Role of Nanophotonics in the Birth of Seismic Megastructures Stéphane Brule, Stefan Enoch, Sebastien Guenneau

Total Page:16

File Type:pdf, Size:1020Kb

Role of Nanophotonics in the Birth of Seismic Megastructures Stéphane Brule, Stefan Enoch, Sebastien Guenneau Role of nanophotonics in the birth of seismic megastructures Stéphane Brule, Stefan Enoch, Sebastien Guenneau To cite this version: Stéphane Brule, Stefan Enoch, Sebastien Guenneau. Role of nanophotonics in the birth of seismic megastructures. Nanophotonics, Walter de Gruyter, 2019, 8 (10), pp.1591-1605. 10.1515/nanoph- 2019-0106. hal-02399050 HAL Id: hal-02399050 https://hal.archives-ouvertes.fr/hal-02399050 Submitted on 8 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nanophotonics 2019; 8(10): 1591–1605 Review article Stéphane Brûlé, Stefan Enoch and Sébastien Guenneau* Role of nanophotonics in the birth of seismic megastructures https://doi.org/10.1515/nanoph-2019-0106 Received April 8, 2019; revised July 6, 2019; accepted July 6, 2019 1 Introduction: birth of a new era for metamaterials Abstract: The discovery of photonic crystals 30 years ago in conjunction with research advances in plasmonics and One may wonder what is the link between seismic megas- metamaterials, has inspired the concept of decameter tructures and nanophotonics, where photonics merge scale metasurfaces, coined seismic metamaterials for an with nanoscience and nanotechnology, and where spatial enhanced control of surface (Love and Rayleigh) and bulk confinement considerably modifies light propagation and (shear and pressure) elastodynamic waves. These power- light-matter interaction [1]. ful mathematical tools of coordinate transforms, effective Seismic megastructures interact with decametric to medium and Floquet-Bloch theories which have revolu- hectometric wavelengths, while nano-optics usually refer tionized nanophotonics, can be translated in the language to situations involving ultraviolet, visible, and near-infra- of civil engineering and geophysics. Experiments on seis- red light i.e. free-space wavelengths ranging from 300 to mic metamaterials made of buried elements in the soil 1200 nm. demonstrate that the fore mentioned tools make a pos- As a transposition of the definition of nanophotonics, sible novel description of complex phenomena of soil- we would like to postulate that “seismic megastructures structure interaction during a seismic disturbance. But involve the science and engineering of mechanical wave- the concepts are already moving to more futuristic con- matter interactions that take place on wavelength and cepts and the same notions developed for structured soils subwavelength scales where artificial structured matter are now used to examine the effects of buildings viewed controls the interactions”. Two large scale experiments as above surface resonators in megastructures such as carried out in France in 2012 [2, 3] demonstrate that it is metacities. But this perspective of future should not make possible to start the analysis of structured soils with the us forget the heritage of the ancient peoples. Indeed, we specific tools of condensed matter, in particular photonic finally point out the striking similarity between an invis- crystals (PCs) and metamaterials. ible cloak design and the architecture of some ancient In the first large scale experiment, which took place megastructures as the antique Gallo-Roman theaters and near the French city of Grenoble in August 2012, an array amphitheatres. of boreholes were drilled in a sedimentary soil where the Keywords: metasurfaces; seismic metamaterials; cloak- Rayleigh wave velocity was first estimated to be 78 m/s, ing; lensing; earthquake protection; seismic ambient thanks to a preliminary seismic test that pointed the wave noise. time arrival at various offsets from a rotating source at 50 Hz (a vibrating probe set on a crane). The experimen- tal mesh was made of three discontinuous lines of ten boreholes 0.32 m in diameter. The length of columns was about 5 m and the mesh spacing was 1.73 m. Numerical simulations performed with finite elements predicted a *Corresponding author: Sébastien Guenneau, Aix Marseille Univ, stop-band centered around 50 Hz for elastic surface waves CNRS, Centrale Marseille, Institut Fresnel, 52 Avenue Escadrille propagating in such a large scale phononic crystal. It Normandie Niemen, 13013 Marseille, France, was experimentally confirmed that there was 5 times less e-mail: [email protected]. https://orcid.org/0000- elastic energy