Evolution of Ethernet Standards in the IEEE 802.3 Working Group

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Ethernet Standards in the IEEE 802.3 Working Group HAJDUCZENIA LAYOUT_Layout 1 8/1/13 3:05 PM Page 88 QUANTUM COMMUNICATIONS Evolution of Ethernet Standards in the IEEE 802.3 Working Group David Law, Hewlett-Packard Ltd. Dan Dove, Applied Micro John D’Ambrosia, Dell Marek Hajduczenia, ZTE Corporation and Universidade de Coimbra Mark Laubach, Broadcom Corporation Steve Carlson, High Speed Design, Inc. ABSTRACT Ethernet is also venturing into brand new application areas, and is adding support for syn- Ethernet is constantly evolving, adapting to the chronization protocols or even potentially needs of the networking world, addressing the becoming a de facto standard for in-vehicle data requirements of both operators and end users, networks, providing a common transport plat- while making sure that the resulting technology is form for control and multimedia applications. cost-efficient, reliable, and operates in a plug-and- This article will examine the evolution of Eth- play manner. The IEEE 802.3 Working Group ernet standards taking place in the IEEE 802.3 has been working for the last 30+ years, pushing Working Group. There are a number of exciting the boundaries on the speed and capacity of wire- new projects, pushing the boundaries of Ether- line Ethernet links, migrating from shared medi- net into new application areas and markets. um CSMA/CD systems to switched point-to-point Ethernet and then introducing multilane technol- ogy and point-to-point emulation over shared EVOLUTION OF media of passive optical networks. In this article, THERNET TANDARDS we look at the latest projects adding new features E S and capabilities to the family of wired Ethernet The IEEE Std 802.3 Ethernet standard was first standards, enabling the exponential growth of the published in 1985, specifying a half-duplex carri- Ethernet ecosystem, driven by technical maturity, er sense multiple access with collision detection cost effectiveness, and broad market support. (CSMA/CD) medium access control (MAC) protocol operating at 10 Mb/s, and a medium INTRODUCTION attachment unit (MAU) for operation on a coax- ial cable medium, supporting a bus topology The total amount of data created or replicated on between the attached end stations. the planet in 2010 exceeded 1 zettabyte (1 Amendments to the IEEE 802.3 standard zettabyte is 1021 bytes), or 143 Gbytes for each of then added specifications for, among other the 7 billion people on the planet [1]. This volume items, a repeater to extend topologies supported, of information requires high-speed links between MAUs for operation over fiber optic cabling, a server farms, cloud storage, and end users to make MAU for operation over twisted pair cabling, sure that it can be processed in a timely and reli- 10BASE-T, and layer management. In 1995 able fashion. The relentless growth of the number amendment IEEE Std 802.3u was published of end stations connected to the network, whether adding operation at 100 Mb/s (fast Ethernet). permanent or nomadic (computer terminals, This included a number of physical layer (PHY) mobile devices, automated devices generating specifications for operation over fiber optic and machine-to-machine traffic), has led to explosive twisted pair cabling (100BASE-TX). growth in the volume of information exchanged at Amendment IEEE Std 802.3x published in all levels of the networking infrastructure. The 1997 added full duplex operation to the MAC popularity of Ethernet and its widespread use in and a flow control protocol to take advantage of access, aggregation, transport, core networks, and the full duplex capable medium, such as twisted data centers, combined with the unprecedented pair and fiber, for which PHYs were already demand for advanced data connectivity services, specified in IEEE 802.3, as well as support fuel the development of new Ethernet standards, switching, which was becoming more cost effec- providing higher-speed links to address the market tive due to increased device integration. demand. In 1998 amendment IEEE Std 802.3z was 88 0163-6804/13/$25.00 © 2013 IEEE IEEE Communications Magazine • August 2013 HAJDUCZENIA LAYOUT_Layout 1 8/1/13 3:05 PM Page 89 published, adding operation at 1000 Mb/s (Giga- bit Ethernet), and subsequently in 1999 amend- Rate (Gb/s) Backplane ment IEEE Std 802.3ab was published, adding 100 1000BASE-T PHY specifications to support Twin-axial 1000 Mb/s operation over twisted pair cabling. 10 Amendment IEEE 802.3ad (link aggregation) Multimode fiber was published in 2000, adding the ability to aggre- gate multiple full duplex point-to-point links in to 1 Voice-grade copper a single logical link from the perspective of the Coaxial MAC client. Since link aggregation has applica- 0.1 tion beyond Ethernet, as well as its architectural Twisted-pair copper positioning, it was subsequently moved the the 0.01 IEEE 802.1 Working Group in 2008 and is now Single-mode fiber titled IEEE Std 802.1AX Link Aggregation. 