Characterisation of Dissimilar Friction Stir Welds Between 5754 Aluminium Alloy and C11000 Copper

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of Dissimilar Friction Stir Welds Between 5754 Aluminium Alloy and C11000 Copper NELSON MANDELA METROPOLITAN UNIVERSITY CHARACTERISATION OF DISSIMILAR FRICTION STIR WELDS BETWEEN 5754 ALUMINIUM ALLOY AND C11000 COPPER AKINLABI, Esther Titilayo i COPYRIGHT STATEMENT The copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the Nelson Mandela Metropolitan University, and that no information derived from it may be published without the author’s prior consent, unless correctly referenced. ii CHARACTERISATION OF DISSIMILAR FRICTION STIR WELDS BETWEEN 5754 ALUMINIUM ALLOY AND C11000 COPPER A thesis submitted in compliance with the full requirements for the degree of Doctor Technologiae: Engineering: Mechanical Akinlabi, Esther Titilayo Submitted to the Faculty of Engineering, The Built Environment and Information Technology Nelson Mandela Metropolitan University Port Elizabeth, South Africa December, 2010 Promoters Prof. Annelize Els-Botes Prof. Patrick McGrath iii AUTHOR’S DECLARATION I, Akinlabi Esther Titilayo hereby declare that: The work done in this thesis is my own; All sources used or referred to have been documented and recognized; and This thesis has not been previously submitted in full or partial fulfilment of the requirements for an equivalent qualification at any other educational institution. Author’s Signature Date: December, 2010 iv ACKNOWLEDGEMENT Unto the Lord be the glory, honour, and adoration for his infinite mercies and favour upon my life. Sincere gratitude and appreciation goes to my promoter, Prof Annelize Els-Botes, for her guidance and support throughout the period of study. I am grateful to Prof Andre Venter of the Physics Department for his assistance with the electrical resistance measurements; Dr Ernst Ferg of the Chemistry Department for his assistance with the X-Ray Diffraction analysis; Dr Petersen Jacques for the statistical analysis; and Mr G. C. Erasmus for his assistance in the Metallurgy lab. In addition, I would like to express my appreciation to Dr T. Hua and Mr L. Von Wielligh for operating the Friction Stir Welding platform; and to members of the staff of the Mechanical Engineering workshop for their ceaseless support in the use of equipment. Furthermore, the input of the Head Of Department and my Co-Promoter - Prof P. J. McGrath, Director of Automotive Components Technology Station (ACTS) Prof D. G. Hattingh, and members of staff. These people are all noted and appreciated. Special thanks must go to Dr H. Lombard for her input at the preliminary stages of the research work, and to Dr S. Krishnan for her technical advice. I would also like to thank my fellow researchers – the currently registered Masters’ and Doctoral students for their moral support. Special gratitude also goes to my parents, Chief Dare Olorunfemi (1945-2006), who was a source of inspiration to me in my academic career. You encouraged me to be an engineer like you, I miss you dad. To my mum – Mrs Felicia Olorunfemi and my parents-in-law - Mr and Mrs S.O. Akinlabi, I say a big “Thank you”, for your support and prayers. Also, my appreciation goes to my uncle Barr J. F. Olorunfemi, my siblings and their spouses, - Dr and Mrs Gbenga Olorunfemi, Mr and Mrs Peter Oloba and Mr and Mrs Abraham Ilugbuhi- for their moral support. As anticipated, my spiritual mentors Rev and Pastor Mrs Alfred Oladapo and Pastor and Mrs Kunle Oyeniyi of the Divine Grace Baptist Church Woji, Port Harcourt v Nigeria, and Pastors Vic and Lathicia Klackers of Church on the Way, Summerstrand. My humble thanks for your prayers and support. I remain grateful to family friends – Dr and Mrs K. A. Olowu, Dr and Mrs A. A. Ogungbire, Dr and Mrs Oluwatobi Oluwafemi, Mr and Mrs F. A. Emuze, Prof and Dr (Mrs) A. A. Olufayo, Dr and Mrs P. A. Olubambi, Dr and Mrs Kutu, Engr and Mrs E. I. Obieje, Mr and Mrs D. R. Pienaar, Mr and Mrs Toba Dada, Mr and Mrs A. O. Aiyetan, Mr and Mrs A. B. Taiwo, Mr and Mrs E.A Taiwo, Mr and Mrs O.F. Inegbedion, Mr and Mrs A. Adelakun, Mr and Mrs R.A. Jimoh, Oluwole Olufayo, Bukola Makinwa, Seun Oshoniyi, Kayode Oyedemi, and Manka Kariuki for supporting me whenever the need has arisen. I would like to thank the National Research Foundation (NRF) of South Africa, Research Capacity Development (RCD) unit and the Automotive Components Technology Station (ACTS) of NMMU for their financial support. Finally, and most importantly, to the most significant adviser, supporter, and financier in my life, my love and husband, Mr Stephen Akinlabi, who is always there to encourage and shower me with love when the going gets tough. I sincerely appreciate you for all your financial support to enable me attend the 8th International Conference on Trends in Welding Research