Linking the Oral Microbiome and Salivary Cytokine Abundance to Circadian Oscillations Anujit Sarkar1, Melanie N

Total Page:16

File Type:pdf, Size:1020Kb

Linking the Oral Microbiome and Salivary Cytokine Abundance to Circadian Oscillations Anujit Sarkar1, Melanie N www.nature.com/scientificreports OPEN Linking the oral microbiome and salivary cytokine abundance to circadian oscillations Anujit Sarkar1, Melanie N. Kuehl2,3*, Amy C. Alman1 & Brant R. Burkhardt2* Saliva has immense potential as a diagnostic fuid for identifcation and monitoring of several systemic diseases. Composition of the microbiome and infammation has been associated and refective of oral and overall health. In addition, the relative ease of collection of saliva further strengthens large- scale diagnostic purposes. However, the future clinical utility of saliva cannot be fully determined without a detailed examination of daily fuctuations that may occur within the oral microbiome and infammation due to circadian rhythm. In this study, we explored the association between the salivary microbiome and the concentration of IL-1β, IL-6 and IL-8 in the saliva of 12 healthy adults over a period of 24 h by studying the 16S rRNA gene followed by negative binomial mixed model regression analysis. To determine the periodicity and oscillation patterns of both the oral microbiome and infammation (represented by the cytokine levels), two of the twelve subjects were studied for three consecutive days. Our results indicate that the Operational Taxonomic Units (OTUs) belonging to Prevotella, SR1 and Ruminococcaceae are signifcantly associated to IL-1β while Prevotella and Granulicatella were associated with IL-8. Our fndings have also revealed a periodicity of both the oral microbiome (OTUs) and infammation (cytokine levels) with identifable patterns between IL-1β and Prevotella, and IL-6 with Prevotella, Neisseria and Porphyromonas. We believe that this study represents the frst measure and demonstration of simultaneous periodic fuctuations of cytokine levels and specifc populations of the oral microbiome. Saliva is a biofuid with much promise for identifcation of numerous disease biomarkers 1,2. Te use of saliva as a bio-reservoir for this purpose is also highly pragmatic. Te relative ease of rapid collection with non-invasive accessibility and generous sample size (typically 1 ml) is extremely advantageous within a clinical setting espe- cially if coupled to routine medical visits. Furthermore, the quantity of information that can be obtained from a saliva sample and utilized for analytical purposes is extensive. In examination of the saliva, large scale “omic” approaches, termed “salivaomics”, can be employed such as lipidomics, proteomics and metabolomics 3–5. Single analyte determination can also be performed examining markers of infammation, periodontal disease, and hor- mones such as cortisol 6,7. Taken together, the relative abundance of measurable biomarkers in saliva has shown promise in the therapeutic identifcation of numerous diseases ranging from cancer 8–10, Sjögren’s syndrome10, type 1 and 2 diabetes mellitus 6,11, psychiatric disorders 12, cardiovascular disease 13 and many others (reviewed in 1). In addition to the numerous proteins and metabolites present in the saliva, there is also an abundant amount of nucleic acids including DNA, mRNA and microRNA 14,15. Approximately 30% of the DNA present in the saliva is of non-human origin and is from the oral microbiome. Te composition of the oral microbiome is an extremely complex niche with estimates of up to 100 billion bacteria with 700 predominant taxa 16. Te oral microbiome composition can be impacted by numerous factors such as periodontal disease, diet or smoking 17,18. Te relationship between the oral microbiome and local and systemic diseases has been demonstrated and is still being actively investigated across various disciplines 19. Various studies have indicated that the composition of the microbiome are strongly associated with changes in periodontal status and can be an indicator of systemic diseases20,21. In addition, the composition of the oral microbiome is believed to afect overall infammation and immunology. For example, periodontal disease has been associated with cardiovascular disease, possibly due to the induction of chronic infammation22. Tere is increasing evidence that specifc oral bacterial species and particularly periodontal pathogens have an etiological role in atherogenesis