Smart Grid Protocols

Total Page:16

File Type:pdf, Size:1020Kb

Smart Grid Protocols A QIP Course on Smart Grid Technology: Smart Grid Protocols Ankush Sharma Assistant Professor Dept. of EE, IIT Kanpur E-mail: [email protected] Contents Various Smart Grid Protocols IEC 61850 Protocol Tele-Control Protocols DLMS/COSEM Protocols Smart Grid Protocols and Standards - IEEE C37.118:IEEE Standard for Synchrophasor - IEC 61850: Power Utility Automation Measurements for Power Systems - IEC 61968: Common Information Model (CIM) / - IEC 61970: Common Information Model (CIM) / Distribution Management Energy Management - IEC 62056: Data exchange for meter reading, - IEC 60870-6: Inter-Control Center tariff and load control Communications Protocol - DNP 3.0: Interoperability between substation - IEC 60870-5-104: Network access for IEC 60870- computers, RTUs, IEDs and master stations 5-101 using standard transport profiles Major Smart Grid Protocols/ Standards - IEC 62351: Security - IEC 62325: Deregulated energy market communications standards - IEC 61508: Functional safety of electrical/electronic/ programmable electronic - AS 4777: Grid connection of energy systems safety-related systems via inverters - IEEE 1588: Standard for a Precision Clock - AS 4577: Framework for the control of electrical Synchronization Protocol for Networked devices for DRM Measurement and Control Systems Smart Grid Protocols and Standards Other Smart Grid Protocols/ Standards – Green Button - Initiative to provide utility customers with easy and secure access to their energy usage information in a consumer-friendly and computer-friendly format MultiSpeak -The specification is a standard for the exchange of data among enterprise application software commonly applied in utilities SunSpec - Open interoperability specifications and information models to achieve plug-and-play interoperability between Distributed Energy Resource (DER) components and smart grid applications SEP 2.0 - Standard for applications that enable home energy management via wired and wireless devices that support Internet Protocol IEC 61850 IEC 61850 Before IEC 61850 - Power substations were mostly managed by substation automation systems that - Utilize simple, straightforward and highly specialized communication protocols Less concerned about the semantics of the exchanged data Devices from different manufacturers used different substation automation protocols, disabling them to talk to each other Utilities were paying enormous money and time to configure the devices to work together in a substation Hence, device manufacturers recognized the need for a unified international standard to support seamless cooperation among products from different vendors The IEC 61850 international standard, drafted by substation automation domain experts from 22 countries IEC 61850 Takes advantage of a comprehensive object-oriented data model and the Ethernet technology Part 1 to Part 3 - general ideas about the standard Part 4 – defining the project and management requirements in an IEC 61850 enabled substation Part 5 - specifying the required parameters for physical implementation Part 6 - defining an XML based language for IED configuration Part 7 - elaborating on the logical concepts Part 8 – mapping of the internal objects to the presentation layer and to the Ethernet link layer Part 9 - mapping from sampled measurement value (SMV) to point-to-point Ethernet IEC 61850 – Substation Architecture IEC 61850 based Substation Architecture IEC 61850 – System Overview Source: ABB IEC 61850 - Virtualization Logical Representation of Device in IEC 61850- IEC 61850 – Object Naming Anatomy of an IEC61850 Object Name V A Functional Constraint MX MX Logical Nodes MMXU1 MMXU2 Logical Device (e.g. Relay1) “MMXU2$MX$A” = Physical Device Feeder #2 Current Measurements (network address) IEC 61850 – Object Naming Logical node groups M Metering and measurement L System LN S Sensor and monitoring P Protection X Switchgear R Protection related T Instrument transformers C Control Y Power transformers G Generic Z Further power system I Interfacing and archiving equipment Examples:A Automatic control (4) PDIF: Differential protection CSWI: Switch controller RBRF: Breaker failure MMXU: Measurement unit XCBR: Circuit breaker YPTR: Power transformer IEC 61850– Profile Communication Communication Application Stack Domain IEC 61850 Communication Profile IEC 61850Communication IEC 