<<

Airborne and marine quantum

Yannick Bidel

Workshop on « Quantum gravimetry in space and on ground » May 27, 2021 Presentation outline

• Introduction

• Marine and airborne atom gravimetry

• Atom for space

• Conclusion

2 Gravimetry

Measuring the Earth's gravity field and its spatial and temporal variations : g = 9.81… m/s²

Applications : Gravity map, terrain aided navigation - 2.10 -3 m/s² 0 2.10 -3 m/s² Geodesy Measuring the Earth's gravity field to improve knowledge of the , which serves as a reference for altitude

Geophysics / Exploration Measurement of mass distribution and variations ‰, volcano, ice melting, hydrology

Fundamental physics/ metrology Kibble balance, equivalence principal, gravitation theory test Gravity field measurement from space

- Measuring satellite orbital perturbations

GRACE 2002 - 2017 GRACE FO 2018 - Use of electrostatic to measure non- gravitational

Resolution ~ 400 km, temporal variations

- Measuring the gravity gradient in a satellite Resolution ~ 100 km Three pairs of electrostatic accelerometers

- Measuring sea heights by space altimetry Mean sea height ~ gravity equipotential Resolution ~ 20 km Only sea area are covered

Better resolution ‰ terrestrial gravimetry Terrestrial gravimeter

i Grav KSS32

Micro-g Lacoste (MGS-6)

iMAR

Static Dynamic (plane, boat) 0.001 - 0.01 mGal 0.1 - 1 mGal Relative Superconducting, Spring, force Spring balanced accelerometer Absolute Optical, Atomic Atomic

FG5

? 1 mGal = 10 -5 m/s² ~ 1µg Quantum gravimeter / accelerometer principle

- Measurement of the of a test mass in

Test mass = gas of cold atoms

- Acceleration measurement technic = atom interferometry

- Matter wave = cold atoms h De Broglie wavelength : λ = m ⋅v

- Matter wave manipulation = atom laser interaction Light pulse atom interferometry

Cloud of cold atoms in free fall submitted to three laser pulses z

a Atoms detection by fluorescence b 1− cos( φ) P = a b 2 r a r φ = k ⋅ g ⋅T 2

b 0.9

0.8

0.7

0.6 Laser pulse Laser Laser pulse Laser pulse Laser 0.5

0.4

b 0.3 a 0.2 25.1420 25.1425 25.1430 25.1435 25.1440 25.1445 25.1450 α MHZ/s t T T Scale factor proportional to T² and thus First experimental demonstration : 1991 to the instrument size Cold atom accelerometer principle

- Creation of a cloud of cold atoms (10 6-10 9 atoms, µK, mm) MOT, Optical molasses, Zeeman selection

- Cloud of cold atoms in free fall

- Acceleration measured by light pulse atom interferometry Two photon Raman transition

- Detection by fluorescence Cold atom accelerometer

- Strong points - Absolute measurement, no calibration needed, no drift - Excellent sensitivity - No moveable mechanical parts (low maintenance constraints, high repetition rate)

- Weak points Developments needed on reliability - Experimental complexity: laser, electronics, RF, chamber and miniaturization - Output signal proportional to the acceleration cosine ‰ limited acceleration range (50 µg pour T=20ms) Hybridization with a classic - Measurement dead times (cold atoms preparation, detection) accelerometer - Rotations induces contrast lost ‰need a gyro-stabilized platform

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

25.1420 25.1425 25.1430 25.1435 25.1440 25.1445 25.1450 α MHZ/s Girafe 2 gravimeter

• Sensor head miniaturized (22x32 cm)

Sensor head • Integration in a gyro-stabilized platform Control unit (0,1 mrad)

• Short falling distance (14 mm) T=20ms

• High repetition rate (10 Hz)

• Hybridization with a classical accelerometer (Qflex)

• Static tests (accuracy 0.06 mGal) Gyro stabilized platform • Dynamic tests on motion simulator

motion simulator

10 Hybridization with classical accelerometer

100 ms

t 40 ms Deadtime meas. 0.9 0.8

0.7

0.6

0.5 S. Merlet et al., « Operating an beyond its

0.4 linear range », Metrologia, vol. 46, p. 87, 2009.

0.3 J. Lautier et al. , « Hybridizing matter-wave and classical

Signal de Signal de atomique l'acc. 0.2 accelerometers », Appl. Phys. Lett. , vol. 105, p. 144102, 2014

25.1420 25.1425 25.1430 25.1435 25.1440 25.1445 25.1450 α MHZ/s Accélération (U.A.)