behind the seismic metamaterial after the 0002-5924-622X Stéphane Brûlé and Stefan Enoch: Aix Marseille Univ, CNRS, boreholes had been carried out, in comparison with what Centrale Marseille, Institut Fresnel, 52 Avenue Escadrille Normandie was measured in the absence of boreholes. This confirmed Niemen, 13013 Marseille, France an analogy could be drawn with photonic band gaps in Open Access. © 2019 Sébastien Guenneau et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. Unauthenticated Download Date | 12/8/19 8:07 PM 1592 S. Brûlé et al.: Role of nanophotonics in the birth of seismic megastructures optics. Moreover, the measured elastic energy was 2.3 Ricker wavelet (or “Mexican hat wavelet”). The signal was times larger at the rotating source when it was in presence characterized by a mean frequency value at 8.15 Hz (λP-wave of the array of boreholes, which is also analogous to the ~ 74 m) with a range of frequencies going from 3 to 20 Hz local density of states obtained for a source placed near (30 < λP-wave < 200 m). At 5 m from the impact, the peak a mirror in optics (or a PC). These results suggested the ground acceleration was around 0.9 g (where g = 9.81 m.s−2 strong potential of the large-scale periodic structure for is the gravity of Earth) which was significant, but necessary the control of spontaneous emissions of seismic waves in to compensate for the strong attenuation versus distance a way similar to what has been achieved for light in PCs in earth materials. Importantly, the void grid spacing (7 m) 40 years ago [4, 5], and we shall go back to this historical was lower than the smallest wavelength measured, and connection in the next section. thus we could unambiguously refer to this structured soil Although we coined this large scale phononic crystal as a “seismic metamaterial”. as “seismic metamaterial”, the observed physical phe- To capture the ground motion’s field, we set 30 three- nomena were mostly interpreted in light of Bragg scatter- component velocimeters (vx, vy, vz) with a corner frequency ing phenomena, and thus we must admit the terminology of 4.5 Hz (−3 dB at 4.5 Hz) electronically corrected to 1 Hz. used was not fully legitimate at this stage. The sensors were used simultaneously with a common In the second large scale experiment, which took place time base and were densely set in a quarter of the inves- near the French city of Lyon in September 2012, the large tigation area (refer Supplementary Figure 1 in [3]). The scale phononic crystal was made of five rows of self-stable pounder was consecutively dropped at five different boreholes 2 m in diameter with a center-to-center spacing places (see [3] for more information), and 7–12 times at of 7 m, see Figure 1A and B. The depth of the boreholes each source location. Sensors remained fixed during the was 5 m. The measurement of the velocity of the pressure whole test and the complete field of velocity (80 m × 80 m) wave in the soil was given by a preliminary seismic test, was obtained by means of the source symmetry and the pointing once again the first wave arrival at various offsets symmetry of the array of boreholes with respect to a plane from the source. We measured the velocity around 600 m/s. passing through the x-axis. The artificial source this time consisted of the fall of the 17 We checked that most of the energy of the source was ton steel pounder from a height of about 12 m to gener- converted into energetic surface waves. In time-domain, ate clear transient vibration pulses. The typical waveform we discovered two main phenomena, illustrated in of the source in time-domain looked like a second order Figure 1C–E. The first one was a significant wave reflection A B 1 S C A Source Land streamer 0.8–1.0 B 0.6–0.8 0.4–0.6 0.2–0.4 0.0–0.2 –40 –40 –40 –35 –35 –35 CD–30 –30 E –30 –25 –25 –25 –20 –20 –20 –15 –15 –15 –10 –10 –10 –5 –5 –5 0 0 0 5 5 5 10 10 10 15 15 15 20 20 20 25 25 25 30 30 30 35 35 35 40 40 40 –40–35 –30–25 –20–15 –10 –5 0 5 10 15 20 25 30 35 40 –40–35 –30–25 –20–15 –10 –5 0 5 10 15 20 25 30 35 40 –40–35 –30–25 –20–15 –10 –5 0 5 10 15 20 25 30 35 40 Figure 1: Experiment on a flat seismic lens: (A) Photo (courtesy of S. Brûlé) of the array of boreholes, (B), (C–E) Chronology of the x–y spatial distribution of normalized v2(t) from (C) 1.900 s to (D) 2.124 s to (E) 2.345 s. Unauthenticated Download Date | 12/8/19 8:07 PM S. Brûlé et al.: Role of nanophotonics in the birth of seismic megastructures 1593 at the contact with the long-side of the grid up to 2.1 s.
