIDE TO frlE DEVELOPMENTAL STAGES OF COMMON COASTAL, GeORGES BANK AND GULF OF MAINE COPEPODS BY Janet A. Murphy and Rosalind E. Cohen National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, MA 02543 Laboratory Reference No. 78-53 Table of Contents List of Plates i,,;i,i;i Introduction '. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Acarti a cl aus; .. 2 Aca rtia ton sa .. 3 Aca rtia danae .. 4 Acartia long; rem; s co e"" 5 Aetidi us artllatus .. 6 A1teutha depr-e-s-s-a· .. 7 Calanu5 finmarchicus .............•............................ 8 Calanus helgolandicus ~ 9 Calanus hyperboreus 10 Calanus tenuicornis .......................•................... 11 Cal oca 1anus pavo .....................•....•....•.............. 12 Candaci a armata Ii II .. .. .. .. .. .. .. .. .. .. 13 Centropages bradyi............................................ 14 Centropages hama tus .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 15 ~ Centropages typi cus " .. " 0 16 Clausocalanus arcuicornis ..............................•..•... 17 Clytemnestra rostra~ta ................................•.•........ 18 Corycaeus speciosus........................................... 19 Eucalanus elongatu5 20 Euchaeta mar; na " . 21 Euchaeta norveg; ca III co .. 22 Euchirel1a rostrata . 23 Eurytemora ameri cana .......................................•.. 24 Eurytemora herdmani , . 25 Eurytemora hi rundoi des . 26 Halithalestris croni ..................•......................
    [Show full text]
  • Effect of Temperature on Temora Longicornis Swimming Behaviour: Illustration of Seasonal Effects in a Temperate Ecosystem
    Vol. 16: 149–162, 2012 AQUATIC BIOLOGY Published online July 31 doi: 10.3354/ab00438 Aquat Biol Effect of temperature on Temora longicornis swimming behaviour: illustration of seasonal effects in a temperate ecosystem Maud Moison1,2,3,4,*, François G. Schmitt2,3,4, Sami Souissi2,3,4 1Leibniz Institut of Marine Sciences, IFM-GEOMAR, 24105 Kiel, Germany 2Université Lille Nord de France, 59000 Lille, France 3Université des Sciences et Technologies de Lille (USTL), Laboratoire d'Océanologie et de Géosciences (LOG), 62930 Wimereux, France 4Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8187, 62930 Wimereux, France ABSTRACT: The present study investigated the effect of temperature on male and female swim- ming activity of the calanoid copepod Temora longicornis, sampled during winter (February) and summer (August) in the English Channel coastal ecosystem. Video recordings were conducted at 3 temperatures representative of those to which these organisms are normally exposed (13, 16 and 20°C) and one extreme-event temperature (24°C). Examinations of instantaneous velocity and symbolic analysis (i.e. dynamics of swimming states discretized from time series of instantaneous velocity) showed that T. longicornis changed its behaviour when confronted with environmental temperature variations. Swimming speed increased as temperature increased. In warmer water, this copepod displayed higher swimming activity, break periods were less frequent, and the fre- quency of jumps increased. This phenomenon was amplified when the environmental tempera- ture was increased to 24°C. These observations revealed a considerable tolerance to high temper- atures and an ability to adjust to environmental temperature changes. The ‘summer population’ was less active in the low temperature range, but the swimming speed reached a higher value at higher temperatures than that shown by the ‘winter population’.