organized by ASM International at Georgia, the United States of America; between June 1-6, 2008; and the 8th International Friction Stir Welding Symposium organized by The Welding Institute (TWI) at Hamburg, Germany between May 18-20, 2010. To my lovely kids - Stephen Akinkunmi and Stephanie Omolabake, I thank you for your understanding. From the very depth of my heart, I say that I am truly fortunate to have you, I am highly humbled by your co-operation; and you remain my pride and joy. I love you all. vi ABSTRACT Characterisation of Dissimilar Friction Stir Welds Between 5754 Aluminium Alloy and C11000 Copper Akinlabi, E.T. Faculty of Engineering, the Built Environment and Information Technology P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa December, 2010 Friction Stir Welding (FSW) is a solid state welding process invented and patented by The Welding Institute (TWI) in 1991, for joining ferrous and non-ferrous materials1. The FSW of Aluminium and its alloys has been commercialised; and recent interest is focused on joining dissimilar materials. However, in order to commercialise the process, research studies are required to characterise and establish process windows. This research work through material characterisation of the welded joints establishes a process window for the Friction Stir welding of 5754 Aluminium Alloy and C11000 Copper. Furthermore, preliminary studies83,85 on the FSW of aluminium and copper have revealed the presence of intermetallic compounds which are detrimental to the weld qualities. This research work is also aimed at establishing process parameters that will result in limited or no intermetallic formation in the weld. The joint integrity of the resulting welds will also be correlated with the input process parameters. Based on the preliminary investigations conducted, a final weld matrix consisting of twenty seven welds was produced by varying the rotational speed between 600 and 1200 rpm, and the feed rate between 50 and 300 mm/min using three different shoulder diameter tools – 15, 18 and 25 mm to compare the heat input into the welds and to achieve the best results. The welds were characterised through microstructural evaluation, tensile testing, microhardness profiling, X-Ray Diffraction analysis, electrical resistivity and statistical analysis – in order to establish the inter- relationship between the process parameters and the weld qualities. vii Microstructural evaluation of the weld samples revealed that the interfacial regions are characterised by mixture layers of aluminium and copper; while 33 % of the tensile samples are within the acceptable range (> 75 % joint efficiency). High Vickers microhardness values were measured at the joint interfaces, which corresponded with the intermetallic compounds. The Energy Dispersive Spectroscopy analysis revealed the presence of thin layers of intermetallics in nanoscale at the interfacial regions. The diffractograms of the X-Ray Diffraction analysis showed small peaks for intermetallics in some of the welds. Low electrical resistivities were measured at the joint interfaces. The statistical analysis showed that the downward vertical force, (Fz) can significantly influence the resulting weld qualities. An overall summary of the analysis of the weld qualities - with respect to the shoulder diameter tools employed showed that the 18 mm shoulder diameter tool is most appropriate among the three shoulder diameters considered, and a process window of medium spindle speed of 950 rpm and low-to-medium feed rate between 50 and 150 mm/min is established for FSW of Aluminium and Copper. Welds produced at 1200 rpm and 300 mm/min with low heat input did not have intermetallics formed at the joint interface. viii TABLE OF CONTENTS Copyright Statement ii Author’s Declaration iv Acknowledgement v Abstract vii Abbreviations xiii Nomenclature xiv List of Figures xv List of Tables xxi Glossary of Terms xxiii CHAPTER 1 INTRODUCTION 1 1.1 Introduction ................................................................................................. 1 1.2 Problem Statement ..................................................................................... 2 1.3 Aim ............................................................................................................. 2 1.4 Objectives ................................................................................................... 3 1.5 The Hypothesis Statement.......................................................................... 3 1.6 Research Methods ...................................................................................... 3 1.7 Delimitation ................................................................................................. 4 1.8 Significance of the Research .....................................................................
