Acetylation of Estrogen Receptor by P300 at Lysines 266 and 268

Total Page:16

File Type:pdf, Size:1020Kb

Acetylation of Estrogen Receptor by P300 at Lysines 266 and 268 0888-8809/06/$15.00/0 Molecular Endocrinology 20(7):1479–1493 Printed in U.S.A. Copyright © 2006 by The Endocrine Society doi: 10.1210/me.2005-0531 Acetylation of Estrogen Receptor ␣ by p300 at Lysines 266 and 268 Enhances the Deoxyribonucleic Acid Binding and Transactivation Activities of the Receptor Mi Young Kim, Eileen M. Woo, Yee Ting Esther Chong, Daria R. Homenko, and W. Lee Kraus Department of Molecular Biology and Genetics (M.Y.K., Y.T.E.C., D.R.H., W.L.K.), Cornell University, Ithaca, New York 14853; Laboratory of Chromatin Biology and Epigenetics (E.M.W.), The Rockefeller University, and Department of Pharmacology (W.L.K.), Weill Medical College of Cornell University, New York, New York 10021 Using a variety of biochemical and cell-based ap- tive enzymes (i.e. class III deacetylases, such as proaches, we show that estrogen receptor ␣ (ER␣) sirtuin 1). Acetylation at Lys266 and Lys268, or sub- is acetylated by the p300 acetylase in a ligand- and stitution of the same residues with glutamine (i.e. steroid receptor coactivator-dependent manner. K266/268Q), a residue that mimics acetylated ly- Using mutagenesis and mass spectrometry, we sine, enhances the DNA binding activity of ER␣ in identified two conserved lysine residues in ER␣ EMSAs. Likewise, substitution of Lys266 and (Lys266 and Lys268) that are the primary targets of Lys268 with glutamine enhances the ligand-depen- p300-mediated acetylation. These residues are dent activity of ER␣ in a cell-based reporter gene acetylated in cells, as determined by immunopre- assay. Collectively, our results implicate acetyla- cipitation-Western blotting experiments using an tion as a modulator of the ligand-dependent gene antibody that specifically recognizes ER␣ acety- regulatory activity of ER␣. Such regulation is likely lated at Lys266 and Lys268. The acetylation of ER␣ to play a role in estrogen-dependent signaling out- by p300 is reversed by native cellular deacetylases, comes in a variety of estrogen target tissues in including trichostatin A-sensitive enzymes (i.e. both normal and pathological states. (Molecular class I and II deacetylases) and nicotinamide ade- Endocrinology 20: 1479–1493, 2006) nine dinucleotide-dependent/nicotinamide-sensi- HE GENE-REGULATORY ACTIONS of estrogens tinct gene-regulatory activities under certain promoter Tare mediated through two nuclear estrogen recep- and cell contexts (7–15). tor (ER) proteins, ER␣ and ER␤, which belong to the ER␣ and ER␤ share a conserved structural and nuclear receptor superfamily (1–3). ERs bind estro- functional organization, including the following: 1) an gens with high affinity and function as ligand-regulated amino-terminal A/B region containing a transcriptional transcription factors to control global patterns of gene activation function (AF-1), 2) a DNA-binding domain expression. ER␣ and ER␤ have unique, but overlap- (DBD), and 3) a carboxyl-terminal ligand-binding do- ping, patterns of expression in a variety of estrogen main (LBD) containing a second transcriptional activa- target tissues, including mammary glands, uterus, and tion function (AF-2) (see Fig. 2B) (1, 3). In addition to bone (4–6). In addition, the two ERs may exhibit dis- these canonical nuclear receptor domains, recent studies have also begun to characterize the C-terminal extension (CTE) of the ER␣ and ER␤ DBDs (amino First Published Online February 23, 2006 acids 251–288 and 170–207, respectively), which Abbreviations: acetyl CoA, Acetyl coenzyme A; AR, andro- gen receptor; CBP, cAMP response element binding protein- plays a role in regulating the DNA-binding activities of binding protein; CTE, C-terminal extension; DBD, DNA-bind- the receptors (16, 17). The coordinated actions of the ing domain; E2, 17␤-estradiol; ER, estrogen receptor; GST, aforementioned ER functional domains allow for pre- glutathione S-transferase; HNE, HeLa cell nuclear extract; cisely controlled signal-regulated transcription in re- LBD, ligand-binding