    [Show full text]
  • Migratory and Grazing Behavior of Copepods and Vertical Distribution of Phytoplankton
    BULLETIN OF MARINE SCIENCE, 43(3): 710-729, 1988 16510 MIGRATORY AND GRAZING BEHAVIOR OF COPEPODS AND VERTICAL DISTRIBUTION OF PHYTOPLANKTON M. H. D a r o Vlaams instituut voor de Zas ABSTRACT H a n d e r sMarine institute verticai distribution and grazing activity of copepods was studied during the summer of 1985 throughout the North Sea. In most areas, copepods did not vertically migrate and their vertical distribution followed that of the phytoplankton which was restricted to the upper 20-30 m. This behavior may be a consequence of barely sufficient or limiting food concentrations (about 200 mg-m-3). The diel grazing patterns as a function of variations in phytoplankton are described for the dominant Zooplankton species:Calanus finmarchicus, Oithona similis, Temora longicornis, Pseudocalanus elongatus, spp., AcartiaCentropages hamatus, Microsetella spp. The nocturnal behavior of Zooplankton is one of the most fascinating subjects v: of plankton literature. The most abundant near-surface Zooplankton catches occur at night and in general the gut content of most of the species is also higher at night (Stearns, 1986). It has been often suggested that these two features are linked (Gauld, 1951; Sushkina, 1962; Daro, 1980). However, recent papers demonstrate i that nocturnal vertical migration is not a fixed behavioral attribute, but can be related to season (Sameoto, 1984; Townsend et al., 1984; Landry and Hassett, 1985; Vidal and Smith, 1986), location (Williams and Lindley, 1980; Williams and Conway, 1984), and physiological events such as breeding or mating (Endo, 1984; Williams and Fragopoulu, 1985). In different areas with similar climatic and environmental conditions, the same species can simultaneously show different patterns of vertical distribution (Sameoto, 1984; Vidal and Smith, 1986).
    [Show full text]
  • Climate and Local Hydrography Underlie Recent Regime Shifts in Plankton Communities Off Galicia
    Article Climate and Local Hydrography Underlie Recent Regime Shifts in Plankton Communities off Galicia (NW Spain) Antonio Bode * , Marta Álvarez , Luz María García García, Maria Ángeles Louro, Mar Nieto-Cid , Manuel Ruíz-Villarreal and Marta M. Varela Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, 15001 A Coruña, Spain; [email protected] (M.Á.); [email protected] (L.M.G.G.); [email protected] (M.Á.L.); [email protected] (M.N.-C.); [email protected] (M.R.-V.); [email protected] (M.M.V.) * Correspondence: [email protected]; Tel.: +34-981205362 Received: 15 June 2020; Accepted: 23 September 2020; Published: 25 September 2020 Abstract: A 29-year-long time series (1990–2018) of phyto- and zooplankton abundance and composition is analyzed to uncover regime shifts related to climate and local oceanography variability. At least two major shifts were identified: one between 1997 and 1998, affecting zooplankton group abundance, phytoplankton species assemblages and climatic series, and a second one between 2001 and 2002, affecting microzooplankton group abundance, mesozooplankton species assemblages and local hydrographic series. Upwelling variability was relatively less important than other climatic or local oceanographic variables for the definition of the regimes. Climate-related regimes were influenced by the dominance of cold and dry (1990–1997) vs. warm and wet (1998–2018) periods, and characterized by shifts from low to high life trait diversity in phytoplankton assemblages, and from low to high meroplankton dominance for mesozooplankton. Regimes related to local oceanography were defined by the shift from relatively low (1990–2001) to high (2002–2018) concentrations of nutrients provided by remineralization (or continental inputs) and biological production, and shifts from a low to high abundance of microzooplankton, and from a low to high trait diversity of mesozooplankton species assemblages.
    [Show full text]
  • Sensitivity to Ocean Acidification Parallels Natural Pco2 Gradients
    Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice Ceri N. Lewisa,1, Kristina A. Brownb, Laura A. Edwardsc, Glenn Cooperd, and Helen S. Findlaye,1,2 aCollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; bDepartment of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; cGeography Department, School of Environment, Education and Development, University of Manchester, Manchester M13 9PL, United Kingdom; dCentre for Ocean Climate Chemistry, Institute of Ocean Sciences, Fisheries, and Oceans Canada, Sidney, BC, Canada V8L 4B2; and ePlymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved November 8, 2013 (received for review August 9, 2013) The Arctic Ocean already experiences areas of low pH and high a serious knowledge gap and limits predictive modeling capa- CO2, and it is expected to be most rapidly affected by future ocean bilities of future scenarios. acidification (OA). Copepods comprise the dominant Arctic zoo- Copepods generally make up the dominant zooplankton of plankton; hence, their responses to OA have important implica- Arctic waters, exerting significant influences on primary pro- tions for Arctic ecosystems, yet there is little data on their current duction and pelagic fisheries (e.g., ref. 7). Due to their large body under-ice winter ecology on which to base future monitoring or size, high lipid content, and dominant biomass, calanoid cope- make predictions about climate-induced change. Here, we report pods, in particular, are an important high-quality food source for results from Arctic under-ice investigations of copepod natural dis- many pelagic Arctic fish (8, 9); hence, their responses to OA tributions associated with late-winter carbonate chemistry environ- have important implications for Arctic ecosystems.