which is associated with a height- ened state of oral and systemic infammation 23,24. Te oral microbiome and infammation have been associated 1College of Public Health, University of South Florida, Tampa, FL 33612, USA. 2Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA. 3Present address: IPS Labs, 1 Harvard Way, Hillsborough Township, NJ 08844, USA. *email: [email protected]; bburkhardt@ usf.edu Scientifc Reports | (2021) 11:2658 | https://doi.org/10.1038/s41598-021-81420-3 1 Vol.:(0123456789) www.nature.com/scientificreports/ Characteristics Age (years)* 26.5 (± 5.2) Male (n)† 5 (41.7) Race/ethnicity (n)† White 10 (83.3) Hispanic 2 (16.7) BMI (kg/m2)* 23.1 (± 3.5) BMI category (n)† Underweight (< 18.5 kg/m2)† 1 (8.3) Normal (18.5– < 25 kg/m2)† 6 (50) Overweight (25– < 30 kg/m2)† 5 (41.7) Obese (≥ 30 kg/m2)† 0 (0) Current smoker (n; cotinine > 10 ng/ml) 0 Amount of sleep prior to collection (h)* 7.1 ± 0.79 Average wake time* 7:47 A.M. ± 1.3 Average time to bed* 12:17 A.M. ± 1.3 Table 1. Subject characteristics (n = 12). *Data presented as mean ± SD. † Data presented as number (%). with numerous other diseases as well, such as cancer, Alzheimer’s, metabolic syndrome and mental illness 25. Terefore, both the oral microbiome and oral infammation could provide useful insights that may eventually lead to salivary diagnostics for the prediction and identifcation of various diseases. Saliva’s use as a diagnostic fuid has been hindered due to a lack of understanding of biomolecules within saliva and their relevance to disease etiology, combined with the diurnal/circadian variations of these biomolecules 1. If saliva is to be utilized as a non-invasive source of biomarkers indicating systemic disease, biological variation in association with diurnal rhythms must be considered and evaluated. At present, there have been limited studies examining the circadian oscillations of the human salivary microbiome and with conficting conclusions 26,27. Most studies examining diurnal microbiome variation have been performed evaluating the gut28–31. Similarly, limited studies have been conducted examining circadian rhythm of oral infammation as determined by meas- urement of various cytokines 32. Altogether, similar studies have examined diurnal variation within both the oral microbiome and various infammatory biomarkers separately but none to our knowledge have examined these simultaneously and longitudinally within the same individuals. To examine oral infammatory and microbiome diurnal rhythms, we examined longitudinal saliva sam- ples collected from 12 healthy adults and measured a panel of cytokines by multiplexing analysis and the oral microbiome via 16S rRNA analysis across both a 24-h time period and across 72 h for 2 individuals. Following determination of cytokine concentrations and bacterial populations, we examined infammatory periodicity by performing a normalization method on the measured cytokines and the association between the cytokines and specifc bacterial populations. We also tested the association between cytokine levels and OTUs from oral microbiome using a negative binomial mixed model regression to account for both the repeated measures taken on the same individuals over time and the over-dispersion commonly found in microbiome count data. Results Participant characteristics. Participant characteristics are displayed in Table 1. Te mean participant age was 26.5 (± 5.2) years. Te majority were female (58.3%) and White, non-Hispanic (83.3%). Average BMI was 23.1 (± 3.5) and most participants (11 out of 12) were in the normal (n = 6) to overweight (n = 5) BMI category. Te average amount of sleep prior to frst collection was 7.1 ± 0.79 h. All participants followed a typical sleep/ wake cycle of daytime activity followed by nighttime sleep. Te average wake time was 7:47 A.M. ± 1.3 S.D. and average time to bed was 12:17 A.M. ± 1.3 S.D. with a typical time of wake activity of 16 h Detailed listing of col- lection times is supplied in Supplementary Table S1. Salivary cotinine levels were also determined and found to be below 10 ng/ml for all participants. In addition, participants completed an oral health questionnaire inquiring about gingival condition and if loose tooth was present. None reported a loose tooth and 9 out of 12 reported gingival condition in the excellent, very good or good category with 3 reporting fair condition. Alpha diversity and diurnal variation in composition of the salivary microbiome. Alpha diver- sity