A Technical Characterization of Estuarine and Coastal New Hampshire New Hampshire Estuaries Project

Total Page:16

File Type:pdf, Size:1020Kb

A Technical Characterization of Estuarine and Coastal New Hampshire New Hampshire Estuaries Project AR-293 University of New Hampshire University of New Hampshire Scholars' Repository PREP Publications Piscataqua Region Estuaries Partnership 2000 A Technical Characterization of Estuarine and Coastal New Hampshire New Hampshire Estuaries Project Stephen H. Jones University of New Hampshire Follow this and additional works at: http://scholars.unh.edu/prep Part of the Marine Biology Commons Recommended Citation New Hampshire Estuaries Project and Jones, Stephen H., "A Technical Characterization of Estuarine and Coastal New Hampshire" (2000). PREP Publications. Paper 294. http://scholars.unh.edu/prep/294 This Report is brought to you for free and open access by the Piscataqua Region Estuaries Partnership at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. A Technical Characterization of Estuarine and Coastal New Hampshire Published by the New Hampshire Estuaries Project Edited by Dr. Stephen H. Jones Jackson estuarine Laboratory, university of New Hampshire Durham, NH 2000 TABLE OF CONTENTS ACKNOWLEDGEMENTS TABLE OF CONTENTS ............................................................................................i LIST OF TABLES ....................................................................................................vi LIST OF FIGURES.................................................................................................viii PREFACE ..............................................................................................................xii EXECUTIVE SUMMARY........................................................................................xiii CHAPTER 1 INTRODUCTION .........................................................................1 1.1 Geographical and Physical Settings. ..........................................................4 1.1.1 The Great Bay Estuary ..........................................................................4 1.1.2 Hampton Harbor Estuary......................................................................8 1.1.3 Beach and Dune Systems .....................................................................9 1.2 Biological Setting......................................................................................10 1.2.1 Fish and Shellfish................................................................................10 1.2.2 Birds and Mammals............................................................................11 1.2.3 Primary Producers..............................................................................12 1.3 Human Setting..........................................................................................13 1.3.1 Recreational Resources and Values......................................................13 1.3.1.1 Boating ......................................................................................14 1.3.1.2 Shellfishing.................................................................................14 1.3.1.3 Fishing .......................................................................................14 1.3.1.4 Passive Recreation ......................................................................18 1.3.2 Commercial Resources and Values ......................................................19 1.3.2.1 Industry and shipping ................................................................19 1.3.2.2 Fishing .......................................................................................19 1.3.2.3 Tourism and Recreational Industries ...........................................19 CHAPTER 2 PRESENT AND HISTORICAL STATUS AND TRENDS OF WATER QUALITY ............................21 2.1 Overall Water Quality and Use Support...................................................22 2.1.1 Background........................................................................................22 2.1.2 Status and Trends of Overall Water Quality and Use Support .............24 2.2 Status and Trends of Microbial Pathogens and Fecal Indicators ............27 2.2.1 Pathogens, Bacterial Fecal Indicators, and Water Quality Standards....27 2.2.1.1 Spatial Distribution.....................................................................28 Great Bay and Upper Little Bay with the Squamscott/Exeter and Lamprey Rivers .................................28 Oyster and Bellamy