PROBABILITY in FUNCTION SPACE Introduction. the Mathematical Theory of Probability Is Now Ordi- Narily Formulated in Terms of Me
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fundamental Theorem of Calculus for Lebesgue Integral
Divulgaciones Matem´aticasVol. 8 No. 1 (2000), pp. 75{85 The Fundamental Theorem of Calculus for Lebesgue Integral El Teorema Fundamental del C´alculo para la Integral de Lebesgue Di´omedesB´arcenas([email protected]) Departamento de Matem´aticas.Facultad de Ciencias. Universidad de los Andes. M´erida.Venezuela. Abstract In this paper we prove the Theorem announced in the title with- out using Vitali's Covering Lemma and have as a consequence of this approach the equivalence of this theorem with that which states that absolutely continuous functions with zero derivative almost everywhere are constant. We also prove that the decomposition of a bounded vari- ation function is unique up to a constant. Key words and phrases: Radon-Nikodym Theorem, Fundamental Theorem of Calculus, Vitali's covering Lemma. Resumen En este art´ıculose demuestra el Teorema Fundamental del C´alculo para la integral de Lebesgue sin usar el Lema del cubrimiento de Vi- tali, obteni´endosecomo consecuencia que dicho teorema es equivalente al que afirma que toda funci´onabsolutamente continua con derivada igual a cero en casi todo punto es constante. Tambi´ense prueba que la descomposici´onde una funci´onde variaci´onacotada es ´unicaa menos de una constante. Palabras y frases clave: Teorema de Radon-Nikodym, Teorema Fun- damental del C´alculo,Lema del cubrimiento de Vitali. Received: 1999/08/18. Revised: 2000/02/24. Accepted: 2000/03/01. MSC (1991): 26A24, 28A15. Supported by C.D.C.H.T-U.L.A under project C-840-97. 76 Di´omedesB´arcenas 1 Introduction The Fundamental Theorem of Calculus for Lebesgue Integral states that: A function f :[a; b] R is absolutely continuous if and only if it is ! 1 differentiable almost everywhere, its derivative f 0 L [a; b] and, for each t [a; b], 2 2 t f(t) = f(a) + f 0(s)ds: Za This theorem is extremely important in Lebesgue integration Theory and several ways of proving it are found in classical Real Analysis. -
[Math.FA] 3 Dec 1999 Rnfrneter for Theory Transference Introduction 1 Sas Ihnrah U Twl Etetdi Eaaepaper
Transference in Spaces of Measures Nakhl´eH. Asmar,∗ Stephen J. Montgomery–Smith,† and Sadahiro Saeki‡ 1 Introduction Transference theory for Lp spaces is a powerful tool with many fruitful applications to sin- gular integrals, ergodic theory, and spectral theory of operators [4, 5]. These methods afford a unified approach to many problems in diverse areas, which before were proved by a variety of methods. The purpose of this paper is to bring about a similar approach to spaces of measures. Our main transference result is motivated by the extensions of the classical F.&M. Riesz Theorem due to Bochner [3], Helson-Lowdenslager [10, 11], de Leeuw-Glicksberg [6], Forelli [9], and others. It might seem that these extensions should all be obtainable via transference methods, and indeed, as we will show, these are exemplary illustrations of the scope of our main result. It is not straightforward to extend the classical transference methods of Calder´on, Coif- man and Weiss to spaces of measures. First, their methods make use of averaging techniques and the amenability of the group of representations. The averaging techniques simply do not work with measures, and do not preserve analyticity. Secondly, and most importantly, their techniques require that the representation is strongly continuous. For spaces of mea- sures, this last requirement would be prohibitive, even for the simplest representations such as translations. Instead, we will introduce a much weaker requirement, which we will call ‘sup path attaining’. By working with sup path attaining representations, we are able to prove a new transference principle with interesting applications. For example, we will show how to derive with ease generalizations of Bochner’s theorem and Forelli’s main result. -
171 Composition Operator on the Space of Functions
Acta Math. Univ. Comenianae 171 Vol. LXXXI, 2 (2012), pp. 171{183 COMPOSITION OPERATOR ON THE SPACE OF FUNCTIONS TRIEBEL-LIZORKIN AND BOUNDED VARIATION TYPE M. MOUSSAI Abstract. For a Borel-measurable function f : R ! R satisfying f(0) = 0 and Z sup t−1 sup jf 0(x + h) − f 0(x)jp dx < +1; (0 < p < +1); t>0 R jh|≤t s n we study the composition operator Tf (g) := f◦g on Triebel-Lizorkin spaces Fp;q(R ) in the case 0 < s < 1 + (1=p). 1. Introduction and the main result The study of the composition operator Tf : g ! f ◦ g associated to a Borel- s n measurable function f : R ! R on Triebel-Lizorkin spaces Fp;q(R ), consists in finding a characterization of the functions f such that s n s n (1.1) Tf (Fp;q(R )) ⊆ Fp;q(R ): The investigation to establish (1.1) was improved by several works, for example the papers of Adams and Frazier [1,2 ], Brezis and Mironescu [6], Maz'ya and Shaposnikova [9], Runst and Sickel [12] and [10]. There were obtained some necessary conditions on f; from which we recall the following results. For s > 0, 1 < p < +1 and 1 ≤ q ≤ +1 n s n s n • if Tf takes L1(R ) \ Fp;q(R ) to Fp;q(R ), then f is locally Lipschitz con- tinuous. n s n • if Tf takes the Schwartz space S(R ) to Fp;q(R ), then f belongs locally to s Fp;q(R). The first assertion is proved in [3, Theorem 3.1]. -