61850 – Communication Profile IEC 61850 Communication Source: ABB IEC 61850 Interface Model Source: ABB IEC 61850 - ACSI Abstract Communications Service Interface - ACSI Defines a set of Objects Defines a set of Services to manipulate and access those objects Defines a base set of data types for describing objects Example ACSI services – GetDataSetValue, CreateDataSet, DetDataDirectory IEC 61850 - SMV Sampled Measured Values (SMV) IEC 61850 - GOOSE IEC61850 Generic Object Oriented Substation Event - GOOSE Device to multi-device GOOSE Header: communication – Local or Wide Area • Multicast Address • Name Bridgeable but Non-routable • Time Until Next GOOSE User-defined Dataset sent in an Ethernet Multicast message • Etc. Message sent on change of state as well periodically to enable detection of device failure User-Defined Dataset Reliability effected through message • Status Information repeat • Analog Values • Data Quality • Time IEC 61850 – GOOSE Messaging IEC 61850 – GSSE/MMS Generic Substation State Events (GSSE) Only Status data can be exchanged through GSSE and it uses a status list (string of bits) rather than a dataset as is used in GOOSE GSSE messages are transmitted directly over IEC/ISO 8802-2 and 8802-3 (IEEE 802.3) using a similar mechanism to GOOSE messages As the GSSE format is simpler than GOOSE it is handled faster in some devices. GSSE is being progressively superseded by the use of GOOSE and support for it may eventually disappear Manufacturing Message Specification (MMS) It is a messaging system for transferring real time process data and supervisory control information between networked devices and/or computer applications. MMS Defines the following - A set of standard objects which must exist in every device, on which operations like read, write, event signaling etc. can be executed. A set of standard messages exchanged between a client and a server stations for the purpose of monitoring and/or controlling these objects. A set of encoding rules for mapping these messages to bits and bytes when transmitted. IEC 61850 - SCL SCL – Substation Configuration Language Description language for communication in electrical substations related to the IEDs XML based language that allows a formal description of - – Substation automation system and the switchyard and the relation between them – IED configuration – IEC 61850 language used in the XML files is called SCL language IEC 61850 - SCL SCL File Types SSD: System Specification Description. XML description of the entire system. SCD: Substation Configuration Description. XML description of a single substation. ICD: IED Capability Description. XML description of items supported by an IED. CID: Configured IED Description. XML configuration for a specific IED. IEC 61850 - SCL SCL File Sample SSD: System Specification Description. XML description of the entire system. SCD: Substation Configuration Description. XML description of a single substation. ICD: IED Capability Description. XML description of items supported by an IED. CID: Configured IED Description. XML configuration for a specific IED. IEC 61850: The SCL language (IED Modelling) IEC 61850: The SCL language (IED modelling) SCL Bay A Bay Unit (IED) PTRC (Trip, Operate) IEC 61850: The SCL language (IED modelling) SCL SCL It is possible to “structure” the Logical Nodes, and group them under different Logical Devices. The “rules” of this structure are described in the XML file. IEC 61850: Services (IED modelling) The SCL file also describes what the IED can do (services). In this case it seems that the IED cannot offer upload of disturbance recorder file, as the “FileHandling Service” is not listed: While this IED allows to upload the disturbance recorder files (FileHandling Service” is listed): IEC 61850 - CID CID File Generation IEC 61850 - CID CID File Generation IEC 61850 - SSD SSD File IEC 61850-90-5: Mapping with C37.118 IEC 61850-90-5: Mapping with C37.118 IEC 61850 Benefits of IEC 61850 • IEC 61850 normally uses the approach of common information model (CIM) of real devices in terms of logical nodes (LN) for standardization • High‐level services enable self‐describing devices & automatic object discovery saving money and effort in configuration and maintenance • Standardized naming conventions with power system context eliminates device dependencies and tag mapping • Standardized configuration file formats enables seamless exchange of device