rivers and Lower Little Bay ..........................33 Salmon Falls, Cocheco and (Upper) Piscataqua Rivers ................35 Portsmouth and Little Harbors and Lower Piscataqua River ........37 Rye Harbor and Coastline...........................................................38 Hampton Harbor and Tributaries................................................39 2.2.1.2 Temporal Trends ........................................................................40 i 2.2.2 Sources of Fecal-Borne Microorganisms..............................................44 2.2.2.1 Storm-related Runoff..................................................................45 2.2.2.2 Wastewater Treatment Facilities and Combined Sewer Overflows...................................................47 2.2.2.3 Septic Systems...........................................................................50 2.2.2.4 Agricultural Runoff and Other Nonpoint Sources .......................51 2.2.3. Modeling and Dye Studies for Bacterial Fate and Transport................52 2.2.4 Impacts of Fecal-Borne Bacteria on Shellfishing ..................................53 2.2.4.1 Historical Sanitary Assessments of Shellfish-growing Waters .......53 2.2.4.2 Present Conditions.....................................................................57 2.2.5 Impacts of Microbial Contamination ..................................................58 2.2.6 Fecal-Borne Viruses and Historical Studies on Indicators and Pathogens ..........................................................58 2.2.7 Autochthonous Microbial Pathogens ..................................................60 2.3 Toxic Organic and Metal Contaminants ..................................................62 2.3.1 Status and Trends for Contaminants in Water.....................................62 2.3.2 Status and Trends for Contaminated Sediments. ................................63 2.3.3 Sources of Toxic Contaminants...........................................................70 2.3.3.1 Stormwater Runoff.....................................................................70 2.3.3.2 Superfund Sites..........................................................................71 2.3.3.3 Documented Groundwater Pollution Sources.............................73 2.3.3.4 Oil Spills.....................................................................................77 2.3.3.5 Fertilizer and Pesticide Applications............................................78 2.3.3.6 Atmospheric Deposition.............................................................79 2.3.3.7 Summary ...................................................................................79 2.3.4 Contaminant and Hydrodynamic Modelling.......................................80 2.3.5 Public Health Risks and Ecological Impacts. ........................................81 2.4 Inorganic and Organic Nutrients .............................................................87 2.4.1 Nutrient Conditions in New Hampshire’s Estuaries. ............................87 2.4.2 Trends in Nutrient Concentrations......................................................92 2.4.3. Relationship to Water Quality Standards.............................................95 2.4.4 Pollution Sources and Nitrogen Loading Estimates. ............................96 2.4.5 Documented Impacts on Water Chemistry and Natural Resources ...101 2.4.5.1 Dissolved Oxygen....................................................................102 2.4.5.2 Phytoplankton Blooms.............................................................105 2.4.5.3 Eutrophication. ........................................................................107 2.5 Suspended Sediments and Turbidity......................................................109 2.5.1 Surficial Sediments Around Great Bay Estuary ..................................109 2.5.2 Shoreline Characteristics in the Great Bay Estuary ............................109 2.5.3 Sources of Sediments .......................................................................110 2.5.4 Suspended Sediments......................................................................110 2.5.5 Sedimentation Processes on Great Bay Tidal Flats.............................113 2.6 Other Contaminants of Potential Concern ............................................114 2.6.1 Radionuclides ...................................................................................114 2.6.2 Biotoxins ..........................................................................................114 2.6.3 Acid Rain..........................................................................................115 2.6.4 Marine Debris...................................................................................115 2.6.5 Other Contaminants.........................................................................116 2.7 Summary of Findings..............................................................................117 ii CHAPTER 3 LIVING RESOURCES................................................................121 3.1 Estuarine Invertebrates...........................................................................122