analysis was performed to measure the overall bacterial richness and composition within the salivary micro- biome. Initial run metrics of the 16S Ilumina MiSeq analysis identifed 223 operational taxonomic units (OTUs) with 7033 average reads per sample (data not shown). Observed OTUs were evaluated along with Shannon Diversity Index (SDI) and Chao1 analysis (Fig. 1) in relation to time of sample collection across the 12 subjects with samples collected at 6 time points (at waking, afer 30 min., 3 h., 6 h., 9 h. and just prior to sleep) over a single 24 h period. Te bacterial richness, diversity or abundance of the oral microbiome did not signifcantly difer within the samples among individuals either at matched time of collection or across time of collections (Fig. 1). In addition, no
Recommended publications
  • The Salivary Microbiome for Differentiating Individuals: Proof of Principle
    Published in "Microbes and Infection 18(6): 399–405, 2016" which should be cited to refer to this work. The salivary microbiome for differentiating individuals: proof of principle Sarah L. Leake a, Marco Pagni b, Laurent Falquet b,c, Franco Taroni a,1, Gilbert Greub d,*,1 a School of Criminal Justice, University of Lausanne, Lausanne, Switzerland b Swiss Institute of Bioinformatics, Vital-IT Group, Lausanne, Switzerland c Department of Biology, University of Fribourg, Fribourg, Switzerland d Institute of Microbiology, Lausanne, Switzerland Abstract Human identification has played a prominent role in forensic science for the past two decades. Identification based on unique genetic traits is driving the field. However, this may have limitations, for instance, for twins. Moreover, high-throughput sequencing techniques are now available and may provide a high amount of data likely useful in forensic science. This study investigates the potential for bacteria found in the salivary microbiome to be used to differentiate individuals. Two different targets (16S rRNA and rpoB) were chosen to maximise coverage of the salivary microbiome and when combined, they increase the power of dif- ferentiation (identification). Paired-end Illumina high-throughput sequencing was used to analyse the bacterial composition of saliva from two different people at four different time points (t ¼ 0 and t ¼ 28 days and then one year later at t ¼ 0 and t ¼ 28 days). Five major phyla dominate the samples: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Streptococcus, a Firmicutes, is one of the most abundant aerobic genera found in saliva and targeting Streptococcus rpoB has enabled a deeper characterisation of the different streptococci species, which cannot be differentiated using 16S rRNA alone.
    [Show full text]
  • Maternal Diet Habits and the Salivary Microbiome of Caries-Free Children THESIS Presented in Partial Fulfillment of the Requirem
    Maternal Diet Habits and the Salivary Microbiome of Caries-Free Children THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Dr. Stephanie Chambers Furlong Graduate Program in Dentistry The Ohio State University 2013 Master's Examination Committee: Dr. Sarat Thikkurissy “Advisor” Dr. Purnima Kumar Dr. Homa Amini Copyright by Dr. Stephanie Chambers Furlong 2013 Abstract This cross-sectional clinical study examines maternal diet habits and child feeding practices in relation to the mother-child bacterial makeup. Mother-child dyads of caries- free children in four age cohorts between 0-18 years were included in this study. Mothers answered a 65-question survey on their own eating habits as well as child feeding and oral hygiene practices. Children and mothers also provided a saliva and plaque sample for analysis of microbial colonies. A total of sixty mother-child pairs were identified and included in the study. Of the 60 pairs, 11 were predentate infants, 20 had only primary teeth, 14 were in the mixed dentition state, and 15 had all permanent teeth. All but two diet variables showed no statistical difference between the mothers in each group at a level of significance of p<0.05. ANOVA analysis of the average s-OTU count showed the predentate group had a significantly lower bacterial diversity than the other groups (p<0.05). ANOVA analysis of the Bray-Curtis Similarity Index of the mother/child dyads showed no statistically significant difference between the groups (p<0.05). On average, this similarity index showed that each child shared on average about 50% of their salivary microbial profile with their mother.
