S41598-021-83846-1 1 Vol.:(0123456789)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Communities Associated with the Anthropogenic, Highly Alkaline Environment of a Saline Soda Lime, Poland
Antonie van Leeuwenhoek DOI 10.1007/s10482-017-0866-y ORIGINAL PAPER Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland Agnieszka Kalwasin´ska . Tama´s Felfo¨ldi . Attila Szabo´ . Edyta Deja-Sikora . Przemysław Kosobucki . Maciej Walczak Received: 8 August 2016 / Accepted: 28 March 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Soda lime is a by-product of the Solvay surprisingly diverse bacterial community was discov- soda process for the production of sodium carbonate ered in this highly saline, alkaline and nutrient-poor from limestone and sodium chloride. Due to a high salt environment, with the bacterial phyla Proteobacteria concentration and alkaline pH, the lime is considered (representing 52.8% of the total bacterial community) as a potential habitat of haloalkaliphilic and haloalka- and Firmicutes (16.6%) showing dominance. Com- litolerant microbial communities. This artificial and pared to the surface layer, higher bacterial abundance unique environment is nutrient-poor and devoid of and diversity values were detected in the deep zone, vegetation, due in part to semi-arid, saline and alkaline where more stable environmental conditions may conditions. Samples taken from the surface layer of occur. The surface layer was dominated by members the lime and from the depth of 2 m (both having of the genera Phenylobacterium, Chelativorans and -1 pH *11 and ECe up to 423 dS m ) were investigated Skermanella, while in the interior layer the genus using culture-based (culturing on alkaline medium) Fictibacillus was dominant. The culturable aerobic, and culture-independent microbiological approaches haloalkaliphilic bacteria strains isolated in this study (microscopic analyses and pyrosequencing). -
The Salivary Microbiome for Differentiating Individuals: Proof of Principle
Published in "Microbes and Infection 18(6): 399–405, 2016" which should be cited to refer to this work. The salivary microbiome for differentiating individuals: proof of principle Sarah L. Leake a, Marco Pagni b, Laurent Falquet b,c, Franco Taroni a,1, Gilbert Greub d,*,1 a School of Criminal Justice, University of Lausanne, Lausanne, Switzerland b Swiss Institute of Bioinformatics, Vital-IT Group, Lausanne, Switzerland c Department of Biology, University of Fribourg, Fribourg, Switzerland d Institute of Microbiology, Lausanne, Switzerland Abstract Human identification has played a prominent role in forensic science for the past two decades. Identification based on unique genetic traits is driving the field. However, this may have limitations, for instance, for twins. Moreover, high-throughput sequencing techniques are now available and may provide a high amount of data likely useful in forensic science. This study investigates the potential for bacteria found in the salivary microbiome to be used to differentiate individuals. Two different targets (16S rRNA and rpoB) were chosen to maximise coverage of the salivary microbiome and when combined, they increase the power of dif- ferentiation (identification). Paired-end Illumina high-throughput sequencing was used to analyse the bacterial composition of saliva from two different people at four different time points (t ¼ 0 and t ¼ 28 days and then one year later at t ¼ 0 and t ¼ 28 days). Five major phyla dominate the samples: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Streptococcus, a Firmicutes, is one of the most abundant aerobic genera found in saliva and targeting Streptococcus rpoB has enabled a deeper characterisation of the different streptococci species, which cannot be differentiated using 16S rRNA alone. -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
Phylogenomic Analysis of 589 Metagenome-Assembled Genomes Encompassing All Major Prokaryotic Lineages from the Gut of Higher Termites
Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites Vincent Hervé1, Pengfei Liu1, Carsten Dietrich1, David Sillam-Dussès2, Petr Stiblik3, Jan Šobotník3 and Andreas Brune1 1 Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany 2 Laboratory of Experimental and Comparative Ethology EA 4443, Université Paris 13, Villetaneuse, France 3 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic ABSTRACT “Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different Submitted 29 August 2019 gut compartments of eight higher termite species that encompass 17 prokaryotic -
Maternal Diet Habits and the Salivary Microbiome of Caries-Free Children THESIS Presented in Partial Fulfillment of the Requirem