Recommended publications
  • Preliminary Flood Insurance Study
    VOLUME 4 OF 4 YORK COUNTY, MAINE (ALL JURISDICTIONS) COMMUNITY NAME NUMBER COMMUNITY NAME NUMBER ACTON, TOWN OF 230190 OGUNQUIT, TOWN OF 230632 ALFRED, TOWN OF 230191 OLD ORCHARD BEACH, TOWN OF 230153 ARUNDEL, TOWN Of 230192 PARSONSFIELD, TOWN OF 230154 BERWICK, TOWN OF 230144 SACO, CITY OF 230155 BIDDEFORD, CITY OF 230145 SANFORD, CITY OF 230156 BUXTON, TOWN OF 230146 SHAPLEIGH, TOWN OF 230198 CORNISH, TOWN OF 230147 SOUTH BERWICK, TOWN OF 230157 DAYTON, TOWN OF 230148 WATERBORO, TOWN OF 230199 ELIOT, TOWN OF 230149 WELLS, TOWN OF 230158 HOLLIS, TOWN OF 230150 YORK, TOWN OF 230159 KENNEBUNK, TOWN OF 230151 KENNEBUNKPORT, TOWN OF 230170 KITTERY, TOWN OF 230171 LEBANON, TOWN OF 230193 LIMERICK, TOWN OF 230194 LIMINGTON, TOWN OF 230152 LYMAN, TOWN OF 230195 NEWFIELD, TOWN OF 230196 NORTH BERWICK, TOWN OF 230197 EFFECTIVE: FLOOD INSURANCE STUDY NUMBER 23005CV004A Version Number 2.3.2.1 TABLE OF CONTENTS Volume 1 Page SECTION 1.0 – INTRODUCTION 1 1.1 The National Flood Insurance Program 1 1.2 Purpose of this Flood Insurance Study Report 2 1.3 Jurisdictions Included in the Flood Insurance Study Project 2 1.4 Considerations for using this Flood Insurance Study Report 20 SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS 31 2.1 Floodplain Boundaries 31 2.2 Floodways 43 2.3 Base Flood Elevations 44 2.4 Non-Encroachment Zones 44 2.5 Coastal Flood Hazard Areas 45 2.5.1 Water Elevations and the Effects of Waves 45 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas 46 2.5.3 Coastal High Hazard Areas 47 2.5.4 Limit of Moderate Wave Action 48 SECTION
    [Show full text]
  • Implementation of the Great Works River Non-Point Source Pollution Watershed Management Plan" (2010)
    University of New Hampshire University of New Hampshire Scholars' Repository PREP Publications Piscataqua Region Estuaries Partnership 2010 Implementation of the Great Works River Non- Point Source Pollution Watershed Management Plan PREP Follow this and additional works at: http://scholars.unh.edu/prep Part of the Marine Biology Commons Recommended Citation PREP, "Implementation of the Great Works River Non-Point Source Pollution Watershed Management Plan" (2010). PREP Publications. Paper 72. http://scholars.unh.edu/prep/72 This Article is brought to you for free and open access by the Piscataqua Region Estuaries Partnership at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Implementation of the Great Works River Non- point Source Pollution Watershed Management Plan 09-060 A Final Report to The Piscataqua Region Estuaries Partnership Submitted by Tin Smith Wells National Estuarine Research Reserve 342 Laudholm Farm Road Wells Maine 04090 207-646-1555 x 119 [email protected] May 2010 This project was funded in part by a grant from the Piscataqua Region Estuaries Partnership as authorized by the U.S. Environmental Protection Agency’s National Estuary Program. Table of Contents I. Abstract 1 II. Executive Summary 1 III. Introduction 3 IV. Project Goals and Objectives 4 V. Activities 5 VI. Outcomes 7 VII. Appendices 9 I. Abstract This project was a collaboration between the Wells National Estuarine Research Reserve, Great Works Regional Land Trust, and the Great Works River Watershed Coalition to implement five of the “Highest Priority” tasks from the Action Plan of the Great Works River Nonpoint Source Pollution Watershed Management Plan (2007).
    [Show full text]
  • NH Trout Stocking - April 2018