    [Show full text]
  • Salivary Microbiota Shifts Under Sustained Consumption of Oolong Tea in Healthy Adults
    nutrients Article Salivary Microbiota Shifts under Sustained Consumption of Oolong Tea in Healthy Adults Zhibin Liu, Hongwen Guo, Wen Zhang and Li Ni * Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China; [email protected] (Z.L.); [email protected] (H.G.); [email protected] (W.Z.) * Correspondence: [email protected]; Tel.: +86-591-2286-6378 Received: 16 February 2020; Accepted: 25 March 2020; Published: 31 March 2020 Abstract: Tea is the most widely consumed beverages next to water, however little is known about the influence of sustained tea consumption on the oral bacteria of healthy adults. In this study, three oral healthy adults were recruited and instructed to consume 1.0 L of oolong tea infusions (total polyphenol content, 2.83 g/L) daily, for eight weeks. Salivary microbiota pre-, peri-, and post-treatment were fully compared by high-throughput 16S rRNA sequencing and multivariate statistical analysis. It was revealed that oolong tea consumption reduced salivary bacterial diversity and the population of some oral disease related bacteria, such as Streptococcus sp., Prevotella nanceiensis, Fusobacterium periodonticum, Alloprevotella rava, and Prevotella elaninogenica. Moreover, via correlation network and Venn diagram analyses, seven bacterial taxa, including Streptococcus sp. (OTU_1), Ruminococcaceae sp. (OTU_33), Haemophilus sp. (OTU_696), Veillonella spp. (OTU_133 and OTU_23), Actinomyces odontolyticus (OTU_42), and Gemella haemolysans (OTU_6), were significantly altered after oolong tea consumption, and presented robust strong connections (|r| > 0.9 and p < 0.05) with other oral microbiota. These results suggest sustained oolong tea consumption would modulate salivary microbiota and generate potential oral pathogen preventative benefits.
    [Show full text]
  • The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight Into the Microbiome–Treatment Axis
    International Journal of Molecular Sciences Review The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome–Treatment Axis Amel Sami 1,2, Imad Elimairi 2,* , Catherine Stanton 1,3, R. Paul Ross 1 and C. Anthony Ryan 4 1 APC Microbiome Ireland, School of Microbiology, University College Cork, Cork T12 YN60, Ireland; [email protected] (A.S.); [email protected] (C.S.); [email protected] (R.P.R.) 2 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National Ribat University, Nile Street, Khartoum 1111, Sudan 3 Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland 4 Department of Paediatrics and Child Health, University College Cork, Cork T12 DFK4, Ireland; [email protected] * Correspondence: [email protected] Received: 30 August 2020; Accepted: 12 October 2020; Published: 29 October 2020 Abstract: Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
    [Show full text]
  • The Salivary Microbiota in Health and Disease
    The salivary microbiota in health and disease Belstrøm, Daniel Published in: Journal of Oral Microbiology DOI: 10.1080/20002297.2020.1723975 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Belstrøm, D. (2020). The salivary microbiota in health and disease. Journal of Oral Microbiology, 12(1), [1723975]. https://doi.org/10.1080/20002297.2020.1723975 Download date: 28. Sep. 2021 Journal of Oral Microbiology ISSN: (Print) 2000-2297 (Online) Journal homepage: https://www.tandfonline.com/loi/zjom20 The salivary microbiota in health and disease Daniel Belstrøm To cite this article: Daniel Belstrøm (2020) The salivary microbiota in health and disease, Journal of Oral Microbiology, 12:1, 1723975, DOI: 10.1080/20002297.2020.1723975 To link to this article: https://doi.org/10.1080/20002297.2020.1723975 © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 04 Feb 2020. Submit your article to this journal Article views: 47 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=zjom20 JOURNAL OF ORAL MICROBIOLOGY 2020, VOL. 12, 1723975 https://doi.org/10.1080/20002297.2020.1723975 The salivary microbiota in health and disease Daniel Belstrøm Section for Periodontology and Microbiology, Department of Odontology, University of Copenhagen, Copenhagen, Denmark ABSTRACT ARTICLE HISTORY The salivary microbiota (SM), comprising bacteria shed from oral surfaces, has been shown to be Received 10 October 2019 individualized, temporally stable and influenced by diet and lifestyle.
