System for Automated Geoscientific Analyses (SAGA) V. 2.1.4

Total Page:16

File Type:pdf, Size:1020Kb

System for Automated Geoscientific Analyses (SAGA) V. 2.1.4 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Geosci. Model Dev. Discuss., 8, 2271–2312, 2015 www.geosci-model-dev-discuss.net/8/2271/2015/ doi:10.5194/gmdd-8-2271-2015 GMDD © Author(s) 2015. CC Attribution 3.0 License. 8, 2271–2312, 2015 This discussion paper is/has been under review for the journal Geoscientific Model System for Development (GMD). Please refer to the corresponding final paper in GMD if available. Automated Geoscientific System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 Analyses (SAGA) v. 2.1.4 O. Conrad et al. O. Conrad1, B. Bechtel1, M. Bock1,2, H. Dietrich1, E. Fischer1, L. Gerlitz1, 1 3,4 1 J. Wehberg , V. Wichmann , and J. Böhner Title Page 1 Institute of Geography, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany Abstract Introduction 2scilands GmbH, Goetheallee 11, 37073 Göttingen, Germany 3LASERDATA GmbH, Technikerstr. 21a, 6020 Innsbruck, Austria Conclusions References 4 alpS – Center for Climate Change Adaptation, Grabenweg 68, 6020 Innsbruck, Austria Tables Figures Received: 12 December 2014 – Accepted: 19 January 2015 – Published: 27 February 2015 Correspondence to: B. Bechtel ([email protected]) J I Published by Copernicus Publications on behalf of the European Geosciences Union. J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 2271 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract GMDD The System for Automated Geoscientific Analyses (SAGA) is an open-source Geo- graphic Information System (GIS), mainly licensed under the GNU General Public Li- 8, 2271–2312, 2015 cense. Since its first release in 2004, SAGA has rapidly developed from a specialized 5 tool for digital terrain analysis to a comprehensive and globally established GIS plat- System for form for scientific analysis and modeling. SAGA is coded in C++ in an object oriented Automated design and runs under several operating systems including Windows and Linux. Key Geoscientific functional features of the modular organized software architecture comprise an applica- Analyses (SAGA) v. tion programming interface for the development and implementation of new geoscien- 2.1.4 10 tific methods, an easily approachable graphical user interface with many visualization options, a command line interpreter, and interfaces to scripting and low level program- O. Conrad et al. ming languages like R and Python. The current version 2.1.4 offers more than 700 tools, which are implemented in dynamically loadable libraries or shared objects and represent the broad scopes of SAGA in numerous fields of geoscientific endeavor and Title Page 15 beyond. In this paper, we inform about the system’s architecture, functionality, and its Abstract Introduction current state of development and implementation. Further, we highlight the wide spec- trum of scientific applications of SAGA in a review of published studies with special Conclusions References emphasis on the core application areas digital terrain analysis, geomorphology, soil Tables Figures science, climatology and meteorology, as well as remote sensing. J I 20 1 Introduction J I The System for Automated Geoscientific Analyses (SAGA) (http://saga-gis.org) has Back Close been designed for an easy and effective implementation of spatial algorithms and Full Screen / Esc hence serves as a framework for the development and implementation of geoscientific methods and models (Conrad, 2007). Today, this modular organized programmable Printer-friendly Version 25 Geographic Information System (GIS) software offers more than 700 methods com- prising the entire spectrum of contemporary GIS from multiple file operations, refer- Interactive Discussion 2272 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | encing and projection routines over a range of topological and geometric analysis of both, raster and vector data, up to comprehensive modeling applications for various GMDD geoscientific fields. The idea for the development of SAGA evolved in the late 1990s 8, 2271–2312, 2015 during the work on several research and development projects at the Dept. for Physical 5 Geography, Göttingen, carried out in behalf of federal and state environmental author- ities. In view of the specific needs for high quality and spatially explicit environmental System for information of the cooperating agencies, the original research focus was the analysis Automated of raster data, particularly of Digital Elevation Models (DEM), which have been used Geoscientific e.g. to predict soil properties, terrain controlled process dynamics as well as climate pa- Analyses (SAGA) v. 10 rameters at high spatial resolution. The development and implementation of apparently 2.1.4 new methods for spatial analysis and modeling resulted in