    NH Trout Stocking - April 2018 Town WaterBody 3/26‐3/30 4/02‐4/06 4/9‐4/13 4/16‐4/20 4/23‐4/27 4/30‐5/04 ACWORTH COLD RIVER 111 ALBANY IONA LAKE 1 ALLENSTOWN ARCHERY POND 1 ALLENSTOWN BEAR BROOK 1 ALLENSTOWN CATAMOUNT POND 1 ALSTEAD COLD RIVER 1 ALSTEAD NEWELL POND 1 ALSTEAD WARREN LAKE 1 ALTON BEAVER BROOK 1 ALTON COFFIN BROOK 1 ALTON HURD BROOK 1 ALTON WATSON BROOK 1 ALTON WEST ALTON BROOK 1 AMHERST SOUHEGAN RIVER 11 ANDOVER BLACKWATER RIVER 11 ANDOVER HIGHLAND LAKE 11 ANDOVER HOPKINS POND 11 ANTRIM WILLARD POND 1 AUBURN MASSABESIC LAKE 1 1 1 1 BARNSTEAD SUNCOOK LAKE 1 BARRINGTON ISINGLASS RIVER 1 BARRINGTON STONEHOUSE POND 1 BARTLETT THORNE POND 1 BELMONT POUT POND 1 BELMONT TIOGA RIVER 1 BELMONT WHITCHER BROOK 1 BENNINGTON WHITTEMORE LAKE 11 BENTON OLIVERIAN POND 1 BERLIN ANDROSCOGGIN RIVER 11 BRENTWOOD EXETER RIVER 1 1 BRISTOL DANFORTH BROOK 11 BRISTOL NEWFOUND LAKE 1 BRISTOL NEWFOUND RIVER 11 BRISTOL PEMIGEWASSET RIVER 11 BRISTOL SMITH RIVER 11 BROOKFIELD CHURCHILL BROOK 1 BROOKFIELD PIKE BROOK 1 BROOKLINE NISSITISSIT RIVER 11 CAMBRIDGE ANDROSCOGGIN RIVER 1 CAMPTON BOG POND 1 CAMPTON PERCH POND 11 CANAAN CANAAN STREET LAKE 11 CANAAN INDIAN RIVER 11 NH Trout Stocking - April 2018 Town WaterBody 3/26‐3/30 4/02‐4/06 4/9‐4/13 4/16‐4/20 4/23‐4/27 4/30‐5/04 CANAAN MASCOMA RIVER, UPPER 11 CANDIA TOWER HILL POND 1 CANTERBURY SPEEDWAY POND 1 CARROLL AMMONOOSUC RIVER 1 CARROLL SACO LAKE 1 CENTER HARBOR WINONA LAKE 1 CHATHAM BASIN POND 1 CHATHAM LOWER KIMBALL POND 1 CHESTER EXETER RIVER 1 CHESTERFIELD SPOFFORD LAKE 1 CHICHESTER SANBORN BROOK
    [Show full text]
  • 16817.00 NHDOT PIN: PK 13678E Prepared by (Name/F
    Project Name: ME-NH Connections Study FHWA No: PR-1681(700X) MaineDOT PIN: 16817.00 NHDOT PIN: PK 13678E Prepared by (Name/Firm): Lauren Meek, P.E., HNTB Contract Number: 20090325000000005165 Technical Memorandum No.: 3 - Navigational Needs of the Piscataqua River Date (month/year): August, 2009 Subject: Navigational Data for the Sarah Mildred Long and Portsmouth Memorial Bridges Background This Tech Memo is a supplement to a 2006 HNTB memo that identified issues and preferences for users of the Piscataqua River during the rehabilitation of the Portsmouth Memorial Bridge based on a mail-back navigational survey. This 2006 memo is attached as Appendix A. Purpose The purpose of this memorandum is to: a.) summarize the existing horizontal and vertical clearances and identify the minimum required bridge lifts versus the actual number of bridge lifts of the Sarah Mildred Long and Portsmouth Memorial Bridges; b.) identify the users of the river; c.) analyze the bridge lift records; d.) summarize feedback from users of the river and those responsible for the river’s operation. Additionally, a survey to address the current and future uses has been sent to users of the river. A separate technical memorandum will be prepared with the analysis of the responses when received. 1 Methodology a. Existing Clearances and Frequency of Lifts Table 1 provides the clearances for the three lower Piscataqua River bridges as identified on the National Oceanic and Atmospheric Administration (NOAA) Chart 13283, 20th Edition. The vertical clearance is the distance between mean high water and the underside of the bridge. The Portsmouth Memorial and Sarah Mildred Long Bridges have lift spans that provide additional vertical clearance when opened.
    [Show full text]
  • Notes on Nucula
    [ 629 ] Notes on Nucula. By Kyosuke Hirasaka. Professor of Zoology, Imperial University, Formosa. With 5 Figures in the Text. THESEnotes record the result of work done at the Plymouth Laboratory during the summer of 1926. They deal chiefly with the feeding habits of Nucula, a Proto branch possessing the type of feeding mechanism characteristic of that order, and not found in any other Lamellibranch. During the course of my work I found VIes' interesting paper on the sense organ of Nucula. After studying the organ, I arrived at a different interpretation of its function from that reached by VIes. I owe very much to the kindness of the Director and other members of the staff of the Laboratory, and am also indebted to Professor H. G. Cannon for friendly advice. Three species of Nucula, common in the vicinity of Plymouth, were used, namely, N. nucleus, N. radiata, and N. nitida. Much important work has been done on Nucula nucleus, the most common European species, as well as on N ucula proxima and N ucula delphinodonta, which live on the American side of the Atlantic. Of course, many characters are common to these species, but not all. The material used was dredged in 20 to 30 fathoms off Plymouth by the research steamer" Salpa," N. nucleus"being the most abundant species. The Nucula were kept alive in a small glass dish with a little of the mud that was collected with them. A current of water from the general <tquarium supply was provided, and the animals remained quite healthy during the two and a half months of my stay at the Laboratory.