Recommended publications
  • Effective Negative Mass Nonlinear Acoustic Metamaterial with Pure Cubic Oscillator
    Hindawi Advances in Civil Engineering Volume 2018, Article ID 3081783, 15 pages https://doi.org/10.1155/2018/3081783 Research Article Effective Negative Mass Nonlinear Acoustic Metamaterial with Pure Cubic Oscillator Ming Gao ,1,2 Zhiqiang Wu ,1 and Zhijie Wen 2 1Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, China 2College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao, China Correspondence should be addressed to Zhiqiang Wu; [email protected] and Zhijie Wen; [email protected] Received 4 May 2018; Accepted 11 July 2018; Published 30 September 2018 Academic Editor: Fengqiang Gong Copyright © 2018 Ming Gao et al. .is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acoustic metamaterial, which can prohibit effectively the elastic wave propagation in the bandgap frequency range, has broad application prospects in the vibration and noise reduction areas. .e Lindstedt–Poincar´emethod was utilized to analyze the dispersion curves of nonlinear metamaterial with a pure Duffing oscillator. .e first-order perturbation solutions of acoustic and optical branches were obtained. Both the starting and cutoff frequencies of the bandgap are determined consequently. It was found that the soft/hard characteristics of pure Duffing oscillators could lead to the lower/upper movement of the starting and cutoff frequencies of the bandgap. By further researching the degraded linear system, the conclusion that actual nonlinear metamaterial bandgap region is wider than effective negative mass region is drawn and that both mass and stiffness ratio effect on the starting frequency is obtained.
    [Show full text]
  • Nonreciprocity in Acoustic and Elastic Materials
    REVIEWS Nonreciprocity in acoustic and elastic materials Hussein Nassar 1, Behrooz Yousefzadeh 2, Romain Fleury 3, Massimo Ruzzene4, Andrea Alù 5, Chiara Daraio 6, Andrew N. Norris 7, Guoliang Huang1 ✉ and Michael R. Haberman 8 ✉ Abstract | The law of reciprocity in acoustics and elastodynamics codifies a relation of symmetry between action and reaction in fluids and solids. In its simplest form, it states that the frequency- response functions between any two material points remain the same after swapping source and receiver, regardless of the presence of inhomogeneities and losses. As such, reciprocity has enabled numerous applications that make use of acoustic and elastic wave propagation. A recent change in paradigm has prompted us to see reciprocity under a new light: as an obstruction to the realization of wave-bearing media in which the source and receiver are not interchangeable. Such materials may enable the creation of devices such as acoustic one- way mirrors, isolators and topological insulators. Here, we review how reciprocity breaks down in materials with momentum bias, structured space- dependent and time- dependent constitutive properties, and constitutive nonlinearity, and report on recent advances in the modelling and fabrication of these materials, as well as on experiments demonstrating nonreciprocal acoustic and elastic wave propagation therein. The success of these efforts holds promise to enable robust, unidirectional acoustic and elastic wave- steering capabilities that exceed what is currently possible in conventional materials, metamaterials or phononic crystals. Looking at the rippled surface of a pond, we hardly heterogeneities and boundaries. Accordingly, they have expect water rings to shrink and converge to their centre.
    [Show full text]
  • Gradient Index Phononic Crystals and Metamaterials
    Nanophotonics 2019; 8(5): 685–701 Review article Yabin Jin*, Bahram Djafari-Rouhani* and Daniel Torrent* Gradient index phononic crystals and metamaterials https://doi.org/10.1515/nanoph-2018-0227 arrangements of scatterers in a given matrix, and they Received December 21, 2018; revised February 8, 2019; accepted were firstly proposed in 1993 [1, 2]. The attention that February 11, 2019 phononic crystals received originally was due to the existence of a phononic Bragg band gap where the prop- Abstract: Phononic crystals and acoustic metamaterials agation of acoustic waves was forbidden. In this regime are periodic structures whose effective properties can be the wavelength λ of the acoustic field is comparable to tailored at will to achieve extreme control on wave propa- the periodicity a of the lattice, λ ≈ a, and to be observ- gation. Their refractive index is obtained from the homog- able it is also required that the thickness D of the bulk enization of the infinite periodic system, but it is possible phononic crystals be at least four or five periodicities, to locally change the properties of a finite crystal in such D > > a. In the subwavelength range, λ > > a, it is pos- a way that it results in an effective gradient of the refrac- sible to find local resonances in the scatterers, and the tive index. In such case the propagation of waves can be designed structures exhibit hybridization band gaps accurately described by means of ray theory, and differ- which give rise to novel effects such as negative mass ent refractive devices can be designed in the framework of density or negative elastic modulus.