the design of three applica- tions for digital terrain analysis, namely SARA (System zur Automatischen Reliefanal- O. Conrad et al. yse), SADO (System für Automatische Diskretisierung von Oberflächen) and DiGeM (Programm für Digitale Gelände-Modellierung), each with specific skills but distinctly Title Page 15 different architectures. Due to the heterogeneity of the applied operating systems and tools in the working group a cross operating system platform with integrated support Abstract Introduction for geodata analysis seemed necessary for further development and implementation Conclusions References of geoscientific methods. Due to the lack of a satisfying development platform at that time, SAGA has been created as a common developer basis and was first published Tables Figures 20 as Free Open Source Software in 2004 in order to share its advantageous capabilities with geoscientists worldwide. Since then SAGA got a growing global user community J I (Fig. 1), which also led to many contributions from outside the developer core team and moreover fostered the foundation of the SAGA User Group Association in 2005, aim- J I ing to support a sustainable long-term development covering the whole range of user Back Close 25 interests. Since 2007 the core development group of SAGA is situated at the University Full Screen / Esc of Hamburg, coordinating and actively driving the development process. The momentum and dynamics of the SAGA development in the past 10 years is Printer-friendly Version mirrored in both, the increasing number of methods and tools (Fig. 2) which raised from 119 modules in 2005 (version 1.2) up to more than 700 modules in the present Interactive Discussion 2273 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | version 2.1.4., and, particularly, in the fast growing user community. With about 100 000 downloads annually in the last three years, SAGA today is an internationally renowned GMDD GIS developer platform for geodata analysis and geoscientific modeling. 8, 2271–2312, 2015 This paper aims to respond to the frequent user requests for a review article. In the 5 first section, we introduce the architecture of the SAGA framework, the state of devel- opment and implementation and highlight basic functionalities. Thereafter, we demon- System for strate its utility in various geoscientific disciplines by a review of important methods as Automated well as publications in the core fields of digital terrain analysis and geomorphology, dig- Geoscientific ital soil mapping, climatology and meteorology, remote sensing and image processing. Analyses (SAGA) v. 2.1.4 10 2 The system O. Conrad et al. The initial motivation for the SAGA development was to establish a framework that supports an easy and effective implementation of algorithms or methods for spatial Title Page data analyses. Furthermore, the integration of such implementations in more complex work flows for certain applications and the immediate accessibility in a user friendly way Abstract Introduction 15 was one major concern. Thus, instead of creating one monolithic program, we designed Conclusions References a modular system with an Application Programming Interface (API) at its base, method implementations, in the following referred to as tools, organized in separate program Tables Figures or tool libraries and a Graphical User Interface (GUI) as a standard front end (Fig. 3). A command line interpreter as well as additional scripting environments were integrated J I 20 as alternative front ends to run SAGA tools. J I In 2004, SAGA has been firstly published as Free and Open Source Software (FOSS). Except for the API, source codes are licensed under the terms of the GNU Back Close General Public License (GPL) (fsf.org). The API utilizes the Lesser GPL (LGPL) which Full Screen / Esc also allows developing proprietary tools on its base. The SAGA project is hosted at 25 SourceForge (http://sourceforge.net), a web host for FOSS projects providing vari- Printer-friendly Version ous additional services like version control systems, code trackers, forums and news- Interactive Discussion groups. 2274 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Although many details changed since its first version, the general system architec- ture remained the same. The following discussion refers to the most recent SAGA GMDD version 2.1.4. 8, 2271–2312, 2015 The system is programmed in the widespread and effective C++ language (Strous- 5 trup, 2014). Besides its support for object oriented programming, one of its advantages is the availability of numerous additional GPL libraries and code snippets. Apart from System for the C++ standard library SAGA’s core system solely depends on the cross platform
Recommended publications
  • Assessmentof Open Source GIS Software for Water Resources
    Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1.