configuration • Higher performance multi‐cast messaging for inter‐relay communications enables functions not possible with hard wires • Multi‐cast messaging enables sharing of transducer (CT/PT) signals Tele‐Control Protocols Tele-Control Protocols for SCADA IEC 60870‐5‐101 protocol (Serial mode communication from RTU to Control Center) IEC 60870‐5‐104 protocol (network mode communication from RTU to Control Center) IEC 60870‐6‐502 ( ICCP) protocol (between two Control Canters) IEC 60870‐5‐103 protocol (for communication between IEDs in a Substation) DNP 3.0 Protocol (Serial) DNP 3.0 Protocol (TCP/IP) Communication Channel for Information flow RLDC Wide Band Commn (MW / FO) SLDC SLDC Wide Band Commn Area-LDC Area-LDC Wide Band / PLCC
Recommended publications
  • An Introduction to Integrated Process and Power Automation
    Power Up Your Plant An introduction to integrated process and power automation Jeffrey Vasel ABB, Inc. June 30, 2010 Rev 1 Abstract This paper discusses how a single integrated system can increase energy efficiency, improve plant uptime, and lower life cycle costs. Often referred to as Electrical Integration, Integrated Process and Power Automation is a new system integration architecture and power strategy that addresses the needs of the process and power generation industries. The architecture is based on Industrial Ethernet standards such as IEC 61850 and Profinet as well as Fieldbus technologies. Emphasis is placed on tying the IEC 61850 substation automation standard with the process control system. The energy efficiency gains from integration are discussed in a power generation use case. In this use case, energy efficiency is explored with integrated variable frequency drives, improved visibility into power consumption, and energy efficiency through faster plant startup times. Demonstrated capital expenditure (CAPEX) savings is discussed in a cost avoidance section where a real world example of wiring savings is described. Lastly, a power management success story from a major oil and gas company, Petrobras, is discussed. In this case, Petrobras utilized integrated process and power automation to lower CAPEX, operational expenditure (OPEX), and explore future energy saving opportunities. Executive Summary Document ID: 3BUS095060 Page 1 Date: 6/30/2010 © Copyright 2010 ABB. All rights reserved. Pictures, schematics and other graphics contained herein are published for illustration purposes only and do not represent product configurations or functionality. Executive Summary Document ID: 3BUS095060 Page 2 Date: 6/30/2010 © Copyright 2010 ABB.
    [Show full text]
  • Introduction to Iec 62361-102 Cim - 61850 Harmonization
    25th International Conference on Electricity Distribution Madrid, 3-6 June 2019 Paper n° 1368 INTRODUCTION TO IEC 62361-102 CIM - 61850 HARMONIZATION Tom BERRY Schneider Electric – France [email protected] ABSTRACT TR IEC 62361-102 [1] is a Technical Specification that describes a mapping for information exchange between power system installations based on the modelling approach of IEC 61850; and business systems based on IEC CIM standard data exchanges. The document includes proposals to ‘harmonize’ the two standards by adapting or extending existing information models and/or defining new models, where such changes will enable more effective communication. This paper explains the key mapping principles and some of the recommendations for future editions of the standards. WHAT IS THE PROBLEM? The smart grid initiatives in the USA, Europe and Asia Figure 1: Data models for Smart Grids Architectural have all recognized the necessity to establish solid Methodology standards for communicating between all the "smart" devices. For interoperability purposes, it has been Several studies [3] and reports [4,5] have already been recognized, at an early stage, that widely shared semantics produced on the subject of harmonization, but failed to get to describe power systems would be necessary. Power sufficient support for publication as IEC standards or systems are complex and several technical groups have technical specifications. The approach taken by the task worked on different aspects of communication. There are force was to concentrate on a fundamental use case related different needs for information exchange within different to configuration of real time communication between contexts e.g. within a substation or within control centres.