domain; MALDI-QqTOF, matrix-assisted sponse to both natural and synthetic ER ligands. laser desorption/ionization-quadrupole-quadrupole-time of ␣ ␤ flight; MS/MS, mass spectrometry/mass spectrometry; The binding of agonistic ligands by ER and ER NADϩ, nicotinamide adenine dinucleotide; PID, p300/CBP promotes a conformational change in the receptor interaction domain; RID, receptor interaction domain; SDS, LBD that allows the receptor to interact directly or sodium dodecyl sulfate; SIRT1, sirtuin 1; SRC, steroid recep- indirectly with a diverse set of coregulatory proteins (1, tor coactivator; TSA, trichostatin A. 3). These include members of the steroid receptor Molecular Endocrinology is published monthly by The Endocrine Society (http://www.endo-society.org), the coactivator (SRC) family (i.e. SRC1, -2, and -3), which foremost professional society serving the endocrine function primarily as bridging factors to recruit other community. coregulators (18–20), including a diverse set of pro- 1479 Downloaded from mend.endojournals.org at Rockefeller University Library on December 24, 2007 1480 Mol Endocrinol, July 2006, 20(7):1479–1493 Kim et al. • p300-Mediated Acetylation of ER␣ tein-modifying enzymes (e.g. acetylases, methyltrans- RESULTS ferases, kinases) (21, 22). p300 and its paralog cAMP response element binding protein-binding protein Human ER␣ Is Acetylated by p300 and (CBP) are the two best characterized mammalian Deacetylated by TSA- and acetylases. They function as coregulators for a variety Nicotinamide-Sensitive Deacetylases of transcription factors, including ERs and other nu- clear receptors (23–25). p300 and CBP are recruited to To examine the acetylation of human ER␣ by p300, we 3 ER␣ and ER␤ in a ligand-dependent manner via inter- used an in vitro acetylation assay with [ H]acetyl co- actions with SRC proteins. During an estrogen-depen- enzyme A (acetyl CoA) and the following purified re- ␣ dent transcriptional response, p300 and CBP can combinant proteins: ER , p300, and glutathione acetylate nucleosomal histones to alter chromatin S-transferase (GST)-fused SRC2(RID/PID), which con- structure and function (19, 22), as well as components tains the receptor interaction domain (RID) and p300/ CBP interaction domain (PID) of SRC2 (Fig. 1A). With of the transcription complex to alter transcriptional this assay, we showed previously that SRCs play a key activity (see below). A variety of deacetylases, includ- role in the targeted acetylation of nucleosomal core ing trichostatin A (TSA)-sensitive enzymes (i.e. class I histones by p300, functioning as a bridging factor and II deacetylases, such as histone deacetylase 1) between p300 and 17␤-estradiol (E2)-bound ER␣ (Ref. and nicotinamide adenine dinucleotide (NADϩ)-de- 41 and Fig. 1B, bottom). Interestingly, these same pendent/nicotinamide-sensitive enzymes [i.e. class III interactions also promote the acetylation of ER␣ (Fig. deacetylases, such as sirtuin 1 (SIRT1)], also function 1B, top), indicating that interactions among agonist- as coregulators and can reverse the protein acetyla- bound ER␣, SRC, and p300 are required for efficient tion reactions catalyzed by acetylases (26–29). acetylation of ER␣ by p300 (see also supplemental Fig. A number of recent studies have shown that acet- 1, published as supplemental data on The Endocrine ylation is an important covalent posttranslational mod- Society’s Journals Online web site at http://mend. ification for regulating the activity of transcription- endojournals.org). SRC2(RID/PID), which lacks the pu- related factors, including p53, SRC3 (also known as tative SRC acetylase domain (18, 21), was unable to ACTR), nuclear factor-␬B p65, and poly(ADP-ribose) promote the acetylation of ER␣ in the absence of p300 polymerase-1 (30–39). Interestingly, different acety- (data not shown). lases (e.g. p300/CBP vs. p300/CBP-associated factor) Next, we examined whether the p300-dependent have different substrate preferences as demonstrated acetylation of ER␣ can be reversed by native deacety- by the fact that some factors can be acetylated by one lases present in a HeLa cell nuclear