    [Show full text]
  • System for Automated Geoscientific Analyses (SAGA) V. 2.1.4
    Geosci. Model Dev., 8, 1991–2007, 2015 www.geosci-model-dev.net/8/1991/2015/ doi:10.5194/gmd-8-1991-2015 © Author(s) 2015. CC Attribution 3.0 License. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 O. Conrad1, B. Bechtel1, M. Bock1,2, H. Dietrich1, E. Fischer1, L. Gerlitz1, J. Wehberg1, V. Wichmann3,4, and J. Böhner1 1Institute of Geography, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany 2scilands GmbH, Goetheallee 11, 37073 Göttingen, Germany 3LASERDATA GmbH, Technikerstr. 21a, 6020 Innsbruck, Austria 4alpS – Center for Climate Change Adaptation, Grabenweg 68, 6020 Innsbruck, Austria Correspondence to: B. Bechtel ([email protected]) Received: 12 December 2014 – Published in Geosci. Model Dev. Discuss.: 27 February 2015 Revised: 05 June 2015 – Accepted: 08 June 2015 – Published: 07 July 2015 Abstract. The System for Automated Geoscientific Analy- 1 Introduction ses (SAGA) is an open source geographic information sys- tem (GIS), mainly licensed under the GNU General Public License. Since its first release in 2004, SAGA has rapidly During the last 10 to 15 years, free and open source software developed from a specialized tool for digital terrain analy- (FOSS) became a recognized counterpart to commercial so- sis to a comprehensive and globally established GIS plat- lutions in the field of geographic information systems and form for scientific analysis and modeling. SAGA is coded science. Steiniger and Bocher (2009) give an overview of in C CC in an object oriented design and runs under sev- free and open source geographic information system (GIS) eral operating systems including Windows and Linux.
    [Show full text]
  • Overview of GIS Applications Risk Assessment and Risk Management of Climate Change Hazards
    Overview of GIS applications risk assessment and risk management of climate change hazards Fact irrigated lands Planed irrigated lands Watershed Water bodies Settlements River Soil types Overview of GIS applications risk assessment and risk management of climate change hazards © 2010 PREPARED The European Commission is funding the Collaborative project ‘PREPARED Enabling Change’ (PREPARED, project number 244232) within the context of the Seventh Framework Programme 'Environment'.All rights reserved. No part of this book may be reproduced, stored in a database or retrieval system, or published, in any form or in any way, electronically, mechanically, by print, photoprint, microfilm or any other means without prior written permission from the publisher COLOPHON Title Overview of GIS applications, risk assessment and risk management of climate change hazards Report number Prepared 2011.015 Deliverable number D2.5.1 Author(s) Ielizaveta Dunaieva (Crimean Scientific and Research Center) Victor Popovych (Crimean Scientific and Research Center) Elisa Traverso (Iren Acqua Gas) Quality Assurance Patrick Smeets (KWR Watercycle Research Institute) Document history Version Team member Status Date update Comments 01 Ielizaveta Dunaieva Draft 27-08-2010 Chapters 1-4, 6 02 Ielizaveta Dunaieva Draft 24-06-2011 Applications from cities Simferopol and Genoa added 03 Patrick Smeets Final 03-08-2011 QA by WA leader This report is: PU = Public Summary The first step to prepare for climate change effects on the water cycle is a risk assessment for the observed system to be prepared and, if it is necessary, protected. Risk assessment (RA) means the determination of qualitative and quantitative value of risks, related to a certain situation and the recognized hazards.
    [Show full text]
  • Peter Petrik, Martin Dobias and Others
    MDAL Peter Petrik, Martin Dobias and others Sep 22, 2021 CONTENTS 1 What is MDAL? 1 2 Download 3 2.1 Current Releases.............................................3 2.2 Past Releases...............................................3 2.3 Conda Installation............................................3 2.3.1 UPM Installation........................................3 2.4 Development Source...........................................4 3 Programs 5 3.1 MDAL programs.............................................5 3.1.1 mdalinfo.............................................5 3.1.1.1 Synopsis........................................5 3.1.1.2 Description......................................5 3.1.1.3 Example........................................5 4 MDAL drivers 7 4.1 GRIB – WMO General Regularly-distributed Information in Binary form...............8 4.2 NetCDF – Network Common Data Form................................8 4.3 2dm – SMS mesh format.........................................8 4.4 XDMF – eXtensible Data Model and Format..............................9 4.5 XMDF – eXtensible Model Data Format................................9 4.6 DAT – ASCII or Binary Dataset Files..................................9 4.7 SWW – NetCDF format for AnuGA................................... 10 4.8 HDF – HEC-RAS outputs format.................................... 10 4.9 3Di – NetCDF with Climate and Forecast (CF) metadata........................ 10 4.10 PLY – ASCII Stanford Polygon Format................................. 11 4.11 UGRID – NetCDF with Climate and Forecast (CF)
    [Show full text]
  • Species Distribution Modelling and Open Source GIS: Why Are They Still So Loosely Connected?