    [Show full text]
  • 8130 Remote Terminal Unit
    8130 Remote Terminal Unit Collect and transmit data from multiple storage tanks to a central system or host using a single tank gauge interface for inventory, alarm and control. Highlights •Easily expandable through the use of plug‐in interface modules ‐ reduces cost by integrating all analog, digital and serial data inputs and outputs •Multiple host ports ‐ adapts to your needs and redundancy requirements • Supports multiple tank gauge protocols ‐ connect your existing equipment at less cost • Digital and analog I/O connectivity ‐ allows simple tank farm alarm integration •Fully compatible with FuelsManager ‐ tank inventory management made easy • 8130 RTU and gauge configuration data can be exported to other applications, such as Microsoft Excel® or Access® ‐ document all tank gauge equipment Host Communication •Remote configuration of your tank gauges ‐ means less on‐tank The 8130 RTU connects to most types of sensors or actuators on activities, resulting in less personnel risk your site, and to PLCs and DCS computers. It combines with FuelsManager software to provide an extremely cost efficient and FuelsManager® reliable tank inventory system. It also provides fully redundant host ports and is compatible with a variety of other host systems through the industry standard MODBUS™ protocol. Configuration and Programming Remote programming can be accomplished from the host or locally Network using a PC with the Windows‐based configuration program Communications Field ViewRTU. This tool simplifies configuration and diagnostics, Instruments
    [Show full text]
  • International Standard IEC 60870-6-802 Has Been Prepared by IEC Technical Committee 57: Power System Control and Associated Communications
    INTERNATIONAL IEC STANDARD 60870-6-802 Second edition 2002-04 Telecontrol equipment and systems – Part 6-802: Telecontrol protocols compatible with ISO standards and ITU-T recommendations – TASE.2 Object models Matériels et systèmes de téléconduite – Partie 6-802: Protocoles de téléconduite compatibles avec les normes ISO et les recommandations de l'UIT-T – Modèles d'objets TASE.2 This is a free 10 page sample. Access the full version online. Reference number IEC 60870-6-802:2002(E) Publication numbering As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1. Consolidated editions The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2. Further information on IEC publications The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following: • IEC Web Site (www.iec.ch) • Catalogue of IEC publications The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication.
    [Show full text]
  • Technical Framework on Local Energy Communities TF-LEC Vol.1
    Integrating the Energy System – IES Technical Framework on Local Energy Communities TF-LEC Vol.1 Version 0.5 First trial release January 14, 2021 TF-LEC Vol.1 i Document Information Title Technical Framework on Local Energy Communities – Vol.1 Editors Gerald Franzl, Stefan Wilker Authors Gerald Franzl Filename TF-LocalEnergyCommunities-Vol1_v005.pdf Description Local Energy Communities – operation principle and environment Last changes First trial release 01/2021 sClassification WHITE: open to public Version History Version Date Changed by Comment 0.1 2020-03-20 Gerald Franzl Start compiling content & text 0.3 2020-07-10 Gerald Franzl Invite cFlex team to contribute 0.5 2021-01-15 Gerald Franzl Publish the first trial version The TF-LEC was initiated and created within the cFlex project [energyit.ict.tuwien.ac.at/projects/project-cflex] by: Danube University Krems TU Wien Department for Integrated Sensor Systems Institute of Computer Technology (E384) Viktor Kaplan Strasse 2/E, Gusshaus Strasse 27-29/384, A-2700 Wiener Neustadt, Austria A-1040 Vienna, Austria www.donau-uni.ac.at/diss www.ict.tuwien.ac.at Corresponding author: [email protected] Acknowledgement: This Technical Framework was initiated and prepared in the course of the national project cFlex funded by the Austrian Climate and Energy Fund (KLIEN), administrated by the Austrian Research Promotion Agency (FFG) under contract number 871657. The initial authors like to thank all the contributing team members from the cFlex project for their invaluable contribution of knowledge, experience and support toward a better joint understanding of the complexities involved in operating Local Energy Communities.
    [Show full text]
  • A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid
    electronics Review A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid Jesús Lázaro 1,* , Armando Astarloa 1, Mikel Rodríguez 2, Unai Bidarte 1 and Jaime Jiménez 1 1 UPV/EHU, 48015 Bilbao, Spain; [email protected] (A.A.); [email protected] (U.B.); [email protected] (J.J.) 2 System-on-Chip Engineering, 48950 Erandio, Spain; [email protected] * Correspondence: [email protected] Abstract: Since the 1990s, the digitalization process has transformed the communication infras- tructure within the electrical grid: proprietary infrastructures and protocols have been replaced by the IEC 61850 approach, which realizes interoperability among vendors. Furthermore, the latest networking solutions merge operational technologies (OTs) and informational technology (IT) traffics in the same media, such as time-sensitive networking (TSN)—standard, interoperable, deterministic, and Ethernet-based. It merges OT and IT worlds by defining three basic traffic types: scheduled, best-effort, and reserved traffic. However, TSN demands security against potential new cyberattacks, primarily, to protect real-time critical messages. Consequently, security in the smart grid has turned into a hot topic under regulation, standardization, and business. This survey collects vulnerabilities of the communication in the smart grid and reveals security mechanisms introduced by international electrotechnical commission (IEC) 62351-6 and how to apply them to time-sensitive networking. Citation: Lázaro, J.; Astarloa, A.; Keywords: IEC 62351-6; smart grid; time-sensitive networking; IEC 61950 Rodríguez, M.; Bidarte U.; Jiménez, J. A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid. 1. Introduction Electronics 2021, 10, 1881.