extract (HNE). but not the other (35, 36, 38, 40). With regard to Immobilized [3H]acetylated ER␣ was incubated with modulating the activity of transcription-related factors, HNE, which contains a variety of deacetylases includ- the consequence of acetylation may be either tran- ing TSA-sensitive enzymes (i.e. class I and II deacety- ϩ scriptional activation or inhibition. Acetylation of tran- lases) and NAD -dependent/nicotinamide-sensitive scription-related factors can increase their transcrip- enzymes (i.e. class III deacetylases, such as SIRT1) tional activity by the following: 1) enhancing DNA (26–29). As shown in Fig. 1C, incubation with HNE ␣ binding activity, 2) stimulating interactions with posi- dramatically reduced the acetylation of ER (compare tive transcriptional regulators, such as chromatin re- lanes 1 and 2). The addition of TSA inhibited deacety- ␣ modeling factors or coactivators, 3) inhibiting interac- lation of ER by the HNE (lane 3), indicating that one tions with negative regulators, resulting in a loss of or more class I/II deacetylases present in the HNE can ␣ ϩ transcription repression, 4) increasing the stability of deacetylate ER . The addition of NAD in the pres- ence of TSA (i.e. under conditions in which class I/II the factors, and 5) altering subcellular localization (35, deacetylases were inhibited) also resulted in the 36, 38, 40). Likewise, acetylation may inhibit the ac- deacetylation of ER␣ (compare lanes 3 and lane 4). tivity of transcription-related factors by reducing bind- ϩ The effect of NAD was blocked by the addition of ing to DNA or chromatin, as well as reducing protein- nicotinamide (lane 5), indicating that one or more class protein interactions required for transcriptional III deacetylases present in the HNE, such as SIRT1, activation (35, 36, 38, 40). Thus, the specific biochem- can deacetylate ER␣. To explore this last result further, ical effects of acetylation are varied and differ with we performed a similar set of experiments using puri- each target protein. fied recombinant SIRT1 (Fig. 1A) in place of the HNE.
Recommended publications
  • Diverse Signaling Pathways Modulate Nuclear Receptor Recruitment of N-Cor and SMRT Complexes (Estrogen Receptor͞tamoxifen͞corepressor Complex)
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 2920–2925, March 1998 Biochemistry Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes (estrogen receptorytamoxifenycorepressor complex) ROBERT M. LAVINSKY*†,KRISTEN JEPSEN*†,THORSTEN HEINZEL*, JOSEPH TORCHIA*, TINA-MARIE MULLEN‡, RACHEL SCHIFF§,ALFONSO LEON DEL-RIO*, MERCEDES RICOTE¶,SALLY NGO¶,JOSLIN GEMSCH‡, SUSAN G. HILSENBECK§,C.KENT OSBORNE§,CHRISTOPHER K. GLASS¶,MICHAEL G. ROSENFELD*, \ AND DAVID W. ROSE‡ *Howard Hughes Medical Institute, ¶Cellular and Molecular Medicine, ‡Whittier Diabetes Program, and †UCSD Graduate Program in Biology, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093-0648; and §Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78284-7884 Contributed by Michael G. Rosenfeld, January 9, 1998 ABSTRACT Several lines of evidence indicate that the partial agonistic activity (31). Various agents that raise intra- nuclear receptor corepressor (N-CoR) complex imposes li- cellular cAMP levels or stimulate the rasyMAP kinase path- gand dependence on transcriptional activation by the retinoic way can similarly cause estrogen receptor (ER) activation in acid receptor and mediates the inhibitory effects of estrogen the presence of tamoxifen or the absence of any activating receptor antagonists, such as tamoxifen, suppressing a con- ligand (9, 32–35). In this manuscript we show that diverse stitutive N-terminal, Creb-binding proteinycoactivator com- molecular strategies regulate the association of N-CoR- or plex-dependent activation domain. Functional interactions SMRT-containing complexes with specific nuclear receptors, between specific receptors and N-CoR or SMRT corepressor including the nature of the ligand, the levels of available complexes are regulated, positively or negatively, by diverse N-CoRySMRT, and the action of diverse protein kinase- signal transduction pathways.