Recommended publications
  • Microstructure, Texture, Electrical and Mechanical Properties of AA-6063 Processed by Multi Directional Forging
    materials Article Microstructure, Texture, Electrical and Mechanical Properties of AA-6063 Processed by Multi Directional Forging Alireza Dashti 1, Mohammad Hossein Shaeri 1,* , Reza Taghiabadi 1, Faramarz Djavanroodi 2,3, Farzaneh Vali Ghazvini 4 and Hamid Javadi 4 1 Department of Materials Science and Engineering, Imam Khomeini International University (IKIU), Qazvin 3414916818, Iran; [email protected] (A.D.); [email protected] (R.T.) 2 Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia; [email protected] 3 Department of Mechanical Engineering, Imperial Collage London, London SW7, UK 4 Ecole de Technologie Supérieure, Department of Mechanical Engineering, Montréal, QC H3C 1K3, Canada; [email protected] (F.V.G.); [email protected] (H.J.) * Correspondence: [email protected]; Tel.: +98-283-390-1190 Received: 30 October 2018; Accepted: 27 November 2018; Published: 29 November 2018 Abstract: In current research, the effect of the multi-directional forging (MDF) process on the microstructure, texture, mechanical and electrical properties of AA-6063 under different heat treatment conditions at various MDF temperatures was studied. The annealed AA-6063 alloy was processed up to three passes of MDF at ambient temperature. Three passes of this process were also applied to the solution-treated AA-6063 at ambient temperature and 177 ◦C. Microstructural investigations demonstrated that the MDF process led to a significant reduction in the average grain size as well as a considerable increase in the fraction of low angle grain boundaries. Texture analysis revealed that copper and Goss textures were mainly developed within the annealed and solution-treated samples of AA-6063, respectively.
    [Show full text]
  • Microstructures and Mechanical Properties of AA- 5754 and AA-6061 Aluminum Alloys Formed by Single Point Incremental Forming Process
    Microstructures and Mechanical properties of AA- 5754 and AA-6061 Aluminum alloys formed by Single Point Incremental Forming Process Sahand Pourhassan Shamchi Submitted to the Institute of Graduate Studies and Research in partial fulfillment of the requirements for the Degree of Master of Science in Mechanical Engineering Eastern Mediterranean University September 2014 Gazimağusa, North Cyprus Approval of the Institute of Graduate Studies and Research _____________________________________ Prof. Dr. Elvan Yilmaz Director I certify that this thesis satisfies the requirements as a thesis for the degree of Master of Science in Mechanical Engineering. ________________________________ Prof. Dr. Uğur Atikol Chair, department of Mechanical Engineering We certify that we have read this thesis and that in our opinion it is fully adequate in scope and quality as a thesis for the degree of Master of Science in Mechanical Engineering. _____________________________________ Asst. Prof. Dr. Ghulam Hussain Supervisor Examining Committee 1. Prof. Dr. Fuat Egelioğlu __________________________ 2. Prof. Dr. Majid Hashemipour __________________________ 3. Asst. Prof. Dr.Ghulam Hussain __________________________ ABSTRACT Single point incremental forming (SPIF) process is considered as a cost-effective method to fabricate sheet metals because there is no need for dedicated dies which are used in other conventional processes. Due to the capability of forming sheets on CNC machines, the flexibility of this process is high which allows the operator to modify the geometry of the product much easier than the other methods like stamping. This study is carried out to investigate the effects of different forming parameters on the mechanical properties and microstructures of formed parts. The effects of wall angle, feed rate, spindle speed and lubrication are explored on AA5754 and AA6061 Aluminium Alloys.