0.001 Multipoint fiber In 2002 amendment IEEE Std 802.3ae was 0.001 0.01 0.1 1 10 100 published adding operation at 10 Gb/s (10 Giga- Distance (km) bit Ethernet), and in 2006 amendment IEEE Std 802.3an was published adding the 10GBASE-T Figure 1. Speed and reach for various IEEE Std 802.3 MAUs and PHYs. PHY specifications to support 10 Gb/s operation over twisted pair cabling. It was followed in 2010 by the amendment IEEE Std 802.3ba, adding interface) electrical interface standard, requiring operation at 40 Gb/s and 100 Gb/s (40 Gigabit a relatively large number of interface data paths, Ethernet and 100 Gigabit Ethernet). The devel- and for the longer-reach power management opment of 40 Gb/s and 100 Gb/s Ethernet was devices (PMDs), a gearbox to reduce the num- done in close cooperation with International ber of optical lanes from 10 to 4. This gearbox Telecommunications Union Telecommunications would normally be included in the optical mod- Standardization Sector (ITU-T) SG15 to ensure ule, creating a power constraint that inhibits transparent connectivity into the optical transport higher port density; see Fig. 2 for differences in network (OTN). Operation at 10 Gb/s, 40 Gb/s, device architecture. Through the work being and 100 Gb/s only supports full duplex operation. done in IEEE 802.3, this gearbox can be moved Amendment IEEE Std 802.3ah published in out of the module and eventually integrated 2004 first added support for subscriber access directly into the host integrated circuit (IC). This network Ethernet (Ethernet in the first mile, or allows smaller lower-power modules, driving EFM for short). As well as the addition of a density up and cost per port down. number of fiber optic and voice grade copper While the 40 Gigabit Ethernet and 100 Giga- PHYs, it also specified a fiber optic point-to- bit Ethernet standards enabled Ethernet net- multipoint network topology using passive opti- working at 40G and 100G for the very first time, cal splitters known as Ethernet passive optical this next generation of 40G and 100G optical networks (EPONs). standards are expected to provide a substantial Amendment IEEE Std 802.3ap first added decrease in the cost and complexity required for support for backplane Ethernet in 2007. broad deployment of 100G Ethernet at just the A summary of the speed and distance for vari- right time as network providers and customers ous MAUs and PHYs supported by the approved see the demand curve rising. In addition, the 40 IEEE 802.3 standard (at the time of writing this km specification for 40G will enable near-term article) and amendments is shown in Fig. 1. deployment of long-reach optical channels. Other additions include IEEE Std 802.3af, The Study Group spent close to a year to “DTE Power via MDI,” published in 2003, also define a set of technical objectives, including known as power over Ethernet, which enables among others: power to be supplied on the same cabling as the •Provide appropriate support for optical data transmission, and IEEE Std 802.3at, pub- transport network (OTN) lished in 2009 which enhanced the maximum •Define retimed 4-lane 100G electrical inter- power available and the classification mechanism. faces for chip-to-chip and chip-to-module In addition, in 2010 amendment IEEE Std applications 802.3az added support for energy-efficient Eth- •Define a 40 Gb/s PHY for operation over at ernet (EEE) to, among others, the 100BASE-T, least 40 km of single-mode fiber (SMF) 1000BASE-T, and 10GBASE-T PHYs. This not •Define a 100 Gb/s PHY for operation up to only reduces the power consumption of the at least 500 m of SMF, at least 100 m of PHYs, but also specifies signaling that can multimode fiber (MMF), and at least 20 m enable the reduction of the power consumption of MMF in separate devices of the attached device. The addition of the 40 Gb/s PHY objective was made subsequent to the March 2012 meet- HIGH-SPEED OPTICAL P2P LINKS ing, addressing the demonstrated demand for a In August 2011, the IEEE 802.3 Working Group longer-reach solution at this particular speed. authorized the formation of a Study Group to Instead of creating a new project, it was decided address “Next Generation 100G Optical Ether- that this objective would be added to the scope net” with the goal of reducing the cost and of the Next Generation 100G project. power of, and improving density for 100G opti- The chip-to-chip interface objective calls for cal solutions. The IEEE P802.3ba project pro- the definition of a CAUI-4 electrical interface, duced a number of 100G optical PHYs based on which is anticipated to leverage the OIF CEI- the 10x10G CAUI (100 Gigabit attachment unit 28G-VSR specification [12].