    [Show full text]
  • Helicobacter Pylori Infection and Salivary Microbiome Yingjie Ji, Xiao Liang and Hong Lu*
    Ji et al. BMC Oral Health (2020) 20:84 https://doi.org/10.1186/s12903-020-01070-1 RESEARCH ARTICLE Open Access Analysis of by high-throughput sequencing: Helicobacter pylori infection and salivary microbiome Yingjie Ji, Xiao Liang and Hong Lu* Abstracts Background: There have been reports of Helicobacter pylori (H. pylori) in the oral cavity and it has been suggested that the oral cavity may be a reservoir for H. pylori reflux from the stomach. High-throughput sequencing was used to assess the structure and composition of oral microbiota communities in individuals with or without confirmed H. pylori infection. Methods: Saliva samples were obtained from 34 H. pylori infected and 24 H. pylori uninfected subjects. Bacterial genomic DNA was extracted and examined by sequencing by amplification of the 16S rDNA V3-V4 hypervariable regions followed by bioinformatics analysis. Saliva sampling was repeated from 22 of the 34 H. pylori infected subjects 2 months after H. pylori eradication. Results: High-quality sequences (2,812,659) clustered into 95,812 operational taxonomic units (OTUs; 97% identity). H. pylori was detected in the oral cavity in infected (12/34), uninfected (11/24) and eradicated (15/22) subjects by technique of high-throughput sequencing, occupying 0.0139% of the total sequences. Alpha diversity of H. pylori infected subjects was similar to that of uninfected subjects (Shannon: 1417.58 vs. 1393.60, p > 0.05, ACE: 1491.22 vs. 1465.97, p > 0.05, Chao 1: 1417.58 vs. 1393.60, p > 0.05, t-test). Eradication treatment decreased salivary bacterial diversity (Shannon, p = 0.015, ACE, p = 0.003, Chao 1, p = 0.002, t-test).
    [Show full text]
  • Alteration of Salivary Microbiome in Periodontitis with Or Without Type-2 Diabetes Mellitus and Metformin Treatment
    www.nature.com/scientificreports OPEN Alteration of salivary microbiome in periodontitis with or without type‑2 diabetes mellitus and metformin treatment Xiaoyu Sun1,2,3, Meihui Li1,2, Li Xia4, Zhaohui Fang5, Shenjun Yu3, Jike Gao3, Qiang Feng1,2* & Pishan Yang1,6* We aimed to explore the efects of type‑2 diabetes mellitus (T2DM) and hypoglycemic therapy on the salivary microbiome in periodontitis patients and identify the potential salivary micro‑biomarker for the early warning of T2DM. Saliva samples were collected from healthy individuals (Health), periodontitis patients (P), T2DM patients, periodontitis patients with T2DM (DAP), and DAP patients treated with Metformin (Met). Samples were determined by16S rRNA gene sequencing. 29 phyla, 322 genera, and 333 species of salivary microbiome were annotated. Compared to the Health group, the P and DAP group showed a signifcantly higher diversity of saliva microbiota, while the T2DM and Met group had no signifcant diference in microbial abundance but showed a trend of increasing diversity. Other than well‑known periodontitis‑inducing pathogens, the proportion of Prevotella copri, Alloprevotella rava, and Ralstonia pickettii, etc. were also signifcantly increased in periodontitis patients with or without T2DM. After efective glycemic control, the abundance of Prevotella copri, Alloprevotella rava, Ralstonia pickettii, etc. decreased in periodontitis patients with companion T2DM. The accuracies of the classifcation models in diferentiating Health‑vs.‑P, DAP‑vs.‑P, and T2DM‑vs.‑P were 100%, 96.3%, and 98.1%, respectively. Hypoglycemic therapy could reconstruct the saliva microbiota and hence improve the localized conditions of diabetes patients with periodontitis. Periodontitis is one of the most frequent bacteria-induced infammatory diseases in the oral cavity.