    International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds.) http://www.iemss.org/society/index.php/iemss-2012-proceedings Species distribution modelling and open source GIS: why are they still so loosely connected? Anne Ghisla a, Duccio Rocchinia, Markus Netelera, Michael Forster¨ b, Birgit Kleinschmitb aFondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, GIS and Remote Sensing Unit, Via E. Mach 1, 38010, S. Michele all’Adige (TN), Italy ([email protected], [email protected], [email protected]) b Technische Universitat¨ Berlin - Fakultat¨ VI, Institut fur¨ Landschaftsarchitektur und Umweltplanung, Fachgebiet Geoinformation in der Umweltplanung, Sekr. EB 5 - Raum 235a, Straße des 17. Juni 145 , D-10623 Berlin ([email protected], [email protected]) Abstract: Species Distribution Models (SDMs) are correlative models that use envi- ronmental and/or geographical information to explain patterns of species occurrences. Those models are being used in various fields including climate change, invasive species research, evolutionary biology and epidemiology. Thanks to the availability of increasing computational resources, new methods continue to be developed. However, software packages that include the SDM algorithms usually focus on one or few methods, and have different degrees of integration with other geographical and statistical software. Specifically, SDM implementations are often standalone programs developed by univer- sity laboratories, either as extensions to statistical software. In few cases they are written as extensions for the most common proprietary Geographic Information System (GIS) products, despite the strong geographical component present in the data.
    [Show full text]
  • RQGIS: Integrating R with QGIS for Statistical Geocomputing by Jannes Muenchow, Patrick Schratz, Alexander Brenning
    CONTRIBUTED RESEARCH ARTICLE 409 RQGIS: Integrating R with QGIS for Statistical Geocomputing by Jannes Muenchow, Patrick Schratz, Alexander Brenning Abstract Integrating R with Geographic Information Systems (GIS) extends R’s statistical capabilities with numerous geoprocessing and data handling tools available in a GIS. QGIS is one of the most popular open-source GIS, and it furthermore integrates other GIS programs such as the System for Automated Geoscientific Analyses (SAGA) GIS and the Geographic Resources Analysis Support System (GRASS) GIS within a single software environment. This and its QGIS Python API makes it a perfect candidate for console-based geoprocessing. By establishing an interface, the R package RQGIS makes it possible to use QGIS as a geoprocessing workhorse from within R. Compared to other packages building a bridge to GIS (e.g., rgrass7, RSAGA, RPyGeo), RQGIS offers a wider range of geoalgorithms, and is often easier to use due to various convenience functions. Finally, RQGIS supports the seamless integration of Python code using reticulate from within R for improved extendability. Introduction Defining a GIS as a system for the analysis, manipulation and visualization of geographical data (Longley et al., 2011), one could argue that R has become a GIS (Bivand et al., 2013). In great part this is thanks to packages that provide spatial classes and algorithms coded in and for R (despite this these packages might also link to other software outside of R). These include maptools (Bivand and Lewin-Koh, 2017), raster (Hijmans, 2017), sp (Bivand et al., 2013) and sf (Pebesma, 2017). Further packages even extend R’s GIS capabilities through advanced mapping, e.g., mapview (Appelhans et al., 2017) and mapmisc (Brown, 2016), and routing, e.g., osmar (Eugster and Schlesinger, 2013) and dodgr (Padgham and Peutschnig, 2017), among others.
