Can Meta-Soil Attenuate Seismic Waves?
Total Page:16
File Type:pdf, Size:1020Kb
The Pennsylvania State University The Graduate School Department of Civil and Environmental Engineering CAN META-SOIL ATTENUATE SEISMIC WAVES? A Thesis in Civil Engineering by Alexis Gawelko © 2019 Alexis Gawelko Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2019 ii The thesis of Alexis Gawelko was reviewed and approved* by the following: Parisa Shokouhi Associate Professor of Engineering Science & Mechanics Thesis Advisor Clifford Lissenden Professor of Engineering Science & Mechanics Tong Qiu Associate Professor of Civil and Environmental Engineering Patrick Fox Professor of Civil and Environmental Engineering Head of the Department of Civil and Environmental Engineering *Signatures are on file in the Graduate School. iii Abstract Stable and resilient civil infrastructure is a key to public safety. However, current structures are vulnerable to damage resulting from excessive ground motion caused by earthquakes or underground explosions. Traditionally, structures are built to withstand ground motion, but this design approach is costly and the risk of failure during very large events remains high. A fundamentally different approach is found in controlling the ground motion itself through engineering the soil to act as an acoustic metamaterial. Acoustic metamaterials are composites, often with a periodic substructure, that have the ability to control the propagation of elastic waves through scattering or local resonance mechanisms. Recently, advances in the understanding of metamaterials have allowed the creation of stop bands in wave transmission around the resonator's natural frequency. A graded array of low-frequency acoustic metamaterials provides the possibility to create targeted band-stops, effectively filtering out destructive ground motion. Numerical modeling is used to inform future experimental design to study this phenomenon at laboratory scale. Local resonators are modeled as spheres with a heavy metal core and a thin elastic coating. A sensitivity analysis is performed in order to inform the design of improved resonators. Then, alternative resonators are modeled as spheres with a heavy metal core and elastic columns made of plastic. The geometry and material properties of the resonators are varied in numerical simulations to optimize the frequency range and width of the band gaps. Similar resonators could be incorporated at full scale to create a seismic shield around critical structures. iv Table of Contents List of Figures ................................................................................................................................ vi List of Tables ................................................................................................................................. xi Acknowledgements ...................................................................................................................... xii Chapter 1 Introduction.................................................................................................................. 1 Motivation .................................................................................................................................. 1 Background ................................................................................................................................ 5 Research Objectives ................................................................................................................ 16 Chapter 2 Metaconcrete Modeling ............................................................................................. 17 Analysis of Unit Cell ................................................................................................................ 17 Geometry and Boundary Conditions ..................................................................................... 17 Eigenfrequency Analysis....................................................................................................... 19 Metaconcrete Slab ................................................................................................................... 20 Simulation of Wave Propagation in the Frequency Domain ............................................... 21 Sensitivity Analysis .................................................................................................................. 30 Shear Boundary Load ............................................................................................................. 35 Investigation of Graded Resonator Array ............................................................................. 40 v Soil Simulations ..................................................................................................................... 42 Chapter 3 Alternative Resonator Design ................................................................................... 46 Creation of Resonators ............................................................................................................ 46 Material Selection ................................................................................................................. 46 Creation of Unit Cell ............................................................................................................. 48 Eigenfrequency Analysis....................................................................................................... 50 Creation of Slab ..................................................................................................................... 55 Band Gap Widening ................................................................................................................ 56 Influence of Core Material .................................................................................................... 56 Analysis of Varying Plastic Stiffness .................................................................................... 62 Effect of Increased Density of Resonators ............................................................................ 67 Summary of Influences on Band Gap ................................................................................... 68 Chapter 4 Conclusions and Recommendations ......................................................................... 69 References ..................................................................................................................................... 72 vi List of Figures Figure 1 Deformations produced by body waves: (a) P-wave; (b) S-wave. Source: Geotechnical Earthquake Engineering by Kramer. Copyright 1993 by W.H. Freeman and Company ................. 2 Figure 2 Deformations produced by surface waves: (a) Rayleigh wave; (b) Love wave. Source: Geotechnical Earthquake Engineering by Kramer. Copyright 1993 by W.H. Freeman and Company ......................................................................................................................................................... 2 Figure 3 Passive control system examples. Source: Hadi (2017) .................................................... 3 Figure 4 Active control system examples. Source: Hadi (2017) ..................................................... 4 Figure 5 (a) Madrid sculpture, (b) Sound attenuation through sculpture. Source: Deymeir (2013) 6 Figure 6 (a) Cross-section of a coated lead sphere, (b) a sonic crystal of 8x8 coated lead spheres, (c) Calculated (line) and measured (dots) amplitude transmission coefficient, (d) Band structure of crystal. Source: Deymeir (2013) ...................................................................................................... 6 Figure 7 Conversion phenomena by resonant metawedge. Source: Colombi et al. (2016) ............. 7 Figure 8 Hemholtz resonator design. Source: Kim and Das (2012) .............................................. 10 Figure 9 Borehole test setup. Source: Brule et al. (2014) .............................................................. 11 Figure 10 Resonators consisting of rigid aluminum tube, soft spring (aluminum bolt), and heavy steel mass. ...................................................................................................................................... 12 Figure 11 Unit cell of (left to right) borehole (cross-like cavity), hollow cylinder, and coated cylinder. ......................................................................................................................................... 13 Figure 12 Metaconcrete slab showing inclusion structure. Source: Mitchell et al. (2015) ........... 14 vii Figure 13 Transmission coefficient versus frequency for metaconcrete slab consisting of (a) 1mm, (b) 3mm nylon-coated aggregates. Source: Mitchell et al. (2015) ...................................... 14 Figure 14 Transmission coefficient versus frequency for metaconcrete slab consisting of (a) 1mm, (b) 3 mm rubber-coated aggregates. Source: Mitchell et al. (2015) .............................................. 14 Figure 15 Experimental study of “rainbow trap”. (a) Experimental resonators consisting of outer aluminum tube containing steel rod, and connected polymeric springs, (b) Resonant frequencies of 15 resonators with variable spring stiffness, creating a “rainbow trap.” Source: Krodel et al. (2015) ....................................................................................................................................................... 15 Figure 16 The COMSOL model of the unit cell containing bi-material spherical inclusion.