Maternal Diet Habits and the Salivary Microbiome of Caries-Free Children THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Dr. Stephanie Chambers Furlong Graduate Program in Dentistry The Ohio State University 2013 Master's Examination Committee: Dr. Sarat Thikkurissy “Advisor” Dr. Purnima Kumar Dr. Homa Amini Copyright by Dr. Stephanie Chambers Furlong 2013 Abstract This cross-sectional clinical study examines maternal diet habits and child feeding practices in relation to the mother-child bacterial makeup. Mother-child dyads of caries- free children in four age cohorts between 0-18 years were included in this study. Mothers answered a 65-question survey on their own eating habits as well as child feeding and oral hygiene practices. Children and mothers also provided a saliva and plaque sample for analysis of microbial colonies. A total of sixty mother-child pairs were identified and included in the study. Of the 60 pairs, 11 were predentate infants, 20 had only primary teeth, 14 were in the mixed dentition state, and 15 had all permanent teeth. All but two diet variables showed no statistical difference between the mothers in each group at a level of significance of p<0.05. ANOVA analysis of the average s-OTU count showed the predentate group had a significantly lower bacterial diversity than the other groups (p<0.05). ANOVA analysis of the Bray-Curtis Similarity Index of the mother/child dyads showed no statistically significant difference between the groups (p<0.05). On average, this similarity index showed that each child shared on average about 50% of their salivary microbial profile with their mother. -
Salivary Microbiota Shifts Under Sustained Consumption of Oolong Tea in Healthy Adults
nutrients Article Salivary Microbiota Shifts under Sustained Consumption of Oolong Tea in Healthy Adults Zhibin Liu, Hongwen Guo, Wen Zhang and Li Ni * Institute of Food Science & Technology, Fuzhou University, Fuzhou 350108, China; [email protected] (Z.L.); [email protected] (H.G.); [email protected] (W.Z.) * Correspondence: [email protected]; Tel.: +86-591-2286-6378 Received: 16 February 2020; Accepted: 25 March 2020; Published: 31 March 2020 Abstract: Tea is the most widely consumed beverages next to water, however little is known about the influence of sustained tea consumption on the oral bacteria of healthy adults. In this study, three oral healthy adults were recruited and instructed to consume 1.0 L of oolong tea infusions (total polyphenol content, 2.83 g/L) daily, for eight weeks. Salivary microbiota pre-, peri-, and post-treatment were fully compared by high-throughput 16S rRNA sequencing and multivariate statistical analysis. It was revealed that oolong tea consumption reduced salivary bacterial diversity and the population of some oral disease related bacteria, such as Streptococcus sp., Prevotella nanceiensis, Fusobacterium periodonticum, Alloprevotella rava, and Prevotella elaninogenica. Moreover, via correlation network and Venn diagram analyses, seven bacterial taxa, including Streptococcus sp. (OTU_1), Ruminococcaceae sp. (OTU_33), Haemophilus sp. (OTU_696), Veillonella spp. (OTU_133 and OTU_23), Actinomyces odontolyticus (OTU_42), and Gemella haemolysans (OTU_6), were significantly altered after oolong tea consumption, and presented robust strong connections (|r| > 0.9 and p < 0.05) with other oral microbiota. These results suggest sustained oolong tea consumption would modulate salivary microbiota and generate potential oral pathogen preventative benefits. -
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight Into the Microbiome–Treatment Axis
International Journal of Molecular Sciences Review The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome–Treatment Axis Amel Sami 1,2, Imad Elimairi 2,* , Catherine Stanton 1,3, R. Paul Ross 1 and C. Anthony Ryan 4 1 APC Microbiome Ireland, School of Microbiology, University College Cork, Cork T12 YN60, Ireland; [email protected] (A.S.); [email protected] (C.S.); [email protected] (R.P.R.) 2 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National Ribat University, Nile Street, Khartoum 1111, Sudan 3 Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland 4 Department of Paediatrics and Child Health, University College Cork, Cork T12 DFK4, Ireland; [email protected] * Correspondence: [email protected] Received: 30 August 2020; Accepted: 12 October 2020; Published: 29 October 2020 Abstract: Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments. -
EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated -
The Salivary Microbiota in Health and Disease