Comparative Programming Languages
CSc 372 Comparative Programming Languages 10 : Haskell — Curried Functions Department of Computer Science University of Arizona [email protected] Copyright c 2013 Christian Collberg 1/22 Infix Functions Declaring Infix Functions Sometimes it is more natural to use an infix notation for a function application, rather than the normal prefix one: 5+6 (infix) (+) 5 6 (prefix) Haskell predeclares some infix operators in the standard prelude, such as those for arithmetic. For each operator we need to specify its precedence and associativity. The higher precedence of an operator, the stronger it binds (attracts) its arguments: hence: 3 + 5*4 ≡ 3 + (5*4) 3 + 5*4 6≡ (3 + 5) * 4 3/22 Declaring Infix Functions. The associativity of an operator describes how it binds when combined with operators of equal precedence. So, is 5-3+9 ≡ (5-3)+9 = 11 OR 5-3+9 ≡ 5-(3+9) = -7 The answer is that + and - associate to the left, i.e. parentheses are inserted from the left. Some operators are right associative: 5^3^2 ≡ 5^(3^2) Some operators have free (or no) associativity. Combining operators with free associativity is an error: 5==4<3 ⇒ ERROR 4/22 Declaring Infix Functions. The syntax for declaring operators: infixr prec oper -- right assoc. infixl prec oper -- left assoc. infix prec oper -- free assoc. From the standard prelude: infixl 7 * infix 7 /, ‘div‘, ‘rem‘, ‘mod‘ infix 4 ==, /=, <, <=, >=, > An infix function can be used in a prefix function application, by including it in parenthesis. Example: ? (+) 5 ((*) 6 4) 29 5/22 Multi-Argument Functions Multi-Argument Functions Haskell only supports one-argument functions. -
Generalizations of the Riemann Integral: an Investigation of the Henstock Integral
Generalizations of the Riemann Integral: An Investigation of the Henstock Integral Jonathan Wells May 15, 2011 Abstract The Henstock integral, a generalization of the Riemann integral that makes use of the δ-fine tagged partition, is studied. We first consider Lebesgue’s Criterion for Riemann Integrability, which states that a func- tion is Riemann integrable if and only if it is bounded and continuous almost everywhere, before investigating several theoretical shortcomings of the Riemann integral. Despite the inverse relationship between integra- tion and differentiation given by the Fundamental Theorem of Calculus, we find that not every derivative is Riemann integrable. We also find that the strong condition of uniform convergence must be applied to guarantee that the limit of a sequence of Riemann integrable functions remains in- tegrable. However, by slightly altering the way that tagged partitions are formed, we are able to construct a definition for the integral that allows for the integration of a much wider class of functions. We investigate sev- eral properties of this generalized Riemann integral. We also demonstrate that every derivative is Henstock integrable, and that the much looser requirements of the Monotone Convergence Theorem guarantee that the limit of a sequence of Henstock integrable functions is integrable. This paper is written without the use of Lebesgue measure theory. Acknowledgements I would like to thank Professor Patrick Keef and Professor Russell Gordon for their advice and guidance through this project. I would also like to acknowledge Kathryn Barich and Kailey Bolles for their assistance in the editing process. Introduction As the workhorse of modern analysis, the integral is without question one of the most familiar pieces of the calculus sequence. -
Measure, Integral and Probability
Marek Capinski´ and Ekkehard Kopp Measure, Integral and Probability Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest To our children; grandchildren: Piotr, Maciej, Jan, Anna; Luk asz Anna, Emily Preface The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main source of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under- graduates. There are many good books on modern probability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory. We hope therefore that the current text will not be regarded as one which fills a much-needed gap in the literature! One fundamental decision in developing a treatment of integration is whether to begin with measures or integrals, i.e. -