    [Show full text]
  • Section 5-2 Androscoggin River (Friends of Merrymeeting Bay)
    Maine Department of Environmental Protection Androscoggin River (FOMB) 2018 Summary Data Report Section 5-2 Androscoggin River (Friends of Merrymeeting Bay) Androscoggin River The Androscoggin River is the third largest river in the state of Maine. It has a length of 177 miles and drainage area of 3,450 square miles (2,730 sq. mi. in Maine).1 The Androscoggin River’s headwaters are Umbagog Lake in Maine/New Hampshire. From there it flows into New Hampshire and then back into Maine through the towns of Gilead and Bethel. It continues flowing through the towns and cities of Rumford, Mexico, Dixfield, Jay, Livermore Falls, Lewiston, Auburn, Lisbon, Lisbon Falls, Durham, Brunswick, and Topsham where it joins the Kennebec River at Merrymeeting Bay. The Androscoggin River has a long history of industrial and municipal use over the last 200 years.1 Beginning in the early 1800s, many dams were constructed for mills, primarily in the lower part of the river. By the late 1800s, many textile and lumber mills were in operation, mostly from Lewiston to Brunswick. Pulp and paper mills that are still in operation today were established in the late 1800s in New Hampshire, Rumford, and Jay. Beginning in the late 1920s, Central Maine Power built hydroelectric dams that impounded much of the river from Lewiston to Livermore Falls. Some of these uses continue today. “Along its course to the sea, the river is repeatedly dammed. It receives discharges from industrial and municipal sources, as well as polluted runoff from a variety of sources.”2 Specific problems include mill discharges, combined sewer overflows (CSOs), dam impacts (28 dams exist), and historical sediment toxins.
    [Show full text]
  • Comprehensive Plan Vol. 1, Part 4
    Vol. I, 2009 Edgecomb Comprehensive Plan 24 PART 4 NATURAL RESOURCES CRITICAL NATURAL RESOURCES MAINE’S GROWTH MANAGEMENT GOAL To protect the state's other critical natural resources, including without limitation, wetlands, wildlife and fisheries habitat, sand dunes, shorelands, scenic vistas, and unique natural areas. TOWN VISION To protect Edgecomb’s critical natural resources within and surrounding Edgecomb’s privately- owned undeveloped and unfragmented lands; Edgecomb’s only great pond, Lily Pond; the town- owned Charles and Constance Schmid Land Preserve as well as Edgecomb’s tidal frontage and its scenic vistas. CITIZENS’ VIEW (SURVEY RESPONSE) ● 58%, or 205 respondents, choose to live in Edgecomb because of its proximity to water, clear skies and starry nights. ● 54%, or 177 respondents, enjoy the respect for privacy in Edgecomb. Unfragmented Parcels ● 71%, or 253 respondents, defined rural as (Source: Beginning with Habitat) “the bulk of our land remaining undeveloped, with large tracts of backland, fields and forests.” ● 28%, or 94 respondents, objected to forestry operations “in their back yard.” ● 54%, or 191 respondents, felt that nature preserves are an acceptable trade-off for lost tax revenue. CONDITIONS AND TRENDS The topography of the upper part of the peninsula comprising the Town of Edgecomb is typical of Maine coastline peninsulas. A gently rolling landscape of rocky, clay soil, remaining from land which was heavily wooded before clearing and settlement of the 18th century, is laid over a granite skeleton. A mixture of second and third growth woodland is broken by the pattern of open fields surviving from 18th and 19th century farms when agriculture and fishing were the major sources of livelihood for inhabitants.