    [Show full text]
  • Subwavelength Seismic Metamaterial with an Ultra-Low Frequency Bandgap Yi Zeng, Pai Peng, Qiu-Jiao Du, Yue-Sheng Wang, B
    Subwavelength seismic metamaterial with an ultra-low frequency bandgap Yi Zeng, Pai Peng, Qiu-Jiao Du, Yue-Sheng Wang, B. Assouar To cite this version: Yi Zeng, Pai Peng, Qiu-Jiao Du, Yue-Sheng Wang, B. Assouar. Subwavelength seismic metamaterial with an ultra-low frequency bandgap. Journal of Applied Physics, American Institute of Physics, 2020, 128 (1), pp.014901. 10.1063/1.5144177. hal-03043181 HAL Id: hal-03043181 https://hal.archives-ouvertes.fr/hal-03043181 Submitted on 7 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Subwavelength seismic metamaterial with an ultra-low frequency band gap Yi Zeng1,2,3, Pai Peng2, Qiu-Jiao Du2,* ,Yue-Sheng Wang1,* and Badreddine Assouar3,* 1Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China 2 School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China 3 Institut Jean Lamour, CNRS, University de Lorraine, Nancy 54506, France * Electronic mail: [email protected] (Q.-J. Du), [email protected] (Y.-S. Wang), [email protected] (B. Assouar). Abstract A subwavelength seismic metamaterial (SMs) consisting of a three-component SM plate (SMP) and a half space is proposed to attenuate ultra-low frequency seismic surface waves.
    [Show full text]
  • Seismic Metamaterials Department of Mathematics, Imperial College London (Nottingham), P
    Seismic metamaterials Richard Craster Department of Mathematics, Imperial College London joint with A. Colombi, B. Maling, O. Schnitzer (Imperial), D. Colquitt (Liverpool), P. Roux (ISTerre, Grenoble), S. Guenneau, Y. Achaoui, S. Enoch (Inst. Fresnel Marseille), T. Antonakakis (Multiwave AG), S. Brule (Menard), M. Clark, V. Ageeva (Nottingham), P. Sebbah, G. Levebvre (Inst Langevin) and others [email protected] R. Craster, Paris ———————— December 2017 – p. 1/30 Challenges Very low frequency and long waves 0-10 Hz High material mismatch of soil, rock and building materials Soil mediation and seismic site effects Elasticity - full vector system, surface Rayleigh waves and P / S wave mode conversion and coupling at interfaces. Three routes/ concepts: : Seismic mode converters and the elastic rainbow. :Elastic surface wave lenses. :Elastic phononic crystals with ultra-broad stopbands. R. Craster, Paris ———————— December 2017 – p. 2/30 Seismic mode conversion Can we divert waves somewhere “safe”? Mode conversion from surface to bulk waves, can this be achieved using sub-wavelength resonators? A forest metamaterial !? See the recent experiments of Roux and collaborators https://metaforet.osug.fr/ R. Craster, Paris ———————— December 2017 – p. 3/30 Seismic gradient index lenses Can we steer surface waves around objects using gradient index lenses? Can this be achieved using sub-wavelength soil mediation? A Luneburg lens arrangement similar to that in optics. R. Craster, Paris ———————— December 2017 – p. 4/30 Seismic “shields” Can we design structures that protect buildings (on soft soil overlaying bedrock) from seismic waves? Important to note that we need sub-wavelength structures that operate at 0 − 10 Hz - V.
    [Show full text]
  • Nonreciprocity in Acoustic and Elastic Materials
    Nonreciprocity in acoustic and elastic materials Hussein Nassar1, Behrooz Yousefzadeh2, Romain Fleury3, Massimo Ruzzene4, Andrea Al `u5, Chiara Daraio6, Andrew N. Norris7, Guoliang Huang1,+, and Michael R. Haberman8,* 1Department of Mechanical and Aerospace Engineering, The University of Missouri, Columbia, MO 65211, USA 2Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada 3Laboratory of Wave Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland 4Department of Mechanical Engineering, The University of Colorado at Boulder, Boulder, CO 80309, USA 5Advanced Science Research Center, City University of New York, New York, NY 10031, USA 6Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA 7Department of Mechanical & Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA 8Walker Department of Mechanical Engineering and Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78712-1591 USA +e-mail: [email protected] *e-mail: [email protected] ABSTRACT The law of reciprocity in acoustics and elastodynamics codifies a relation of symmetry between action and reaction in fluids and solids. In its simplest form, it states that the frequency response functions between any two material points remain the same after swapping source and receiver, regardless of the presence of inhomogeneities and losses. As such, reciprocity has served as a powerful modeling and experimental tool for numerous applications that make use of acoustic and elastic wave propagation. A recent change in paradigm has prompted us to see reciprocity under a new light: as an obstruction to the realization of wave-bearing media in which the source and receiver are not interchangeable.