    [Show full text]
  • STEROID RECEPTORS in HEALTH and DISEASE SERONO SYMPOSIA, USA Series Editor: James Posillico
    STEROID RECEPTORS IN HEALTH AND DISEASE SERONO SYMPOSIA, USA Series Editor: James Posillico ACROMEGALY: A Century of Scientific and Clinical Progress Edited by Richard J. Robbins and Shlomo Melmed BASIC AND CLINICAL ASPECTS OF GROWTH HORMONE Edited by Barry B. Bercu THE PRIMATE OVARY Edited by Richard L. Stouffer SOMATOSTATIN: Basic and Clinical Status Edited by Seymour Reichlin STEROID RECEPTORS IN HEALTH AND DISEASE Edited by Virinder K. Moudgil A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further infor­ mation please contact the publisher. STEROID RECEPTORS IN HEALTH AND DISEASE Edited by Virinder K. Moudgil Oakland University Rochester, Michigan PLENUM PRESS • NEW YORK AND LONDON library of Congress Cataloging in Publication Data Meadow Brook Conference on Steroid Receptors in Health and Disease (tst(tst:: t987 : Rochester, Mich .) Ste roid receptors in health and disease / edited by Virinder K. Moudgil. p. cm . "Proc" Proceedingseedings of the Meadow Brook Conference on Steroid Receptors in Health and Disease, spon­ sored by Serono Symposia. USA and Oakland University. held September 20-23, 19871987.. in Rochester. Michigan ··-T.p. verso. Includes bibliographies and indexes. IS8N 978-1-4684-5543-4 IS8N 978-1-4684-5541-0 (eBook) 00110.1007/978-1-4684-5541-0 I . Steroid hormones-Receptors-Congresses. 1. Moudgil, V.V. K.K. (Virinder K.), 1945- . 11. Sereno Symposia, USA. III.Ill. Oakland Universityly. IV. Title. [oNlM[oNlM:: tt. Receptors , Sleroid-congresses. W3 ME3781st 1987s / WK 150 M482 1987sJ1987sj oP571.7.M42 1987 512 '.
    [Show full text]
  • Workshop 1.4 Nature of the Ligand-Binding Pocket
    Pure Appl. Chem., Vol. 75, Nos. 11–12, pp. 2397–2403, 2003. © 2003 IUPAC Workshop 1.4 Nature of the ligand-binding pocket of estrogen receptor a and b: The search for subtype- selective ligands and implications for the prediction of estrogenic activity* John A. Katzenellenbogen‡, Rajeev Muthyala, and Benita S. Katzenellenbogen Departments of Chemistry, Molecular and Integrative Physiology, University of Illinois, Urbana, 61801 IL, USA Abstract: The ligand-binding pockets of estrogen receptor alpha and beta (ERα and ERβ) ap- pear to have subpockets of different size and flexibility. To find ligands that will discriminate between the two ER subtypes on the basis of affinity or efficacy, we have prepared com- pounds of varying size, shape, and structure. We have evaluated the binding affinity of these compounds and their potency and efficacy as transcriptional activators through ERα and ERβ. In this manner, we have identified a number of ligands that show pronounced ER sub- type selectivity. These studies also highlight the eclectic structure–activity relationships of estrogens and the challenges inherent in developing computational methods for the predic- tion of estrogenic activity. INTRODUCTION The actions of estrogens are mediated by the estrogen receptor (ER), an intracellular protein that func- tions as a ligand-regulated transcription factor [1]. There are two subtypes of the estrogen receptor, ER α and ERβ; these subtypes have different tissue distributions and are thought to regulate different estro- gen responses [2]. Therefore, ligands that are selective in activating or inhibiting these two subtypes could have a desirable pattern of pharmacological activity that might be useful in regulating fertility, in treating menopausal symptoms, and in preventing and treating breast cancer [1].
    [Show full text]
  • A Century of Deciphering the Control Mechanisms of Sex Steroid Action in Breast and Prostate Cancer: the Origins of Targeted Therapy and Chemoprevention
    Published OnlineFirst February 10, 2009; DOI: 10.1158/0008-5472.CAN-09-0029 AACR Centennial Series A Century of Deciphering the Control Mechanisms of Sex Steroid Action in Breast and Prostate Cancer: The Origins of Targeted Therapy and Chemoprevention V. Craig Jordan Fox Chase Cancer Center, Philadelphia, Pennsylvania Abstract all the available clinical cases of oophorectomy to treat breast The origins of the story to decipher the mechanisms that cancer in Great Britain in perhaps the first ‘‘clinical trial.’’ Boyd control the growth of sex hormone–dependent cancers started concluded that only one-third of metastatic breast tumors more than 100 years ago. Clinical observations of the responded to oophorectomy. This clinical result and overall apparently random responsiveness of breast cancer to response rate has remained the same to this day. endocrine ablation (hormonal withdrawal) provoked scientif- Unfortunately, responses were of limited duration and enthusi- ic inquiries in the laboratory that resulted in the development asm waned that this approach was the answer to cancer treatment. of effective strategies for targeting therapy to the estrogen The approach of endocrine ablation was only relevant to breast receptor (ER; or androgen receptor in the case of prostate cancer (and subsequently prostate cancer; ref. 4), thus, the cancer), the development of antihormonal treatments that approach was only effective in a small subset of all cancer types. At the dawn of the 20th Century, there was no understanding of the dramatically enhanced patient survival, and the first success- ful testing of agents to reduce the risk of developing any endocrine system or hormones. Nevertheless, laboratory studies cancer.