Implementation of a robust hybridization algorithm - Continuous estimation of offset and contrast of atom interferometer fringes - Continuous estimation of the bias and the scale factor of the classical accelerometer - Automatic determination of the atom interrogation time

11 Marine and airborne campaigns

Oct. 2015, Jan. 2016 : First marine campaign (Shom, DGA) First marine absolute gravity measurement Precision : 0,4 - 0,9 mGal Y. Bidel et al., Nat. Com. 9, 627 (2018)

April 2017 : Airborne campaign in Iceland (DTU, ESA) First airborne gravity measurement with a quantum sensor Precision : 1.7 - 3,9 mGal Y. Bidel et al., J. of Geodesy 94:20 (2020)

April - Oct. 2018 : Long term marine campaign (Shom) Precision : 0,2 - 0,5 mGal

April, Mai 2019 : Airborne campaign in France (GET, DTU, SHOM, CNES, ESA) Precision : 0.7 - 1.4 mGal

Jan. - Oct. 2020 : Long term marine campaign (Shom) Precision : 0.3 - 0.5 mGal

1 mGal = 10 -5 m/s²

12 Integration of the atom gravimeter in a boat and a plane

13 Marine gravity surveys

14 Airborne gravity surveys

Ice cap and volcanoes Vatnajökull

Coastal areas

Mountain areas

15 Measurement errors estimation

Repeated line over a profile Crossing points differences mGal

16 Comparison with classic gravimeters

Estimated precision over the different marine gravity campaigns (mGal) 2015-2016 2018 2020 GIRAFE 0.6 0.3 0.4 KSS32 n°1 1.1 0.5 0.6 KSS32 n°2 / / 0.8 GT2M / 0.5 / 3 times more stable

Estimated precision during the 2019 airborne campaign in France (mGal) Measurement stability over the reference profile Bay of Reference Pyrenees Biscay profile GIRAFE GIRAFE 1.38 0.91 1.08

iMAR 1.44 1.02 1.24 iMAR Lacoste & / 2.45 5.6 Romberg

L&R

17 Comparison with satellite altimetry (Sandwell v24)

‰ Strong interest of marine gravimetry for coastal areas

18 Comparison with ground measurements

Ground measurement in Iceland

19 Hybrid electrostatic-atomic accelerometer for space missions

Future space geodesy missions need high performance accelerometers

- Electrostatic accelerometers in CHAMP, GRACE, GOCE, GRACE FO, … + : Short term sensitivity, cont. meas., maturity - : Long term stability, accuracy Complementary - Atom accelerometer technologies + : Long term stability, accuracy, sensitivity - : Low measurement rate, dead-times, low measurement range ONERA has expertise on both technologies

Study of the hybridization between electrostatic and atom accelerometer

- Gravity field retrieval performance simulation - Experimental study of a atom/electrostatic accelerometer - long term stability improvement of electrostatic accelerometer - rotation compensation with the electrostatic proof mass - Preliminary design of space accelerometer Experimental demonstration of atom/electrostatic hybridization

Cellule en

Passages courants dispensers

Passages courants getters

Vers pompe ionique 60 l/s

tube à queusoter

Pompe ionique Hublot bridé Improvement of low frequency of the electrostatic accelerometer

Long term drift of the electrostatic accelerometer corrected by the atom accelerometer Rotation compensation

- Satellite rotation ‰ contrast loss

Validation of the impact of contrast to atom accelerometer contrast

- Satellite rotation compensation

Proof mass in rotation during atom interrogation ‰ compensation of satellite rotation

23 Preliminary design of the atom/electrostatic space accelerometer

Estimated volume, masse and power consumption of the overall hybrid instrument ~ 58 L ~ 90 kg ~ 145 W

24 Conclusion

- Onboard quantum gravimeter - Absolute airborne and shipborne gravimetry demonstrated (classical sensors perform only relative measurements) - Better precision than classical sensors - Reliability of the technology on long term demonstrated (10 month) - Toward the industrialization of onboard quantum gravimeter (Muquans) - Preparation of the second generation of onboard quantum gravimeter - Strap down ‰ decrease mass, volume and cost ‰ new carrier (drone) - Improved precision ‰ access to time variable gravity signal

- Quantum accelerometer for space geodesy - Hybridization between atom and electrostatic seems promising for future space geodesy mission

25 Thanks

ONERA, Cold atom inertial sensor team Shom Y. Bidel French hydrographic and oceanographic office J. Bernard D. Rouxel I. Perrin M.F. Lequentrec-Lalancette N. Zahzam C. Salaun A. Bonnin S. Lucas C. Blanchard G. Delachienne M. Cadoret S. Schwartz DTU, Technical University of Denmark A. Bresson T.E. Jensen A. V. Olesen ONERA, Electrostatic accelerometer team R. Forsberg E. Hardy P. A. Huynh GET V. Lebat Geosciences Environment Laboratory Toulouse B. Christophe S. Bonvalot L. Seoane G. Gablada

Support from : TUM, Technical University of Munich P. Abrykosov R. Pail T. Gruber

26