    [Show full text]
  • Designation of Critical Habitat for the Gulf of Maine, New York Bight, And
    Federal Register / Vol. 81, No. 107 / Friday, June 3, 2016 / Proposed Rules 35701 the Act, including the factors identified Recovery and State Grants, Ecological Public hearings and public in this finding and explanation (see Services Program, U.S. Fish and information meetings: We will hold two Request for Information, above). Wildlife Service. public hearings and two public informational meetings on this proposed Conclusion Authority rule. We will hold a public On the basis of our evaluation of the The authority for these actions is the informational meeting from 2 to 4 p.m., information presented under section Endangered Species Act of 1973, as in Annapolis, Maryland on Wednesday, 4(b)(3)(A) of the Act, we have amended (16 U.S.C. 1531 et seq.). July 13 (see ADDRESSES). A second determined that the petition to remove Dated: May 25, 2016. public informational meeting will be the golden-cheeked warbler from the Stephen Guertin, held from 3 to 5 p.m., in Portland, List of Endangered and Threatened Maine on Monday, July 18 (see Wildlife does not present substantial Acting Director, U.S. Fish and Wildlife Service. ADDRESSES). We will hold two public scientific or commercial information [FR Doc. 2016–13120 Filed 6–2–16; 8:45 am] hearings, from 3 to 5 p.m. and 6 to 8 indicating that the requested action may p.m., in Gloucester, Massachusetts on BILLING CODE 4333–15–P be warranted. Therefore, we are not Thursday, July 21 (see ADDRESSES). initiating a status review for this ADDRESSES: You may submit comments, species. DEPARTMENT OF COMMERCE identified by the NOAA–NMFS–2015– We have further determined that the 0107, by either of the following petition to list the U.S.
    [Show full text]
  • Official List of Public Waters
    Official List of Public Waters New Hampshire Department of Environmental Services Water Division Dam Bureau 29 Hazen Drive PO Box 95 Concord, NH 03302-0095 (603) 271-3406 https://www.des.nh.gov NH Official List of Public Waters Revision Date October 9, 2020 Robert R. Scott, Commissioner Thomas E. O’Donovan, Division Director OFFICIAL LIST OF PUBLIC WATERS Published Pursuant to RSA 271:20 II (effective June 26, 1990) IMPORTANT NOTE: Do not use this list for determining water bodies that are subject to the Comprehensive Shoreland Protection Act (CSPA). The CSPA list is available on the NHDES website. Public waters in New Hampshire are prescribed by common law as great ponds (natural waterbodies of 10 acres or more in size), public rivers and streams, and tidal waters. These common law public waters are held by the State in trust for the people of New Hampshire. The State holds the land underlying great ponds and tidal waters (including tidal rivers) in trust for the people of New Hampshire. Generally, but with some exceptions, private property owners hold title to the land underlying freshwater rivers and streams, and the State has an easement over this land for public purposes. Several New Hampshire statutes further define public waters as including artificial impoundments 10 acres or more in size, solely for the purpose of applying specific statutes. Most artificial impoundments were created by the construction of a dam, but some were created by actions such as dredging or as a result of urbanization (usually due to the effect of road crossings obstructing flow and increased runoff from the surrounding area).
    [Show full text]
  • New Hampshire River Protection and Energy Development Project Final
    ..... ~ • ••. "'-" .... - , ... =-· : ·: .• .,,./.. ,.• •.... · .. ~=·: ·~ ·:·r:. · · :_ J · :- .. · .... - • N:·E·. ·w··. .· H: ·AM·.-·. "p• . ·s;. ~:H·1· ··RE.;·.· . ·,;<::)::_) •, ·~•.'.'."'~._;...... · ..., ' ...· . , ·....... ' · .. , -. ' .., .- .. ·.~ ···•: ':.,.." ·~,.· 1:·:,//:,:: ,::, ·: :;,:. .:. /~-':. ·,_. •-': }·; >: .. :. ' ::,· ;(:·:· '5: ,:: ·>"·.:'. :- .·.. :.. ·.·.···.•. '.1.. ·.•·.·. ·.··.:.:._.._ ·..:· _, .... · -RIVER~-PR.OT-E,CT.10-N--AND . ·,,:·_.. ·•.,·• -~-.-.. :. ·. .. :: :·: .. _.. .· ·<··~-,: :-:··•:;·: ::··· ._ _;· , . ·ENER(3Y~EVELOP~.ENT.PROJ~~T. 1 .. .. .. .. i 1·· . ·. _:_. ~- FINAL REPORT··. .. : .. \j . :.> ·;' .'·' ··.·.· ·/··,. /-. '.'_\:: ..:· ..:"i•;. ·.. :-·: :···0:. ·;, - ·:··•,. ·/\·· :" ::;:·.