    [Show full text]
  • Dissimilar Materials of Friction Stir Welding - Overview
    International Journal of Engineering Trends and Technology (IJETT) – Volume-44 Number-3 -February 2017 Dissimilar Materials of Friction Stir Welding - Overview K. Nagendra Kumar1, P. Ravikanth Raju2 1Asistance Professor, Department of Mechanical Engineering, Bhaskar Engineering College, Yenkapally, Moinabad (M), R.R.(Dist), Hyderabad-500075, Telangana State, India. 2Department of Mechanical Engineering, Anurag Group of Institutions, Venkatapur (V), Ghatkesar (M), R.R. Dist -500088, Telangana State, India Abstract - Friction Stir Welding is a joining process welding of metal-to-polymer is given greater which involves the deformation of materials. In this emphasis in this section than metal to- metal and process tool will generate the pressure and polymer-to-polymer welding, since metal-to- temperature and form solid state weld. This process polymer is a novel technique and there are fewer is suitable for joining different materials, different publications in this area [15]. The schematic mechanical and chemical properties, and different representation of FSW process is shown in Fig. material structures. Fusion welding processes 1. exhibits poor weldability by Welding of dissimilar aluminium alloys. Because of thin oxide layer formation, oxide layer tends to thicken at higher temperatures on the surface of aluminium alloys. This review addresses the Friction stir welding overview which includes the basic concept of the process, microstructure formation, influencing process parameters, typical defects in FSW process and some recent applications. The paper will also discuss some of the process variants of FSW such as Friction Stir Processing. Keywords - Tool rotational speed, Friction Stir welding, dissimilar aluminium alloy. 1. INTRODUCTION Fig 1: FSW Process [14] FSW was invented in UK in December, 1991 at The shoulder is pressed against the surface of the The Welding Institute (TWI).
    [Show full text]
  • THE VACUUM CHAMBERIN the INTERACTION REGIÓN of PARTIÓLE COLLIDERS: a HISTORICAL STUDY and DEVELOPMENTS IMPLEMENTED in the Lhcb EXPERIMENT at CERN
    Departamento de Física Aplicada a la Ingeniería Industrial Escuela Técnica Superior de Ingenieros Industriales THE VACUUM CHAMBERIN THE INTERACTION REGIÓN OF PARTIÓLE COLLIDERS: A HISTORICAL STUDY AND DEVELOPMENTS IMPLEMENTED IN THE LHCb EXPERIMENT AT CERN Autor: Juan Ramón Klnaster Refolio Ingeniero Industrial por la E.T.S.I. Industriales Universidad Politécnica de Madrid Directores: Raymond J.M. Veness Ph; D. Mechanics of Materials and Plasticity University of Leicester (England) Linarejos Gámez Mejías Doctor Ingeniero Industrial por la E.T.S.I.I. Universidad Politécnica de Madrid 2004 Whatever you dream, you can do, begin it! Boldness has power, magic and genius in it Goethe Homo sum: humani nihil a me alienum puto (Je suis homme, et rien de ce que est humain ne m'est étraxiger) Terence Loving softly and deeply... Elsje Tout proche d'étre un Boudha paresseusement réve le vieux pin Issa En nuestra cabeza, en nuestro pecho es donde están los circos en que, vestidos con los disfraces del tiempo, se enfrentan la Libertad y el Destino Jünger This Thesis has been possible thanks to the support of many people that duñng last 15 months have helped me in different ways. I would like to thank my co- lleagues R. Aehy, P. Bryant, B. Calcagno, G. Corii, A. Gerardin, G. Foffano, M. Goossens, C. Hauvüler, H. Kos, J. Kruzelecki, P. Lutkiewicz, T. Nakada, A. Rossi, J.A. Rubio, B. Szybinski, D. Tristram, B. Ver- solatto, L. Vos and W. Witzeling for their contribu- tions in different moments. Neither would I have ever managed to finish it without those moments of peace shared with mes fréres d'Independance et Verité á VOr :.