    [Show full text]
  • University of Birmingham Seismic Metamaterial Barriers For
    University of Birmingham Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track- soil dynamic interactions Li, Ting; Su, Qian; Kaewunruen, Sakdirat Document Version Peer reviewed version Citation for published version (Harvard): Li, T, Su, Q & Kaewunruen, S 2020, 'Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track-soil dynamic interactions', Construction and Building Materials. Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
    [Show full text]
  • Jeremíc Et Al., Real-E
    ESSI Notes 706.1. INTEGRAL EQUATIONS page: 2801 of 3104 706.1.2.4 Case 4: normal fault / layered ground Figure 706.31: Ground and fault model used for analysis, results are captured on circles Figure 706.32: Vs profile, square points are hk model; blue line is trend line based on hk model Normal fault within layered ground is modeled. Model is as shown Figure 706.31 and 706.32. Properties are shown below. Jeremi´cet al., Real-ESSI Ground properties: see Figure 706.32 and Table 706.1 • Fault properties • Jeremi´cet al. University of California, Davis version: 26. August, 2021, 15:04 ESSI Notes 706.1. INTEGRAL EQUATIONS page: 2802 of 3104 { Moment magnitude = 5.0 { Strike = 0◦ { Dip = 45◦ { Rake = 90◦ { Double - coupled source { Triangular source time function Wave properties • { dt = 0.1 s (Max available freq. = 5 Hz, Nyquist freq.) Fault is located at depth of 30 km, 30 km away from the recording point (station) at surface. Double coupled fault source is assumed and triangular source time function is used (Aki and Richards, 2002). Recording points are similar as prior examples (total 9 stations). The 1D standard southern California model (Hadley and Kanamori(1977), hk model hereafter) is used for ground layering. As shown in Figure 706.32, hk model is interpolated and divided to define ground layer (Table 706.1). Results are shown on Figure 706.33{ 706.35. Since wave is propagated through the layered ground, compared to prior examples, more realistic waves are observed. Jeremi´cet al., Real-ESSI Jeremi´cet al.
    [Show full text]
  • Nonreciprocity in Acoustic and Elastic Materials
    REVIEWS Nonreciprocity in acoustic and elastic materials Hussein Nassar 1, Behrooz Yousefzadeh 2, Romain Fleury 3, Massimo Ruzzene4, Andrea Alù 5, Chiara Daraio 6, Andrew N. Norris 7, Guoliang Huang1 ✉ and Michael R. Haberman 8 ✉ Abstract | The law of reciprocity in acoustics and elastodynamics codifies a relation of symmetry between action and reaction in fluids and solids. In its simplest form, it states that the frequency- response functions between any two material points remain the same after swapping source and receiver, regardless of the presence of inhomogeneities and losses. As such, reciprocity has enabled numerous applications that make use of acoustic and elastic wave propagation. A recent change in paradigm has prompted us to see reciprocity under a new light: as an obstruction to the realization of wave-bearing media in which the source and receiver are not interchangeable. Such materials may enable the creation of devices such as acoustic one- way mirrors, isolators and topological insulators. Here, we review how reciprocity breaks down in materials with momentum bias, structured space- dependent and time- dependent constitutive properties, and constitutive nonlinearity, and report on recent advances in the modelling and fabrication of these materials, as well as on experiments demonstrating nonreciprocal acoustic and elastic wave propagation therein. The success of these efforts holds promise to enable robust, unidirectional acoustic and elastic wave- steering capabilities that exceed what is currently possible in conventional materials, metamaterials or phononic crystals. Looking at the rippled surface of a pond, we hardly heterogeneities and boundaries. Accordingly, they have expect water rings to shrink and converge to their centre.