    [Show full text]
  • Smart Grid Standardization Documentation Map
    D2.1 – SMART GRID STANDARDIZATION DOCUMENTATION MAP The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318782. STARGRID FP7 - 318782 D2.1 – SMART GRID STANDARDIZATION DOCUMENTATION MAP Version V1.3 Status Final Draft Work Package WP2 Preparation Date 2013-11-08 Due Date M8 Submission Date 2013-06-28 Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Main Author(s) Eugenia Aghinii (ASRO) Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Contributors Ibon Arechalde (TECNALIA) Eduardo García (TECNALIA) Eutimio Sánchez (TECNALIA) Dissemination Level PU Nature R Keywords Smart Grid, Standardization, Industry Initiatives D2.1 – Smart Grid standardization documentation map VERSION HISTORY Version Date Author(s) Comments Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) v0.1 2013-06-25 First draft Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V0.2 2013-06-27 Final draft Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) v1.0 2013-06-28 Final version, submitted Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V1.2 2013-07-16 Periodic review Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V1.3 2013-11-08 Periodic review Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) 2013-11-08 v1.3 2/312 D2.1 – Smart Grid standardization documentation map TABLE OF CONTENTS Version History................................................................................................................................................
    [Show full text]
  • 2013-09 (Adobe Reader)
    Turinys AKTUALIJOS SUDAROMA LAIKINOJI DARBO GRUPË „TEISMO MEDICINOS PROCESAI“ .... 5 STANDARTIZACIJA INFORMACIJA APIE VIEÐAJAI APKLAUSAI TEIKIAMUS EUROPOS IR LIETUVOS STANDARTØ BEI KITØ LEIDINIØ PROJEKTUS ................................. 6 IÐLEISTI LIETUVOS STANDARTAI IR KITI LEIDINIAI ........................................... 6 NETEKÆ GALIOS LIETUVOS STANDARTAI IR KITI LEIDINIAI ............................ 11 TARPTAUTINIØ IR EUROPOS ÁSTAIGØ BEI ORGANIZACIJØ STANDARTAI IR KITI LEIDINIAI, KURIUOS DEPARTAMENTAS GAVO RUGPJÛÈIO MËNESÁ ............................................................................ 13 TARPTAUTINËS STANDARTIZACIJOS ORGANIZACIJOS STANDARTAI IR KITI LEIDINIAI ............... 13 TARPTAUTINËS ELEKTROTECHNIKOS KOMISIJOS STANDARTAI IR KITI LEIDINIAI ................... 16 RATIFIKUOTI EUROPOS STANDARTIZACIJOS KOMITETO STANDARTAI IR KITI LEIDINIAI ............ 17 RATIFIKUOTI EUROPOS ELEKTROTECHNIKOS STANDARTIZACIJOS KOMITETO STANDARTAI ...................................................................................... 19 RATIFIKUOTI EUROPOS TELEKOMUNIKACIJØ STANDARTØ INSTITUTO STANDARTAI IR KITI LEIDINIAI ............................................................................................... 21 REDAKCINË KOLEGIJA R. Rukðënienë (pirmininkë), L. Balèiauskienë, S. Vaitkevièienë, V. Masalskytë, V. Tamoðevièienë Redaktorë V. Tamoðevièienë Maketuotoja A. Skomskienë 2013-09-09 © Lietuvos standartizacijos departamentas, 2013 Lietuvos standartizacijos departamento BIULETENIS 2013 Nr. 9 VILNIUS, 2013 Lietuvos standartizacijos
    [Show full text]
  • IEC 62351-7 ® Edition 1.0 2017-07
    This is a preview - click here to buy the full publication IEC 62351-7 ® Edition 1.0 2017-07 INTERNATIONAL STANDARD colour inside Power systems management and associated information exchange – Data and communications security – Part 7: Network and System Management (NSM) data object models INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 33.200 ISBN 978-2-8322-4442-5 Warning! Make sure that you obtained this publication from an authorized distributor. ® Registered trademark of the International Electrotechnical Commission This is a preview - click here to buy the full publication – 2 – IEC 62351-7:2017 © IEC 2017 CONTENTS FOREWORD ........................................................................................................................... 8 1 Scope ............................................................................................................................ 10 2 Normative references .................................................................................................... 10 3 Terms and definitions .................................................................................................... 12 4 Abbreviated terms and acronyms ................................................................................... 13 5 Overview of Network and System Management (NSM) .................................................. 14 5.1 Objectives ............................................................................................................. 14 5.2 NSM concepts......................................................................................................