    [Show full text]
  • Welding of Magnesium Alloys
    Chapter 6 Welding of Magnesium Alloys Parviz Asadi, Kamel Kazemi-Choobi and Amin Elhami Additional information is available at the end of the chapter http://dx.doi.org/10.5772/47849 1. Introduction Magnesium is the sixth most abundant element on the Earth’s surface, with virtually inex- haustible supplies in the oceans. It is the third most plentiful element dissolved in seawater, with an approximate concentration of 0.14% (Busk, 1987). Over recent years the industrial output of magnesium alloys has been rising by almost 20% per annum. Magnesium and its alloys, as the lightest structural material, are about 40% lighter than aluminium and as much as about 78% lighter than steel. It is demonstrated that using magnesium alloys results in a 22–70% weight reduction, compared to using alternative materials (Kulekci, 2008). Magne- sium alloys have excellent specific strength, excellent sound damping capabilities, good cast-ability, hot formability, excellent machinability, good electromagnetic interference shielding, and recyclability (Haferkamp et al., 2000), (Mordike and Ebert, 2001), (Pastor et al., 2000). Moreover, magnesium ignites with difficulty in air due to its high heat capacity. Some disadvantages of magnesium are presented based on the following, Low elastic modulus; High degree of shrinkage on solidification; High chemical reactivity. Additionally, these alloys have limited fatigue and creep resistance at elevated temperatures (Mordike and Ebert, 2001). Because of the hexagonal close-packed (HCP) crystal structure, magnesium alloys also have a limited ductility and cold workability at room temperature (Sanders et al., 1999). These alloys have about the same corrosion resistance in common environments as mild steel, but are less corrosion resistant than aluminium alloys (Busk, 1987).
    [Show full text]
  • DEVELOPMENT and CHARACTERIZATION of Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella Communis) PARTICULATE COMPOSITES
    DEVELOPMENT AND CHARACTERIZATION OF Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella communis) PARTICULATE COMPOSITES BY MICHEAL NEBOLISA NWABUFOH THE DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA JUNE, 2015. DEVELOPMENT AND CHARACTERIZATION OF Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella communis) PARTICULATE COMPOSITES BY Michael Nebolisa NWABUFOH, B. Eng (Met), E.S.U.T M.Sc/Eng/01731/2010-2011 A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA. IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF A MASTER DEGREE IN METALLURGICAL AND MATERIALS ENGINEERING. DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING, FACULTY OF ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA. NIGERIA. JUNE, 2015 ii Declaration I hereby declare that, this research work titled "Development and Characterization of Al-3.7%Cu-1.4%Mg Alloy/Periwinkle Shell (Turritella communis) Ash Particulate Composites" was carried out by me, and the results of this research were obtained by tests carried out in the laboratory and all quotations are indicated by references. Name of Student Signature Date iii Certification This research work titled "Development and Characterization of Al-3.7%Cu- 1.4%Mg/Periwinkle (Turritella communis) Shell Ash Particulate Composites" by Nwabufoh M. Nebolisa with Registration Number M.Sc/Eng/01731/2010-2011 meets the regulations guiding the Award of Master degree in Metallurgical and Materials Engineering at Ahmadu Bello University, Zaria. ____________________ ________________ Prof. S.B. Hassan Date Chairman, Supervisor committee ____________________ _______________ Prof. G.B. Nyior Date Member, Supervisor committee ____________________ _______________ Prof. S.A. Yaro Date Head of Department _____________________ ________________ Prof.
    [Show full text]
  • 1 Multi-Objective Optimization of Process Parameters in TIG-MIG
    Multi-Objective Optimization of Process Parameters in TIG-MIG Welded AISI 1008 Steel For Improved Structural Integrity CYNTHIA SAMUEL ABIMA University of Johannesburg STEPHEN AKINWALE AKINLABI Walter Sisulu University Nkosinathi Madushele University of Johannesburg Olawale Samuel FATOBA ( [email protected] ) University of Johannesburg Faculty of Engineering and Built Environment https://orcid.org/0000-0001- 6931-951X ESTHER TITILAYO AKINLABI Pan African University for Life and Earth Sciences Institute Research Article Keywords: Grey-based Taguchi method, Multi-objective optimization, Tensile strength, TIG-MIG hybrid welding, Yield strength Posted Date: May 6th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-486430/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Multi-Objective Optimization of process parameters in TIG-MIG welded AISI 1008 steel for improved structural integrity Cynthia Samuel Abimaa, Stephen Akinwale Akinlabib, Nkosinathi Madushelea, Olawale Samuel Fatobac* , Esther Titilayo Akinlabid a Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa. b Mechanical Engineering, Walter Sisulu University, Butterworth, South Africa c Kent State University, College of Aeronautics and Engineering, USA. d Pan African University for Life and Earth Sciences Institute, Ibadan, Nigeria Cynthia Samuel Abima: [email protected] Stephen Akinwale Akinlabi: [email protected] Nkosinathi Madushele: [email protected] Olawale Samuel Fatoba*: [email protected] Esther Titilayo Akinlabi: [email protected] 1 Abstract This study investigates a parametric multi-objective optimization of the Tungsten Inert Gas-Metal Inert Gas (TIG-MIG) hybrid welding of AISI 1008 mild steel joints. A combined grey relational system theory and the Taguchi method was used for process optimization towards achieving a set of process parameter that maximizes both ultimate tensile strength and 0.2% yield strength for structural applications.