Recommended publications
  • 40 and 100 Gigabit Ethernet Overview
    Extreme Networks White Paper 40 and 100 Gigabit Ethernet Overview Abstract This paper takes a look at the main forces that are driving Ethernet bandwidth upwards. It looks at the standards and architectural practices adopted by the different segments, how the different speeds of Ethernet are used and how its popularity has resulted in an ecosystem spanning data centers, carrier networks, enterprise networks, and consumers. Make Your Network Mobile © 2011 Extreme Networks, Inc. All rights reserved. Do not reproduce. Extreme Networks White Paper: 40 and 100 Gigabit Ethernet Overview and how its popularity has resulted in a complex ecosys- Overview tem between carrier networks, enterprise networks, and consumers. There are many reasons driving the need for higher bandwidth Ethernet, however, the main reason is our insatiable appetite for content. The definition of content Driving the Need for Speed in itself has evolved over time – where once the majority of traffic on an Ethernet network may have been occa- Ethernet in the Enterprise and Data sional file transfers, emails and the like, today technology Center is allowing us to push and receive richer content such Data center virtualization, which includes storage and as voice, video and high definition multimedia. Simi- server virtualization, is all about the efficient use of larly, mechanisms for delivering content have evolved resources. In the data center this is multifaceted. On over time to reflect this demand. While there were a few the one hand data center managers are trying to bring technologies competing for LAN dominance in the early power, cooling and space utilization under control, while days of networks, Ethernet has become the clear choice.
    [Show full text]
  • ATM Vs Gigabit Ethernet: a Technical Perspective
    White Paper Gigabit Ethernet and ATM A Technology Perspective Bursty, high-bandwidth applications are driving the need for similarly high-bandwidth campus backbone infrastructures. Today, there are two choices for the high-speed campus backbone: ATM or Gigabit Ethernet. For many reasons, business and technical, Gigabit Ethernet is selected as the technology of choice. This paper briefly presents, from a technical perspective, why Gigabit Ethernet is favored for most enterprise LANs. In the past, most campuses use shared-media backbones — such as 16/32 Mbps Token-Ring and 100 Mbps FDDI — that are only slightly higher in speed than the LANs and end stations they interconnect. This has caused severe congestion in the campus backbones when these backbones interconnect a number of access LANs. A high capacity, high performance, and highly resilient backbone is needed-one that can be scaled as end stations grow in number or demand more bandwidth. Also needed is the ability to support differentiated service levels (Quality of Service or QoS), so that high priority, time-sensitive, and mission-critical applications can share the same network infrastructure as those that require only best-effort service. 2 Gigabit Ethernet and ATM: A Technology Perspective White Paper Until recently, Asynchronous Transfer Interface, and Multiprotocol over ATM). Which is a “better” technology is no Mode (ATM) was the only switching This additional complexity is required in longer a subject of heated industry debate technology able to deliver high capacity order to adapt ATM to the connectionless, — Gigabit Ethernet is an appropriate and scalable bandwidth, with the promise frame-based world of the campus LAN.