The salivary microbiota in health and disease Belstrøm, Daniel Published in: Journal of Oral Microbiology DOI: 10.1080/20002297.2020.1723975 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Belstrøm, D. (2020). The salivary microbiota in health and disease. Journal of Oral Microbiology, 12(1), [1723975]. https://doi.org/10.1080/20002297.2020.1723975 Download date: 28. Sep. 2021 Journal of Oral Microbiology ISSN: (Print) 2000-2297 (Online) Journal homepage: https://www.tandfonline.com/loi/zjom20 The salivary microbiota in health and disease Daniel Belstrøm To cite this article: Daniel Belstrøm (2020) The salivary microbiota in health and disease, Journal of Oral Microbiology, 12:1, 1723975, DOI: 10.1080/20002297.2020.1723975 To link to this article: https://doi.org/10.1080/20002297.2020.1723975 © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 04 Feb 2020. Submit your article to this journal Article views: 47 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=zjom20 JOURNAL OF ORAL MICROBIOLOGY 2020, VOL. 12, 1723975 https://doi.org/10.1080/20002297.2020.1723975 The salivary microbiota in health and disease Daniel Belstrøm Section for Periodontology and Microbiology, Department of Odontology, University of Copenhagen, Copenhagen, Denmark ABSTRACT ARTICLE HISTORY The salivary microbiota (SM), comprising bacteria shed from oral surfaces, has been shown to be Received 10 October 2019 individualized, temporally stable and influenced by diet and lifestyle. -
Helicobacter Pylori Infection and Salivary Microbiome Yingjie Ji, Xiao Liang and Hong Lu*
Ji et al. BMC Oral Health (2020) 20:84 https://doi.org/10.1186/s12903-020-01070-1 RESEARCH ARTICLE Open Access Analysis of by high-throughput sequencing: Helicobacter pylori infection and salivary microbiome Yingjie Ji, Xiao Liang and Hong Lu* Abstracts Background: There have been reports of Helicobacter pylori (H. pylori) in the oral cavity and it has been suggested that the oral cavity may be a reservoir for H. pylori reflux from the stomach. High-throughput sequencing was used to assess the structure and composition of oral microbiota communities in individuals with or without confirmed H. pylori infection. Methods: Saliva samples were obtained from 34 H. pylori infected and 24 H. pylori uninfected subjects. Bacterial genomic DNA was extracted and examined by sequencing by amplification of the 16S rDNA V3-V4 hypervariable regions followed by bioinformatics analysis. Saliva sampling was repeated from 22 of the 34 H. pylori infected subjects 2 months after H. pylori eradication. Results: High-quality sequences (2,812,659) clustered into 95,812 operational taxonomic units (OTUs; 97% identity). H. pylori was detected in the oral cavity in infected (12/34), uninfected (11/24) and eradicated (15/22) subjects by technique of high-throughput sequencing, occupying 0.0139% of the total sequences. Alpha diversity of H. pylori infected subjects was similar to that of uninfected subjects (Shannon: 1417.58 vs. 1393.60, p > 0.05, ACE: 1491.22 vs. 1465.97, p > 0.05, Chao 1: 1417.58 vs. 1393.60, p > 0.05, t-test). Eradication treatment decreased salivary bacterial diversity (Shannon, p = 0.015, ACE, p = 0.003, Chao 1, p = 0.002, t-test). -
Paludibacter Propionicigenes Type Strain (WB4)
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Paludibacter propionicigenes type strain (WB4). Permalink https://escholarship.org/uc/item/4kr5k5w1 Journal Standards in genomic sciences, 4(1) ISSN 1944-3277 Authors Gronow, Sabine Munk, Christine Lapidus, Alla et al. Publication Date 2011 DOI 10.4056/sigs.1503846 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2011) 4:36-44 DOI:10.4056/sigs.1503846 Complete genome sequence of Paludibacter propionicigenes type strain (WB4T) Sabine Gronow1, Christine Munk2,3, Alla Lapidus2, Matt Nolan2, Susan Lucas2, Nancy Hammon2, Shweta Deshpande2, Jan-Fang Cheng2, Roxane Tapia2,3, Cliff Han2,3, Lynne Goodwin2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Natalia Mikhailova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Evelyne Brambilla1, Manfred Rohde6, Markus Göker1, John C. Detter2,3, Tanja Woyke2, James Bristow2, Jonathan A. Eisen2,7, Victor Markowitz4, Philip Hugenholtz2,8, Nikos C. Kyrpides2, and Hans-Peter Klenk1* 1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge -
Page 1 of 41 RSC Advances
RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 41 RSC Advances 1 Regulation of acidogenic metabolism towards enhanced short chain fatty acids biosynthesis 2 from waste: Metagenomic Profiling 3 4 Omprakash Sarkar, A. Naresh Kumar, Shikha Dahiya, K.Vamshi Krishna, Dileep Kumar 5 Yeruva, S.Venkata Mohan* 6 Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical 7 Technology (CSIR-IICT), Hyderabad 500 007, India 8 *E-mail: [email protected]; Tel: 0091-40-27161765 9 10 Abstract 11 Short chain carboxylic (volatile fatty) acids (VFA) production in mixed microbiomes is majorly 12 limited by the prevalence of the methanogenic bacteria and availability of substrate from waste 13 to the biocatalyst during the fermentation process.