    [Show full text]
  • Influence of Grain Refinement by Al-5Ti-1B on the Microstructure and Mechanical Properties of Aluminium Alloy A356 18-29 A
    Sirte University Scientific Journal (SUSJ) )Periodical Academic Refereed( Applied Sciences Volume 10, Issue No. 1, June 2020 General Director Prof. Ahmed F. Mahgoub Editor in Chief Dr. Abdalsalam M. Muftah Editorial Board Dr. Hamid M. Younis Dr. Soliman M. Alshater Dr. Algaddafi S. Alpotte Dr. Khalifa M. Fadil Abdalmawla A.Ali Dr. Abobaker Eljilani Abobaker Sirte University Scientific Journal Post Box 674 Sirte, Libya Tel: 00218545265704-1178 Fax:00218545262152-1178 Email: [email protected] Sirte University Scientific Journal (SUSJ) A scientific refereed journal issued on behalf of Sirte University in a number of issues throughout the year interested in publishing research and documented studies in the field of humanities and applied sciences for university faculty members and other universities from inside and outside Libya . The views expressed in the publication are the individual opinion of the author(s) and they neither represents nor reflect the opinion of the editor and editorial board or Sirte University. The University reserves all copyright and, no re-print or publication of the whole or parts of the journal is allowed without prior permission. II Sirte University Scientific Journal (SUSJ) Paper Submission . Sirte University Scientific Journal (SUSJ) is referred journal issued by the Sirte University in the fields of humanities and applied sciences in English. The submission file is in Microsoft Word (2007 or later version) file format and should be submitted electronically as e-mail attachments along with four hard copies to the editor of the SUSJ at [email protected]. Papers should be approximately up to 20 pages long (including tables, figure, references and appendixes).
    [Show full text]
  • 5754 Aluminium Technical Datasheet Commercial Aluminium Alloy Service
    5754 Aluminium Technical Datasheet Commercial Aluminium Alloy Service. Quality. Value. Applications Key features: • Shipbuilding • Excellent resistance to seawater & industrial chemical • Food processing equipment corrosion • Treadplate • Higher in strength than 5251 • Vehicle bodies • Excellent weldability • Fishing industry equipment • Very good workability • Welded chemical & nuclear structures Product Description Related Material Specifications 5754 aluminium alloy offers extremely good resistance to • A95754 • Al Mg3 both seawater corrosion and industrially polluted • Al 3.1Mg Mn Cr • AW-5754 atmospheres. Higher in strength than 5251, the alloy has excellent weldability and very good workability. 5754 is used in applications in market sectors such as marine, oil, Weldability & gas, chemical and nuclear. Excellent weldabilty (brazability is poor) Availability Corrosion Resistance Highly resistant to both seawater and industrial chemical Plate, Sheet attack. Chemical Composition (weight %) Weight (%) Mn Fe Mg Si Al min 2.60 Bal max. 0.50 0.40 3.20 0.40 Bal Mechanical Properties Physical Properties Tensile Strength 245 - 290 MPa Density 2.66 g/cm³ Elongation A50 mm 10 - 15% Melting Point 600°C Proof Stress 185 - 245 MPa Thermal Expansion 24 x10-6 /K Modulus of Elasticity 68 GPa Thermal Conductivity 147 W/m.K The properties above are for material in the H22 condition Technical Assistance Our knowledgeable staff backed up by our resident team of qualified metallurgists and engineers, will be pleased to assist further on any technical topic. www.smithmetal.com [email protected] Biggleswade Birmingham Bristol Chelmsford Gateshead Horsham Leeds 01767 604604 0121 7284940 0117 9712800 01245 466664 0191 4695428 01403 261981 0113 3075167 London Manchester Nottingham Norwich Redruth Verwood General 020 72412430 0161 7948650 0115 9254801 01603 789878 01209 315512 01202 824347 0845 5273331 1930 All information in our data sheet is based on approximate testing and is stated to the best of our knowledge and belief.