    [Show full text]
  • Operaing the EPON Protocol Over Coaxial Distribuion Networks Call for Interest
    Operang the EPON protocol over Coaxial Distribu&on Networks Call for Interest 08 November 2011 IEEE 802.3 Ethernet Working Group Atlanta, GA 1 Supporters Bill Powell Alcatel-Lucent Steve Carlson High Speed Design David Eckard Alcatel-Lucent Hesham ElBakoury Huawei Alan Brown Aurora Networks Liming Fang Huawei Dave Baran Aurora Networks David Piehler Neophotonics Edwin MalleIe Bright House Networks Amir Sheffer PMC-Sierra John Dickinson Bright House Networks Greg Bathrick PMC-Sierra Ed Boyd Broadcom ValenWn Ossman PMC-Sierra Howard Frazier Broadcom Alex Liu Qualcomm Lowell Lamb Broadcom Dylan Ko Qualcomm Mark Laubach Broadcom Steve Shellhammer Qualcomm Will Bliss Broadcom Mike Peters Sumitomo Electric Industries Robin Lavoie Cogeco Cable Inc. Yao Yong Technical Working CommiIee of China Radio & Ma SchmiI CableLabs TV Associaon Doug Jones Comcast Cable Bob Harris Time Warner Cable Jeff Finkelstein Cox Networks Kevin A. Noll Time Warner Cable John D’Ambrosia Dell Hu Baomin Wuhan Yangtze OpWcal Technologies Co.,Ltd. Zhou Zhen Fiberhome Telecommunicaon Ye Yonggang Wuhan Yangtze OpWcal Technologies Co.,Ltd. Technologies Zheng Zhi Wuhan Yangtze OpWcal Technologies Co.,Ltd. Boris Brun Harmonic Inc. Marek Hajduczenia ZTE Lior Assouline Harmonic Inc. Meiyan Zang ZTE David Warren HewleI-Packard Nevin R Jones ZTE 2 Objec&ves for This Mee&ng • To measure the interest in starWng a study group to develop a standards project proposal (a PAR and 5 Criteria) for: Operang the EPON protocol over Coaxial DistribuWon Networks • This meeWng does not: – Fully explore the problem – Debate strengths and weaknesses of soluWons – Choose any one soluWon – Create PAR or five criteria – Create a standard or specificaon 3 Agenda • IntroducWon • Market PotenWal • High Level Concept • Why Now? • Q&A • Straw Polls 4 The Brief History of EPON 2000 EPON Today..
    [Show full text]
  • 100 Gigabit Ethernet Is Here!
    100 Gigabit Ethernet is Here! Introduction Ethernet technology has come a long way since its humble beginning in 1973 at Xerox PARC. With each subsequent iteration, there has been a lag between time of standardization and large scale adoption. The latest iteration, dubbed 802.3ba by the IEEE Higher Speed Study Group (HSSG), was ratified in June, 2010 and follows this same pattern but with a slight twist. For the first time in Ethernet history a single standard defines two separate speeds; 100 Gigabit Ethernet (100GbE) as well as 40 Gigabit Ethernet (40GbE). Figure 1: Original Ethernet Sketch The technical challenges facing 100GbE have been significant; ranging from developing a whole new generation of optics that can handle 4 lanes of 25Gbps, to simply dealing with normal router and switch functions such as packet inspection, queuing, lookups, filtering and table updates, all in one-tenth the amount of time as with 10GbE. And of course this all has to be done with complete backwards compatibility and meeting all expectations with respect to bit error rate, latency, jitter and the like. As expected 40GbE gained some level of market acceptance first, but some 5 years after ratification the time for 100 Gigabit Ethernet is now! 2 | P a g e This whitepaper will discuss the evolution of 100GbE technology in the service provider and data center markets and provide insights in to how network application acceleration hardware can be leveraged to maximize performance and efficiency in emerging 100GbE network appliances. 100GbE in Service Providers Networks 100GbE is rapidly approaching large scale adoption in the wide area network (WAN), which is largely the purview of service providers.
    [Show full text]
  • Transceiver Product Guide
    PUBLIC_REV2017_N Transceiver Product Guide TRANSCEIVER PRODUCT GUIDE Skylaneoptics.com Transceivers for Datacom and Telecom Applications Skylane Optics is a leading provider of transceivers for optical communication. We offer an extensive portfolio for the enterprise, access, and metropolitan fiber optical market. The offerings provided by Skylane Optics are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions solving existing and future capacity needs. Solutions Data Center Optimized fiber optic solution for Data Center Application FTTH Broad Product Portfoloio and Technology for FTTH Broadband Networks Wireless Enabling Rapid Expnsion of Mobile Broadband Enterprise - Campus We provides the enterprise network market with the most comprehensive product combinations TRANSCEIVER PRODUCT GUIDE P01 Products Our Engineering and Logistics Center > Inventory, logistics, programming and quality > control based in Fraire, Belgium > IQC [Incoming Quality Control] and OQC > [Outgoing Quality Control] > 100% optimized for handling of transceivers > SD [ANSI/ESD S20.20] compliant > Clean room environment; class 100K > Traceability > High Capacity Our Laboratory > Lab, based in Fraire, Belgium > Technical support > RMA handling > Qualification tests: > - Measure performance over the temperature range to verify compliance with standards > - Compliance with standards (IEEE, IEC, MSA) > - Power consumption > - Eye diagram > - Sensitivity > - Wavelength TRANSCEIVER PRODUCT GUIDE P02 Why Skylane Optics ? Innovations for Early Adopters Quality & Assurance Customization The manufacturing environment is strictly We have cutting-edge test equipment to Due to our high experienced engineers, compliant to most avanced standard, which ensure we supply high quality products. we are enable to modify the hardware and ensure long term reliability. software of the transceivers.