    [Show full text]
  • Simple Rules for an Efficient Use of Geographic Information Systems In
    bioRxiv preprint doi: https://doi.org/10.1101/113225; this version posted March 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Simple rules for an efficient use of Geographic Information Systems in molecular ecology Authors Leempoel Kevin1*, Duruz Solange1, Rochat Estelle1, Widmer Ivo1, Orozco-terWengel Pablo², Joost Stéphane1 1 Ecole Polytechnique Federale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Geographic Information Systems (LASIG), CH 1015 Lausanne, Switzerland ² Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff CF10 3AX, Wales UK Correspondence: Dr. Kevin Leempoel, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/113225; this version posted March 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Geographic Information Systems (GIS) are becoming increasingly popular in the context of molecular ecology and conservation biology thanks to their display options efficiency, flexibility and management of geodata. Indeed, spatial data for wildlife and livestock species is becoming a trend with many researchers publishing genomic data that is specifically suitable for landscape studies. GIS uniquely reveal the possibility to overlay genetic information with environmental data and, as such, allow us to locate and analyze genetic boundaries of various plant and animal species or to study gene-environment associations (GEA).
    [Show full text]
  • Software (R+GIS+GE) 2
    3 1 Software (R+GIS+GE) 2 This chapter will introduce you to five main packages that we will later on use in various exercises from 3 chapter 5 to 11: R, SAGA, GRASS, ILWIS and Google Earth (GE). All these are available as open source 4 or as freeware and no licenses are needed to use them. By combining the capabilities of the five software 5 packages we can operationalize preparation, processing and the visualization of the generated maps. In this 6 handbook, ILWIS GIS will be primarily used for basic editing and to process and prepare vector and raster 7 maps; SAGA/GRASS GIS will be used to run analysis on DEMs, but also for geostatistical interpolations; R 8 + packages will be used for various types of statistical and geostatistical analysis, but also for data processing 9 automation; Google Earth will be used for visualization and interpretation of results. 10 In all cases we will use R to control all pro- 11 cesses, so that each exercise will culminate in a sin- 12 gle R script (‘R on top’; Fig. 3.1). In subsequent sec- 13 tion, we will refer to the R + Open Source Desk- 14 top GIS combo of applications that combine geo- Statistical 15 computing graphical and statistical analysis and visualization as 16 R+GIS+GE. 17 GDAL This chapter is meant to serve as a sort of a 18 19 mini-manual that should help you to quickly obtain ground overlays, and install software, take first steps, and start doing time-series KML 20 some initial analysis.
    [Show full text]
  • Open Source Software
    Open Source Software Desktop GIS GRASS GIS -- Geographic Resources Analysis Support System, originally developed by the U.S. Army Corps of Engineers:, is a free, open source geographical information system (GIS) capable of handling raster, topological vector, image processing, and graphic data. http://grass.osgeo.org/ gvSIG -- is a geographic information system (GIS), that is, a desktop application designed for capturing, storing, handling, analyzing and deploying any kind of referenced geographic information in order to solve complex management and planning problems. http://www.gvsig.com/en ILWIS -- Integrated Land and Water Information System is a GIS / Remote sensing software for both vector and raster processing. http://52north.org/downloads/category/10-ilwis JUMP GIS / OpenJUMP -- is a Java based vector GIS and programming formwork. http://jump-pilot.sourceforge.net/ MapWindow GIS -- is an open source GIS (mapping) application and set of programmable mapping components. http://www.mapwindow.org/ QGIS -- is a cross-platform free and open-source desktop geographic information system (GIS) application that provides data viewing, editing, and analysis capabilities http://qgis.org/en/site/ SAGA GIS -- System for Automated Geoscientific Analysis (SAGA GIS) is a free and open source geographic information system used for editing spatial data. http://www.saga-gis.org/en/index.html uDig -- is a GIS software program produced by a community led by Canadian-based consulting company Refractions Research. http://udig.refractions.net/ Capaware -- is a 3D general purpose virtual world viewer. http://www.capaware.org/ FalconView -- is a mapping system created by the Georgia Tech Research Institute. https://www.falconview.org/trac/FalconView Web map servers GeoServer -- an open-source server written in Java - allows users to share process and edit geospatial data.