    [Show full text]
  • Oral Microbiota: a Major Player in the Diagnosis of Systemic Diseases
    diagnostics Review Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases Charlotte Thomas 1,2,3,*,†, Matthieu Minty 1,2,3,*,†, Alexia Vinel 1,2,3, Thibault Canceill 2,3,4, Pascale Loubières 1,2, Remy Burcelin 1,2, Myriam Kaddech 2,3, Vincent Blasco-Baque 1,2,3,† and Sara Laurencin-Dalicieux 2,3,5,† 1 INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; [email protected] (A.V.); [email protected] (P.L.); [email protected] (R.B.); [email protected] (V.B.-B.) 2 Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; [email protected] (T.C.); [email protected] (M.K.); [email protected] (S.L.-D.) 3 Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France 4 UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France 5 INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France * Correspondence: [email protected] (C.T.); [email protected] (M.M.); Tel.: +33-5-61-32-56-12 (C.T. & M.M.); Fax: +33-5-31-22-41-36 (C.T. & M.M.) † These authors contributed equally to this work.
    [Show full text]
  • The Salivary Microbiome Is Consistent Between Subjects
    www.nature.com/scientificreports OPEN The salivary microbiome is consistent between subjects and resistant to impacts of short-term Received: 19 April 2017 Accepted: 24 August 2017 hospitalization Published: xx xx xxxx Damien J. Cabral1, Jenna I. Wurster1, Myrto E. Flokas2, Michail Alevizakos2, Michelle Zabat1, Benjamin J. Korry1, Aislinn D. Rowan1, William H. Sano1, Nikolaos Andreatos2, R. Bobby Ducharme3, Philip A. Chan3, Eleftherios Mylonakis2, Beth Burgwyn Fuchs2 & Peter Belenky1 In recent years, a growing amount of research has begun to focus on the oral microbiome due to its links with health and systemic disease. The oral microbiome has numerous advantages that make it particularly useful for clinical studies, including non-invasive collection, temporal stability, and lower complexity relative to other niches, such as the gut. Despite recent discoveries made in this area, it is unknown how the oral microbiome responds to short-term hospitalization. Previous studies have demonstrated that the gut microbiome is extremely sensitive to short-term hospitalization and that these changes are associated with signifcant morbidity and mortality. Here, we present a comprehensive pipeline for reliable bedside collection, sequencing, and analysis of the human salivary microbiome. We also develop a novel oral-specifc mock community for pipeline validation. Using our methodology, we analyzed the salivary microbiomes of patients before and during hospitalization or azithromycin treatment to profle impacts on this community. Our fndings indicate that azithromycin alters the diversity and taxonomic composition of the salivary microbiome; however, we also found that short-term hospitalization does not impact the richness or structure of this community, suggesting that the oral cavity may be less susceptible to dysbiosis during short-term hospitalization.
    [Show full text]
  • Effects of Altitude on Human Oral Microbes
    Liu et al. AMB Expr (2021) 11:41 https://doi.org/10.1186/s13568-021-01200-0 ORIGINAL ARTICLE Open Access Efects of altitude on human oral microbes Fang Liu1,2,3†, Tian Liang1,2†, Zhiying Zhang1,2†, Lijun Liu1,2, Jing Li1,2, Wenxue Dong1,2, Han Zhang1,2, Su Bai1,2, Lifeng Ma1,2* and Longli Kang1,2* Abstract Human oral microbes play a vital role maintaining host metabolic homeostasis. The Qinghai-Tibet Plateau is mainly characterized by a high altitude, dry, cold, and hypoxic environment. The oral microbiota is subject to selective pres- sure from the plateau environment, which afects oral health. Only a few studies have focused on the characteristics of oral microbiota in high-altitude humans. We collected saliva samples from 167 Tibetans at four altitudes (2800 to 4500 m) in Tibet to explore the relationship between the high altitude environment and oral microbiota. We con- ducted a two (high- and ultra-high-altitude) group analysis based on altitude, and adopted the 16S rRNA strategy for high-throughput sequencing. The results show that the alpha diversity of the oral microbiota decreased with altitude, whereas beta diversity increased with altitude. A LEfSe analysis revealed that the oral microbial biomarker of the high-altitude group (< 3650 m) was Streptococcus, and the biomarker of the ultra-high-altitude group (> 4000 m) was Prevotella. The relative abundance of Prevotella increased with altitude, whereas the relative abundance of Strepto- coccus decreased with altitude. A network analysis showed that the microbial network structure was more compact and complex, and the interaction between the bacterial genera was more intense in the high altitude group.