-:'. J .. ;, . · · .. · · . ·: . Prepared by ~ . · . .-~- '·· )/i<·.(:'. '.·}, •.. --··.<. :{ .--. :o_:··.:"' .\.• .-:;: ,· :;:· ·_.:; ·< ·.<. (i'·. ;.: \ i:) ·::' .::··::i.:•.>\ I ··· ·. ··: · ..:_ · · New England ·Rtvers Center · ·. ··· r "., .f.·. ~ ..... .. ' . ~ "' .. ,:·1· ,; : ._.i ..... ... ; . .. ~- .. ·· .. -,• ~- • . .. r·· . , . : . L L 'I L t. ': ... r ........ ·.· . ---- - ,, ·· ·.·NE New England Rivers Center · !RC 3Jo,Shet ·Boston.Massachusetts 02108 - 117. 742-4134 NEW HAMPSHIRE RIVER PRO'l'ECTION J\ND ENERGY !)EVELOPMENT PBOJECT . -· . .. .. .. .. ., ,· . ' ··- .. ... : . •• ••• \ ·* ... ' ,· FINAL. REPORT February 22, 1983 New·England.Rivers Center Staff: 'l'bomas B. Arnold Drew o·. Parkin f . ..... - - . • I -1- . TABLE OF CONTENTS. ADVISORY COMMITTEE MEMBERS . ~ . • • . .. • .ii EXECUTIVE
    [Show full text]
  • Shorey's Brook Dam to Be Removed in York County
    FALL 2011/ WINTER 2012 THE NEWSLETTER OF MAINE RIVERS Shorey’s Brook Dam to be Removed in York County Much of the 4.3-mile Shorey’s in August 2010. Led by project Brook in South Berwick has manager and stewardship not actually looked like a coordinator Darrell DeTour, typical brook for many years. GWRLT has gathered many !e culprit is a dam perched partners, including the Wells several hundred yards below National Estuarine Research Route 101. Built as early as Reserve, the National the 1630s, it has morphed over Oceanic and Atmospheric the centuries into a decrepit Administration, Conservation hodgepodge of industrial Decrepit and inconspicuous, the Shorey’s Brook dam Law Foundation, the US Fish material, impenetrable by is di!cult to capture in a picture. Right, Tin Smith and Wildlife Service, and anadromous "sh including leads a tour of the restoration site. others, to plan, permit, and alewives, smelt, and Atlantic fund the removal. salmon. A dam removal is currently on track to take place !is project promises to be a success in Maine both for in November to restore the brook. In early October we reconnecting long-fragmented habitat and as a model to toured the dam removal site with members of Great Works inspire other entities—land trusts, municipalities, and Regional Land Trust and other project partners. others—who may be considering a dam removal project !e Great Works Regional Land Trust (GWRLT) acquired but are daunted by the perceived complexity and cost. To the 27-acre Raymond & Simone Savage Wildlife Preserve date this project has drawn little controversy and is on that surrounds Shorey’s Brook in 2008.
    [Show full text]
  • Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America
    THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(2):83–104 (June 30, 2006) Cretaceous Acila (Truncacila) (Bivalvia: Nuculidae) from the Pacific Slope of North America RICHARD L. SQUIRES Department of Geological Sciences, California State University, Northridge, California 91330-8266, USA AND LOUELLA R. SAUL Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA Abstract. The Cretaceous record of the nuculid bivalve Acila (Truncacila) Grant & Gale, 1931, is established for the first time in the region extending from the Queen Charlotte Islands, British Columbia, southward to Baja California, Mexico. Its record is represented by three previously named species, three new species, and one possible new species. The previously named species are reviewed and refined. The cumulative geologic range of all these species is Early Cretaceous (late Aptian) to Late Cretaceous (early late Maastrichtian), with the highest diversity (four species) occurring in the latest Campanian to early Maastrichtian. Acila (T.) allisoni, sp. nov., known only from upper Aptian strata of northern Baja California, Mexico, is one of the earliest confirmed records of this subgenus. ‘‘Aptian’’ reports of Trun- cacila in Tunisia, Morocco, and possibly eastern Venzeula need confirmation. Specimens of the study area Acila are most abundant in sandy, shallow-marine deposits that accumulated under warm- water conditions. Possible deeper water occurrences need critical evaluation. INTRODUCTION and Indo-Pacific regions and is a shallow-burrowing de- posit feeder. Like other nuculids, it lacks siphons but has This is the first detailed study of the Cretaceous record an anterior-to-posterior water current (Coan et al., 2000).
    [Show full text]