    [Show full text]
  • A Novel Zero-Frequency Seismic Metamaterial
    A novel zero-frequency seismic metamaterial Yi Zeng1,2, Pai Peng2, Qiu-Jiao Du2,* and Yue-Sheng Wang1,* 1Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China 2 School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China * Electronic mail: [email protected] (Q.-J. Du), [email protected] (Y.-S. Wang). Abstract A zero-frequency seismic metamaterial (ZFSM) consisting of a three-component seismic metamaterial plate and a half space is proposed to attenuate ultra-low frequency seismic surface waves. The design concept and models are verified firstly by lab-scale experiments on the seismic metamaterial consisting of a two-component seismic metamaterial plate and a half space. Then we calculate the band structures of the one-dimensional and two-dimensional ZFSMs, and evaluate their attenuation ability to Rayleigh waves. A wide band gap and a zero-frequency band gap (ZFBG) can be found as the band structure of the seismic metamaterial is almost equal to the band structure of the seismic metamaterial plate plus the sound cone. It is found that the Rayleigh waves in the ZFSM are deflected and converted into bulk waves. When the number of the unit cells of the ZFSM is sufficient, the transmission distance and deflection angle of the Rayleigh waves in the ZFSM are constant at the same frequency. This discovery is expected to open up the possibility of seismic protection for large nuclear power plants, ancient buildings and metropolitan areas. Key words: seismic metamaterial; zero-frequency band gap; surface waves; Rayleigh waves; three-component structures 1 Introduction Millions of earthquakes occur every year on the planet we live in.1 According to the statistics of China Earthquake Networks Center, there have been 836 major earthquakes of magnitude 6 and above in the past 100 years (1919-2018), i.e.
    [Show full text]
  • 56 PD13 Abstracts
    56 PD13 Abstracts IP0 Hence the need to develop a partial regularity theory: is The SIAG/Analysis of Partial Differential Equa- it true that solutions are always smooth outside a ”small” tions Prize Lecture: Weak Solutions of the Euler singular set? The aim of this talk is first to review the Equations: Non-Uniqueness and Dissipation classical regularity theory, and then to describe some re- cent results about partial regularity. There are two aspects of weak solutions of the incompress- ible Euler equations which are strikingly different to the Alessio Figalli behaviour of classical solutions. Weak solutions are not Department of Mathematics unique in general and do not have to conserve the en- The University of Texas at Austin ergy. Although the relationship between these two aspects fi[email protected] is not clear, both seem to be in vague analogy with Gro- movs h-principle. In the talk I will explore this analogy in light of recent results concerning both the non-uniqueness, IP3 the search for selection criteria, as well as the dissipation Waves in Honeycomb Structures anomaly and the conjecture of Onsager. I will discuss the propagation of waves in honeycomb- L´aszl´oSz´ekelyhidi, Jr. structured media. The (Floquet-Bloch) dispersion rela- Universit¨at Leipzig tions of such structures have conical singularities which [email protected] occur at the intersections of spectral bands for high- symmetry quasi-momenta. These conical singularities, also Camillo De Lellis called Dirac points or diabolical points, are central to the Institut f¨ur Mathematik remarkable electronic properties of graphene and the light- Universitat Zurich, Switzerland propagation properties in honeycomb structured dielectric [email protected] media.
    [Show full text]
  • Past, Present and Future of Seismic Metamaterials: Experiments on Soil
    Comptes Rendus Physique Stéphane Brûlé and Sébastien Guenneau Past, present and future of seismic metamaterials: experiments on soil dynamics, cloaking, large scale analogue computer and space–time modulations Volume 21, issue 7-8 (2020), p. 767-785. <https://doi.org/10.5802/crphys.39> Part of the Thematic Issue: Metamaterials 2 Guest editors: Boris Gralak (CNRS, Institut Fresnel, Marseille, France) and Sébastien Guenneau (UMI2004 Abraham de Moivre, CNRS-Imperial College, London, UK) © Académie des sciences, Paris and the authors, 2020. Some rights reserved. This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ Les Comptes Rendus. Physique sont membres du Centre Mersenne pour l’édition scientifique ouverte www.centre-mersenne.org Comptes Rendus Physique 2020, 21, nO 7-8, p. 767-785 https://doi.org/10.5802/crphys.39 Metamaterials 2 / Métamatériaux 2 Past, present and future of seismic metamaterials: experiments on soil dynamics, cloaking, large scale analogue computer and space–time modulations Passé, présent et futur des métamatériaux sismiques : expériences sur la dynamique des sols, camouflage, calculateur analogique à grande échelle et modulations spatio–temporelles , a b Stéphane Brûlé¤ and Sébastien Guenneau a Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France b UMI 2004 Abraham de Moivre-CNRS, Imperial College London, London SW7 2AZ, UK E-mails: [email protected] (S. Brûlé), [email protected] (S. Guenneau) Abstract. Some properties of electromagnetic metamaterials have been translated, using some wave analo- gies, to surface seismic wave control in sedimentary soils structured at the meter scale.
    [Show full text]