    [Show full text]
  • IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008)
    IEEE Standard for Ethernet IEEE Computer Society Sponsored by the LAN/MAN Standards Committee IEEE 3 Park Avenue IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008) 28 December 2012 IEEE Std 802.3™-2012 (Revision of IEEE Std 802.3-2008) IEEE Standard for Ethernet Sponsor LAN/MAN Standards Committee of the IEEE Computer Society Approved 30 August 2012 IEEE-SA Standard Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 100 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted-pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted-pair PHY types. Keywords: 10BASE; 100BASE; 1000BASE; 10GBASE; 40GBASE; 100GBASE; 10 Gigabit Ethernet; 40 Gigabit Ethernet; 100 Gigabit Ethernet; attachment unit interface; AUI; Auto Negotiation; Backplane Ethernet; data processing; DTE Power via the MDI; EPON; Ethernet; Ethernet in the First Mile; Ethernet passive optical network; Fast Ethernet; Gigabit Ethernet; GMII; information exchange; IEEE 802.3; local area network; management; medium dependent interface; media independent interface; MDI; MIB; MII; PHY; physical coding sublayer; Physical Layer; physical medium attachment; PMA; Power over Ethernet; repeater; type field; VLAN TAG; XGMII The Institute of Electrical and Electronics Engineers, Inc.
    [Show full text]
  • The Future Is 40 Gigabit Ethernet White Paper Cisco Public
    The Future Is 40 Gigabit Ethernet White Paper Cisco Public The Future Is 40 Gigabit Ethernet © 2016 Cisco and/or its affiliates. All rights reserved. The Future Is 40 Gigabit Ethernet White Paper Cisco Public Executive Summary The business case for 40 Gigabit Ethernet is becoming inescapably compelling. While 10 Gigabit Ethernet is still making its way into the data centers, CIOs and IT managers must now consider how they are going to handle what’s coming next: high-bandwidth applications such as server virtualization and cloud computing; fabric consolidation within the data center; and a greater demand for high-performance computing among end users (see Figure 1). The need for faster data transfer rates is relentless and carries significant implications with regard to network productivity as well as operating expenditure (OpEx) costs. Figure 1. Current Trends Driving the Demand for This report addresses the impending move to 40 Higher-Speed Ethernet Gigabit Ethernet, how it may change the network architecture, and what IT managers can do now to Market Drivers for More Bandwidth prepare to migrate to the new standard. Consumer & Broadband Access Introduction: The Business Case for Content 40 Gigabit Ethernet Providers Since February 1980, when the first IEEE 802 Server Virtualization standards committee convened, speeds in Ethernet Video on delivery to all layers have made increasingly greater Demand leaps over increasingly shorter intervals. In 2016, Blade Server Higher eight years after the adoption of 10 Gigabit Ethernet, Speed Service the IEEE has adopted 802.3ba, paving the way for Providers & Ethernet IXCs 40 Gigabit Ethernet and 100 Gigabit Ethernet.