Stability in the Almost Everywhere Sense: a Linear Transfer Operator Approach ∗ R
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector J. Math. Anal. Appl. 368 (2010) 144–156 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa Stability in the almost everywhere sense: A linear transfer operator approach ∗ R. Rajaram a, ,U.Vaidyab,M.Fardadc, B. Ganapathysubramanian d a Dept. of Math. Sci., 3300, Lake Rd West, Kent State University, Ashtabula, OH 44004, United States b Dept. of Elec. and Comp. Engineering, Iowa State University, Ames, IA 50011, United States c Dept. of Elec. Engineering and Comp. Sci., Syracuse University, Syracuse, NY 13244, United States d Dept. of Mechanical Engineering, Iowa State University, Ames, IA 50011, United States article info abstract Article history: The problem of almost everywhere stability of a nonlinear autonomous ordinary differential Received 20 April 2009 equation is studied using a linear transfer operator framework. The infinitesimal generator Available online 20 February 2010 of a linear transfer operator (Perron–Frobenius) is used to provide stability conditions of Submitted by H. Zwart an autonomous ordinary differential equation. It is shown that almost everywhere uniform stability of a nonlinear differential equation, is equivalent to the existence of a non-negative Keywords: Almost everywhere stability solution for a steady state advection type linear partial differential equation. We refer Advection equation to this non-negative solution, verifying almost everywhere global stability, as Lyapunov Density function density. A numerical method using finite element techniques is used for the computation of Lyapunov density. © 2010 Elsevier Inc. All rights reserved. 1. Introduction Stability analysis of an ordinary differential equation is one of the most fundamental problems in the theory of dynami- cal systems. -
The Axiom of Choice and Its Implications
THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial. -
(Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding. -
Measure Theory and Probability
Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure................. -
Chapter 6. Integration §1. Integrals of Nonnegative Functions Let (X, S, Μ
Chapter 6. Integration §1. Integrals of Nonnegative Functions Let (X, S, µ) be a measure space. We denote by L+ the set of all measurable functions from X to [0, ∞]. + Let φ be a simple function in L . Suppose f(X) = {a1, . , am}. Then φ has the Pm −1 standard representation φ = j=1 ajχEj , where Ej := f ({aj}), j = 1, . , m. We define the integral of φ with respect to µ to be m Z X φ dµ := ajµ(Ej). X j=1 Pm For c ≥ 0, we have cφ = j=1(caj)χEj . It follows that m Z X Z cφ dµ = (caj)µ(Ej) = c φ dµ. X j=1 X Pm Suppose that φ = j=1 ajχEj , where aj ≥ 0 for j = 1, . , m and E1,...,Em are m Pn mutually disjoint measurable sets such that ∪j=1Ej = X. Suppose that ψ = k=1 bkχFk , where bk ≥ 0 for k = 1, . , n and F1,...,Fn are mutually disjoint measurable sets such n that ∪k=1Fk = X. Then we have m n n m X X X X φ = ajχEj ∩Fk and ψ = bkχFk∩Ej . j=1 k=1 k=1 j=1 If φ ≤ ψ, then aj ≤ bk, provided Ej ∩ Fk 6= ∅. Consequently, m m n m n n X X X X X X ajµ(Ej) = ajµ(Ej ∩ Fk) ≤ bkµ(Ej ∩ Fk) = bkµ(Fk). j=1 j=1 k=1 j=1 k=1 k=1 In particular, if φ = ψ, then m n X X ajµ(Ej) = bkµ(Fk). j=1 k=1 In general, if φ ≤ ψ, then m n Z X X Z φ dµ = ajµ(Ej) ≤ bkµ(Fk) = ψ dµ. -
The Radon-Nikodym Theorem
The Radon-Nikodym Theorem Yongheng Zhang Theorem 1 (Johann Radon-Otton Nikodym). Let (X; B; µ) be a σ-finite measure space and let ν be a measure defined on B such that ν µ. Then there is a unique nonnegative measurable function f up to sets of µ-measure zero such that Z ν(E) = fdµ, E for every E 2 B. f is called the Radon-Nikodym derivative of ν with respect to µ and it is often dν denoted by [ dµ ]. The assumption that the measure µ is σ-finite is crucial in the theorem (but we don't have this requirement directly for ν). Consider the following two examples in which the µ's are not σ-finite. Example 1. Let (R; M; ν) be the Lebesgue measure space. Let µ be the counting measure on M. So µ is not σ-finite. For any E 2 M, if µ(E) = 0, then E = ; and hence ν(E) = 0. This shows ν µ. Do we have the associated Radon-Nikodym derivative? Never. Suppose we have it and call it R R f, then for each x 2 R, 0 = ν(fxg) = fxg fdµ = fxg fχfxgdµ = f(x)µ(fxg) = f(x). Hence, f = 0. R This means for every E 2 M, ν(E) = E 0dµ = 0, which contradicts that ν is the Lebesgue measure. Example 2. ν is still the same measure above but we let µ to be defined by µ(;) = 0 and µ(A) = 1 if A 6= ;. Clearly, µ is not σ-finite and ν µ.