    [Show full text]
  • Characterization of the Salivary Microbiome in Patients with Pancreatic Cancer Pedro J
    Characterization of the salivary microbiome in patients with pancreatic cancer Pedro J. Torres1, Erin M. Fletcher2, Sean M. Gibbons3,4 , Michael Bouvet5, Kelly S. Doran1,6 and Scott T. Kelley1 1 Department of Biology, San Diego State University, San Diego, CA, United States 2 Department of Medical Sciences, Harvard University, Boston, MA, United States 3 Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, United States 4 Institute for Genomics and Systems Biology, Argonne National Laboratory, Lemont, IL, United States 5 Department of Surgery, University of California, San Diego, La Jolla, CA, United States 6 Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, United States ABSTRACT Clinical manifestations of pancreatic cancer often do not occur until the cancer has undergone metastasis, resulting in a very low survival rate. In this study, we investigated whether salivary bacterial profiles might provide useful biomarkers for early detection of pancreatic cancer. Using high-throughput sequencing of bacterial small subunit ribosomal RNA (16S rRNA) gene, we characterized the salivary micro- biota of patients with pancreatic cancer and compared them to healthy patients and patients with other diseases, including pancreatic disease, non-pancreatic digestive disease/cancer and non-digestive disease/cancer. A total of 146 patients were en- rolled at the UCSD Moores Cancer Center where saliva and demographic data were collected from each patient. Of these, we analyzed the salivary microbiome of 108 patients: 8 had been diagnosed with pancreatic cancer, 78 with other diseases and 22 Submitted 28 May 2015 were classified as non-diseased (healthy) controls.
    [Show full text]
  • Minimal Variation of Human Oral Virome and Microbiome in Iga De
    Minimal Variation of Human Oral Virome and Microbiome in IgA Deciency Challenges an Irreplaceable IgA Role for Shaping Oral Commensal Microbiota de la Cruz Peña Maria José University of Alicante Luis Ignacio Gonzalez-Granado Hospital Universitario 12 De Octubre Inmaculada Garcia-Heredia University of Alicante Lucia Maestre Carballa University of Alicante Manuel Martinez-Garcia ( [email protected] ) University of Alicante Research Article Keywords: Microbiome, IgA, human, microbiota Posted Date: April 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-442493/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on July 21st, 2021. See the published version at https://doi.org/10.1038/s41598-021-94507-8. Page 1/14 Abstract Immunoglobulin A (IgA) is the dominant antibody found in our mucosal secretions and has long been recognized to play an important role in protecting our epithelium from pathogens. Recently, IgA has been shown to be involved in gut homeostatic regulation by `recognizing´and shaping our commensal microbes. Paradoxically, yet selective IgA-deciency is often described as asymptomatic and there is a paucity of studies only focused on the mice and human gut microbiome context fully ignoring other niches of our body and our commensal viruses. Here, we used as a model the human oral cavity and employed a holistic view and studied the impact of IgA deciency on both the human virome and microbiome. Unexpectedly, metagenomic and experimental data in human IgA deciency indicate minimal-moderate changes in microbiome and virome composition compared to healthy control group and point out to a rather functional, resilient oral commensal viruses and microbes.
    [Show full text]