    [Show full text]
  • Remote Terminal Unit ENCS-3M
    Remote terminal unit ENCS-3m Manual ENCS.403500.001. Rev 3.2016 Table of contents Table of contents Introduction .................................................................................................. 3 Glossary .................................................................................................... 4 1 General information .......................................................................... 5 2 Design, dimension, naming convention ..................................................... 6 3 Features ......................................................................................... 8 3.1 Device poll and sync time ............................................................. 8 3.2 Telecontrol .............................................................................. 8 3.3 Spontaneous transmission ............................................................. 8 3.4 Cyclic transmission ..................................................................... 8 3.5 Background scan ........................................................................ 8 3.6 IEC 60870-5-101–2006 and IEC 60870-5-104-2004 support ........................ 8 3.7 GOOSE (IEC 61850 8-1) ................................................................. 9 3.8 Configuration ............................................................................ 9 4 Specification .................................................................................. 10 4.1 Interfaces .............................................................................
    [Show full text]
  • Smart Reconfiguration of Distribution Grids Using Agent-Based Technology
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Smart Reconfiguration of Distribution Grids using Agent-based Technology Matheus Macedo Lopes Dissertation conducted under the Master’s in Electrical and Computers Engineering Program - Major Energy Supervisor: Prof. Vladimiro Miranda , Ph.D. Co-Supervisor: Prof. Diego Issicaba , Ph.D. July 28, 2016 © Matheus Macedo Lopes, 2016 Resumo As manobras de isolamento para reconfiguração em redes de distribuição de média tensão são tradicionalmente manuais ou dependem de decisões tomadas pelos operadores de rede. A abor- dagem proposta assume uma arquitetura onde os agentes interagem em um ambiente de rede de distribuição simulado a partir do estabelecimento de metas projetadas seguindo o paradigma de orientação mulit-agente. A aplicação é implementada de tal forma que agentes AgentSpeak in- teragem entre eles através de uma comunicação baseada em ato de fala/comunicação, bem como com um ambiente desenvolvido em linguagem JAVA. Neste contexto, esta tese propõe a modelagem e verificação de soluções baseadas em agentes para apoiar as operações de reconfiguração em redes de distribuição em nível de média tensão. A metodologia foi utilizada para apoiar as actividades dos operadores de redes de distribuição por meio de planos de restabelecimento de energia para ajudar em casos de falhas permanentes. As abordagens empregadas para arquitetura de agentes para a reconfiguração foram baseadas em modelo hierárquico e uma abordagem totalmente descentralizada. A capabilidade dos agentes foram desenvolvidas prevendo as possiveis aplicações do sistema de distribuição com foco em procedimentos de gestão des interrupções de service. As abordagens foram testadas em um ali- mentador teste trifásico do IEEE de 123 nós.
    [Show full text]
  • CGMES Profiling User Guide V1.0
    European Network of Transmission System Operators for Electricity CGMES Profiling User Guide v1.0 2021-04-21 SOC APPROVED VERSION 1.0 ENTSO-E AISBL • Rue de Spa, 8 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 • [email protected] • www.entsoe.eu CGMES Profiling User Guide v1.0 European Network of Transmission System Operators for Electricity Copyright notice: Copyright © ENTSO-E. All Rights Reserved. This document and its whole translations may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and d erivative works. However, this document itself may not be modified in any way, except for literal and whole translation into languages other than English and under all circumstances, the copyright notice or references to ENTSO-E may not be removed. This document and the information contained herein is provided on an "as is" basis. ENTSO-E DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Maintenance notice: This document is maintained by the ENTSO-E CIM EG. Comments or remarks are to be provided at [email protected] NOTE CONCERNING WORDING USED IN THIS DOCUMENT The force of the following words is modified by the requirement level of the document in which they are used.
    [Show full text]