    [Show full text]
  • The Production of Metal Mirrors for Use in Astronomy
    The Production of Metal Mirrors for use in Astronomy A Thesis Submitted to the University of London for the Degree of Doctor of Philosophy by David Brooks UCL Optical Science Laboratory Department of Physics and Astronomy University College London 2001 ProQuest Number: U643140 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643140 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 The Production of Metal Mirrors for use in Astronomy Abstract This thesis demonstrates the possibility of manufacturing larger mirrors from nickel coated aluminium with a considerable cost and risk benefits compared to zero expansion glass ceramic or borosilicate. Constructing large mirrors from aluminium could cut the cost of production by one third. A new generation of very large telescopes is being designed, on the order of 100 meters diameter. The proposed designs are of mosaic type mirrors similar to the Keck Telescope primary. The enormous mass of glass required inhibits the construction, simply by its cost and production time. Very little research has been done on the processes involved in the production of large metal mirrors.
    [Show full text]
  • DRAFT Pren 286-4
    SLOVENSKI STANDARD oSIST prEN 286-4:2019 01-november-2019 Enostavne neogrevane (nekurjene) tlačne posode, namenjene za zrak ali dušik - 4. del: Tlačne posode iz aluminijevih zlitin za zračne zavore in pomožno pnevmatsko opremo na tirnih vozilih Simple unfired pressure vessels designed to contain air or nitrogen - Part 4: Aluminium alloy pressure vessels designed for air braking equipment and auxiliary pneumatic equipment for railway rolling stock Einfache unbefeuerte DruckbehälteriTeh STA fürN DLuftA oderRD Stickstoff PREV - TeilIE W4: Druckbehälter aus Aluminiumlegierungen für Druckluftbremsanlagen(standards.i tundeh .pneumatischeai) Hilfseinrichtungen in Schienenfahrzeugen oSIST prEN 286-4:2019 https://standards.iteh.ai/catalog/standards/sist/fad6ce8c-8fbd-4c96-98f9- Récipients à pression simples, non24b 8soumisf6b90ff4/o sàis tla-pr eflamme,n-286-4-20 destinés19 à contenir de l'air ou de l'azote - Partie 4 : Récipients à pression en alliages d'aluminium destinés aux équipements pneumatiques de freinage et aux équipements pneumatiques auxiliaires du matériel roulant ferroviaire Ta slovenski standard je istoveten z: prEN 286-4 ICS: 23.020.32 Tlačne posode Pressure vessels 45.040 Materiali in deli za železniško Materials and components tehniko for railway engineering 77.150.10 Aluminijski izdelki Aluminium products oSIST prEN 286-4:2019 en,fr,de 2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno. oSIST prEN 286-4:2019 iTeh STANDARD PREVIEW (standards.iteh.ai) oSIST prEN 286-4:2019
    [Show full text]
  • Couplant Effect and Evaluation of FSW AA6061-T6 Butt Welded Joint
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed: Date). Couplant Effect and Evaluation of FSW AA6061-T6 Butt Welded Joint By Itai Mumvenge 217093863 Submitted in partial fulfilment of the requirements for the degree of Master of Engineering in Mechanical Engineering In the Department of Mechanical Engineering Science Of the Faculty of Engineering and the Built Environment At the University of Johannesburg, South Africa Supervisor: Dr Stephen A. Akinlabi Co-Supervisor: Dr Peter M. Mashinini November, 2017 i 1. DEDICATION This dissertation is dedicated to my late grandmother Esnath Mvenge ii 2. COPYRIGHT STATEMENT The copyright of this dissertation is owned by the University of Johannesburg, South Africa. No information derived from this publication may be published without the author’s prior consent, unless correctly referenced. ………………………………….. 25 November 2017 Author’s Signature Date: iii 3. AUTHOR DECLARATION I, Mumvenge Itai hereby declare that the research work documented in this dissertation is my own, and no portion of the work has been submitted in support of an application for another degree or qualification at this or any other university or institute of learning.
    [Show full text]