    [Show full text]
  • 40 and 100 Gigabit Ethernet: an Imminent Reality
    WHITE PAPER 40 and 100 Gigabit Ethernet: An Imminent Reality 40 and 100 Gigabit Ethernet: An Imminent Reality Many of today’s data centers are running 10 Gigabit Ethernet (GbE) over both optical fiber and balanced twisted-pair copper cabling in their backbone infrastructure where large numbers of gigabit links aggregate at core devices. As more edge devices; like servers and storage equipment, continue to move to 10 GbE, the next natural progression is for the network core to require even faster connections within the data center. Fortunately, there is a solution that is now an imminent reality. Standards have been in development since 2008, and the Institute of Electrical and Electronics Engineers (IEEE) will soon release the 802.3ba standard that will support data rates for 40 and 100 GbE over optical fiber cabling. Both cable and connectivity solutions capable of supporting these speeds already exist, and vendors are in the process of developing active equipment. Now is the time to migrate data center cabling infrastructures to support this imminent technology. 40 and 100 Gigabit Ethernet: An Imminent Reality Key Market Drivers 100 90 From storage and IP traffic growth to the advancement 35% CAGR in Storage Capacity of technology across many market sectors, the drivers 80 that moved data transmission speeds from 1 GbE to 68 10 GbE over the past decade are now expanding as 60 forecasted, creating the need for 40 and 100 GbE. 49 Petabytes 40 37 10 GbE Growth 28 20 20 While the global Ethernet switch market experienced overall decline in 2009, the migration from 1 to 10 0 GbE continued in data centers across the world.
    [Show full text]
  • Towards 100 Gbps Ethernet: Development of Ethernet / Physical Layer Aspects
    SEMINAR ON TOPICS IN COMMUNICATIONS ENGINEERING 1 Towards 100 Gbps Ethernet: Development of Ethernet / Physical Layer Aspects Ömer Bulakci Abstract — Physical layer features of Ethernet from the first released clauses and ongoing architecture researches for 100 realization towards the 100 Gb Ethernet (100 GbE) development GbE are elaborated. have been considered. Comparisons of these features are made according to the standardized data rates. Feasible physical layer TABLE I options are then discussed for high data rates. Milestones of 802.3 IEEE Standard I. INTRODUCTION Clause Date of Bit Physical THERNET is the most widely deployed Local Area Name Release Rate Medium Network (LAN) protocol and has been extended to E 802.3a Single Metropolitan Area Networks (MAN) and Wide Area (Thin Ethernet) 1985 10 Mbps Thin Coaxial Networks (WAN) [1]. The major advantages that characterize (Cheapernet) Cable Ethernet can be stated as its cost efficiency, traditional tenfold bit rate increase (from 10 Mbps to 100 Gbps), simplicity, high 802.3i 1990 10 Mbps TP Copper transmission reliability and worldwide interoperability 802.3j 1993 10 Mbps Two MMFs between vendors [2]. TP Copper The first experimental Ethernet was developed during the 802.3u 1995 100 Mbps Two Fibers early 1970s by XEROX Corporation in a coaxial cable (Fast Ethernet) (MMF,SMF) network with a data rate about 3 Mbps [3]. The initial 802.3z 1998 1 Gbps MMF, SMF standardization process of Ethernet was started in 1979 by (Gigabit Ethernet) Digital Equipment Corporation (DEC), Intel and Xerox. In 802.3ab 1999 1 Gbps TP Copper 1980, DIX Standard known as the “Thick Ethernet” was 802.3ae 2002 10 Gbps MMF,SMF released.
    [Show full text]
  • Draft Revised Optical Transport Networks & Technologies
    INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 15 TELECOMMUNICATION TD 107 Rev.2(PLEN/15) STANDARDIZATION SECTOR STUDY PERIOD 2013-2016 English only Original: English Question(s): 3/15 1-12 July 2013 TD Source: Rapporteur Q3/15 Title: Draft Revised Optical Transport Networks & Technologies Standardization Work Plan, Issue 17 This TD includes the draft of Revised Optical Transport Networks & Technologies Standardization Work Plan, Issue 17. Contact: Yoshinori Koike Tel: +81-422-59-6723 NTT Corporation Fax: +81-422-59-3493 Japan Email: [email protected] Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T. - 2 - TD 107 (PLEN/15) Optical Transport Networks & Technologies Standardization Work Plan Issue 167, September July 20123 1. General Optical and other Transport Networks & Technologies Standardization Work Plan is a living document. It may be updated even between meetings. The latest version can be found at the following URL. http://www.itu.int/ITU-T/studygroups/com15/otn/ Proposed modifications and comments should be sent to: Yoshinori Koike [email protected] Tel. +81 422 59 6723 2. Introduction Today's global communications world has many different definitions for Optical and other Transport networks and many different technologies that support them. This has resulted in a number of different Study Groups within the ITU-T, e.g.