    [Show full text]
  • Copepods Grazing on Coscinodiscus Wailesii: a Question of Size?
    Helgol Mar Res (2008) 62:251–255 DOI 10.1007/s10152-008-0113-z ORIGINAL ARTICLE Copepods grazing on Coscinodiscus wailesii: a question of size? Sandra Jansen Received: 26 October 2007 / Accepted: 16 April 2008 / Published online: 20 May 2008 © Springer-Verlag and AWI 2008 Abstract Grazing of female copepods, Acartia clausi and 1988). The ability and skill in handling individual food Temora longicornis, on the large centric diatom Coscino- items was mainly discovered by direct video observations discus wailesii, was studied in the laboratory. While (Alcaraz et al. 1980; Koehl and Strickler 1981). The use of A. clausi females did not feed on C. wailesii, T. longicornis passive Wltration or active capture of prey is dependent on showed a skilful handling of these large algae. The cells the prey size grazed upon. The passive feeding mode is were not completely ingested but copepods bit a small used to capture cells which are too small to be individually piece out of the silica wall and then ingested the cell con- detected by the copepod. Generally copepods prefer larger tent only. Faecal pellet analyses showed little remains of food items (Mullin 1963; PaVenhöfer 1988), using the the silica walls, and most of the content could only be clas- active feeding mode. Hansen et al. (1994) evaluated the siWed as undeWned matter. Therefore the general analyses assumption of a group-speciWc size ratio between pelagic of faecal pellets and gut content of copepods from the Weld predators and their prey on the basis of literature data and must be interpreted with caution.
    [Show full text]
  • Long-Term Warming and the Size and Phenology of Long Island Sound Plankton
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2014 Long-Term Warming And The Size And Phenology Of Long Island Sound Plankton Edward Rice Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/100 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] LONG-TERM WARMING AND THE SIZE AND PHENOLOGY OF LONG ISLAND SOUND PLANKTON By EDWARD JAMES RICE IV A dissertation submitted to the Graduate Faculty in Earth and Environmental Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 © 2014 EDWARD JAMES RICE IV All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Earth and Environmental Science in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Prof. Gillian Stewart ____________________________ _________ _______________________________________________ Date Chair of Examining Committee Prof. Cindi Katz___________________________________ _________ ________________________________________________ Date Executive Officer Prof. John Marra ________________________________________________ Dr. Julie Rose ________________________________________________ Prof. John Waldman ________________________________________________ Prof. Gregory O’Mullan ________________________________________________ Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii Abstract LONG-TERM WARMING SHIFTS THE SIZE AND PHENOLOGY OF LONG ISLAND SOUND ZOOPLANKTON By EDWARD JAMES RICE IV Adviser: Prof. Gillian Stewart In coastal ecosystems with decades of eutrophication and other anthropogenic stressors, the impact of climate change on planktonic communities can be difficult to detect.
    [Show full text]
  • Modelling the Population Dynamics of Temora Longicornis in the Basin
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences Discuss., 10, 12347–12384, 2013 Open Access www.biogeosciences-discuss.net/10/12347/2013/ Biogeosciences Biogeosciences doi:10.5194/bgd-10-12347-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access This discussion paper is/has beenClimate under review for the journal BiogeosciencesClimate (BG). Please refer to the correspondingof the final Past paper in BG if available. of the Past Discussions Open Access Open Access Earth System Earth System Modelling the populationDynamics dynamicsDynamics of Discussions Temora longicornis in the Basin Gdańsk Open Access Geoscientific Geoscientific Open Access (southern BalticInstrumentation Sea) Instrumentation Methods and Methods and Data1 Systems 2 2 Data Systems 2 L. Dzierzbicka-Glowacka , A. Lemieszek , M. Kalarus , and I. M. ŻDiscussionsmijewska Open Access Open Access 1 Geoscientific Institute of Oceanology, PolishGeoscientific Academy of Sciences, Sopot, Poland 2 Model Development Institute of Oceanography,Model UniversityDevelopment of Gdansk, Gdynia, Poland Discussions Received:
    [Show full text]