    [Show full text]
  • System for Automated Geoscientific Analyses (SAGA)
    Free Open Source Software for Geoinformatics (FOSS4G) A Practical Example – System for Automated Geoscientific Analyses (SAGA) Zlatko Horvat, MSc DGU Područni ured za katastar Čakovec My Motivation Give a Basic Introduction to Free and Open Source Software (FOSS) Give an Overview on FOSS for Geoinformatics (FOSS4G) Talk on SAGA and Introduce the Basic Concepts of Software FOSS A Basic Introduction to Free and Open Source Software (FOSS) FOSS Freedoms “Free software is a matter of the user’s freedom to run, copy, distribute, study, change and improve the software. More precisely, it means that the programs’s users have the four essential freedoms: .The freedom to run the program, for any purpose (freedom 0). .The freedom to study how the program works, and change it so it does your computing as you wish (freedom 1). Access to the source code is a precondition for this. .The freedom to redistribute copies so you can help your neighbor (freedom 2). .The freedom to distribute copies of your modified versions to others (freedom 3). By doing this you can give the whole community a chance to benefit from your changes. Access to the source code is a precondition for this”. -from the Free Software Definition http://www.gnu.org/philosopy/free-sw.html FOSS4G The Open Source Geospatial Foundation (OSGeo) was created to support the collaborative development of open source geospatial software, and promote its widespread use. .The FOSS4G was first coined in early 2004 as an acronym for Free and Open Source Software for Geoinformatics by a research group working on I18N of GRASS and MapServer .The name of an event hosted today by the Open Source Geospatial Foundation .Open source geospatial software refers to GIS, GPS, spatial data management and related developer tools and end user applications delivered with an open source license.
    [Show full text]
  • Combining Open-Source Programming Languages with GIS for Spatial Data Science
    Technische Universität München Department of Civil, Geo and Environmental Engineering Chair of Cartography Prof. Dr.-Ing. Liqiu Meng Combining Open-source Programming Languages with GIS for Spatial Data Science Maja Kalinic Master's Thesis Duration: 01.04.2017 - 30.09.2017 Study Course: Cartography M.Sc. Supervisor: Dr. Mathias Jahnke (TUM) Prof. Dr. Menno-Jan Kraak (ITC) Dr. Jan Wilkening (Esri Deutschland GmbH) Cooperation: Esri Deutschland GmbH, Kranzberg 2017 Table of Contents DECLARATION OF AUTHORSHIP ..................................................................... 4 ACKNOWLEDMENTS ......................................................................................... 5 LIST OF FIGURES ............................................................................................... 6 ABSTRACT ........................................................................................................... 8 CHAPTER ............................................................................................................. 9 I INTRODUCTION ..................................................................................................... 9 1.1. Motivation and problem statement ..................................................................... 9 1.2. Research identification ....................................................................................... 10 1.3. Research questions ............................................................................................. 10 II RELATED WORK .................................................................................................
    [Show full text]
  • Open Source Desktop GIS 2010
    Hochschule für Technik Stuttgart University of Applied Sciences Prof. Dr. Dietrich Schröder Schellingstrasse 24 T +49 (0)711 8926 2612# www.hft-stuttgart.de AGSE2010 D-70174 Stuttgart F +49 (0)711 8926 2666 [email protected] University of Applied Sciences Applied Geoinformatics for Society and Environment 2010 Workshop on Open Source Desktop GIS Universidad Catolica de Santa Maria Arequipa, Peru August 2010 Hochschule für Technik Stuttgart Prof. Dr. Dietrich Schröder University of Applied Sciences Open Source Desktop GIS Table of contents Part A: Introduction .................................................................................................................... 3 1 Desktop GIS and Free and Open Source Software ............................................................ 3 2 Free and Open Source Desktop GIS Projects ..................................................................... 6 2.1 The Jump Family ......................................................................................................... 6 2.1.1 OpenJump ............................................................................................................. 6 2.1.2 deeJump ................................................................................................................ 7 2.1.3 Kosmo .................................................................................................................. 7 2.2 gvSIG ..........................................................................................................................
    [Show full text]