    [Show full text]
  • Evolution of Ethernet Speeds: What's New and What's Next
    Evolution of Ethernet Speeds: What’s New and What’s Next Greg Hankins <[email protected]> NANOG 64 Bob Metcalfe’s 1972 sketch of his original “ethernet” vision 1 Image provided courtesy of Palo Alto Research Center Inc., a Xerox Company COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED. NANOG 64 2015/06/03 Agenda 1. Ethernet Speed Evolution 2. What’s Next: 2.5 GE and 5 GE 3. What’s Next: 25 GE 4. What’s New: 40 GE 5. What’s New: 100 GE 6. What’s Next: 400 GE 2 COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED. Ethernet Speed Evolution Over 40+ years New Speeds Driven by Diverse Market Requirements • Market requirements for Ethernet are changing for different applications - Speed - Distance - Cost • Different new speeds are needed for - Wireless access points: 2.5 GE and 5 GE - Servers: 25 GE - Core networks: 400 GE • New Ethernet speeds under development will address these different requirements Six New Ethernet Speeds May be Coming Soon – Same Amount as in the Past 30 Years Roadmap courtesy of the Ethernet Alliance: http://www.ethernetalliance.org/roadmap/ 3 COPYRIGHT © 2015 ALCATEL-LUCENT. ALL RIGHTS RESERVED. NEW 2.5/5 GE Applications (~2016) Higher Speed Ethernet Target Applications • Higher Speed Wireless Key Application Drivers • Large Cat 5e/6 Installed Base NEW 25 GE Applications (~2016) 25 25 10 10 GE GE GE • Data Center Access GE 40 40 • Server NICs GE GE 40 GE Applications MORE 100 100 400 • Data Center Aggregation and Core GE GE GE • Data Center Access 10 100 400 40 100 GE GE GE • Server NICs 10 GE GE 400 • Metro Core GE GE MORE 2.5/5 10 100 400 100 GE Applications GE GE GE GE • Service Provider Aggregation and Core 100 400 GE GE 100 400 • Data Center Core GE GE • Metro Core NEW 400 GE Applications (~2017) • Service Provider Core 10 25 40 GE 40 GE GE 10 25 • Large Data Center Core GE GE GE • Large Metro Core 4 COPYRIGHT © 2015 ALCATEL-LUCENT.
    [Show full text]
  • A Survey of 10 Gigabit Ethernet and Backplane Ethernet
    December 12, 2019 A Survey of 10 Gigabit Ethernet and Backplane Ethernet A Survey of 10 Gigabit Ethernet and Backplane Ethernet Jacob Li , [email protected] (A paper written under the guidance of Prof. Raj Jain) Download Abstract Ethernet is growing rapidly now, and its transmission rate is increased from 1000 bps to 100 Gbps and even 400 Gbps. Higher-speed Ethernet is on the way, and problems are followed. This paper introduces the procedure of high-speed Ethernet's development and Backplane's emergence and discusses issues of every development stage like interoperability between devices. The paper also discusses how technologies like Serializer/Deserializer (SerDes) and Auto-Negotiation solves those problems in practice and push the progress of high-speed Ethernet development. Keyword: Backplane Ethernet, 10 Gigabit Ethernet, SerDes, Auto-Negotiation, IEEE 802.3ap, 10GBASE, 40GBASE, Physical Layer Table of Contents: • 1. Introduction • 2. 10 Gigabit Ethernet Standard o 2.1 IEEE 802.3ae 10 Gigabit Ethernet PHY Structure o 2.2 10 Gigabit LAN Ethernet over Optical Fiber o 2.3 10 Gigabit WAN Ethernet over Optical Fiber o 2.4 10 Gigabit Ethernet over Twisted-Pair Cable • 3. SerDes • 4. Auto-Negotiation • 5. Summary • 6. References • 7. List of Acronyms 1. Introduction In networking, Ethernet plays a very important role and is widely used to provide connectivity within and between systems. Now, as Ethernet is growing faster, the Ethernet can even provide faster links over multiple media [McCoubrey16]. As the demand for high-speed communication technology increases, the Ethernet's deployment all over the world results in bandwidth requirement explosion.
    [Show full text]