    [Show full text]
  • New Compounds Block Master Regulator of Cancer Growth, Metastasis 7 January 2020, by Diana Yates
    New compounds block master regulator of cancer growth, metastasis 7 January 2020, by Diana Yates The researchers focused on FOXM1 because it is found in higher abundance in cancer cells than in healthy human cells, said Benita Katzenellenbogen, a University of Illinois professor of molecular and integrative physiology who led the study with U. of I. chemistry professor John Katzenellenbogen and life sciences research specialist Yvonne Ziegler. "FOXM1 is a key factor that makes breast cancer and many other cancers more aggressive and more difficult to treat," Benita Katzenellenbogen said. "Because it is a master regulator of cancer growth and metastasis, there has been great interest in developing compounds that would be effective in blocking it." Researchers including, from left, graduate student Valeria Sanabria Guillen, research scientist Sung Hoon So far, no successful drug agents have been Kim, researcher Kathy Carlson, chemistry professor developed to reduce the effects of FOXM1, John John Katzenellenbogen, research specialist Yvonne Katzenellenbogen said. Ziegler, and molecular and integrative physiology professor Benita Katzenellenbogen developed new drug "There are reports of other inhibitors of FOXM1, but agents to inhibit a pathway that contributes to cancer. these are generally less potent and do not work The compounds killed cancer cells and reduced the growth of breast cancer tumors in mice. Credit: L. Brian well in the body," he said. "Our compounds have Stauffer good anti-tumor activity in animal models. They behave well in vivo and have long half-lives in the blood. Some work well when given orally, which is desirable for ultimate patient use." Scientists have developed new drug compounds that thwart the pro-cancer activity of FOXM1, a The researchers developed the new drugs by transcription factor that regulates the activity of analyzing the properties of various compounds in a dozens of genes.
    [Show full text]
  • Positive Cross-Talk Between Estrogen Receptor and NF-Κb in Breast Cancer
    Published OnlineFirst November 17, 2009; DOI: 10.1158/0008-5472.CAN-09-2608 Endocrinology Positive Cross-Talk between Estrogen Receptor and NF-κB in Breast Cancer Jonna Frasor,1 Aisha Weaver,1 Madhumita Pradhan,1 Yang Dai,2 Lance D. Miller,3 Chin-Yo Lin,4 and Adina Stanculescu1 Departments of 1Physiology and Biophysics and 2Bioengineering, University of Illinois at Chicago, Chicago, Illinois; 3Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and 4Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah Abstract aggressive with earlier metastatic recurrence (1–3). Gene expres- Estrogen receptors (ER) and nuclear factor-κB(NF-κB) are sion profiling has further delineated the two types of ER-positive known to play important roles in breast cancer, but these fac- tumors, referred to as intrinsic subtypes luminal A and luminal B, tors are generally thought to repress each other's activity. with the luminal A subtype associated with good patient outcome However, we have recently found that ER and NF-κB can also and the B subtype with a poor survival rate (4, 5). Interestingly, activation of the proinflammatory transcription factor nuclear act together in a positive manner to synergistically increase κ κ gene transcription. To examine the extent of cross-talk be- factor- B(NF-B) may play a role in this dichotomy between ER-positive tumors. Constitutive activation of NF-κBinbreast tween ER and NF-κB, a microarray study was conducted in tumors is associated with more aggressive ER-positive tumors which MCF-7 breast cancer cells were treated with 17β- (6, 7), the development of resistance to endocrine therapy (8, 9), estradiol (E ), tumor necrosis factor α (TNFα), or both.
    [Show full text]
  • In This Issue Winter 2019 Newsletter Greetings From
    GREETINGS FROM THE HEAD WINTER 2019 NEWSLETTER Claudio Grosman IN THIS ISSUE Welcome everyone to the 2019 edition of the Greetings from the head 1 MIP Newsletter! I hope that this year has been healthy, and productive for everyone, and that 2020 bodes even Professor Lori Raetzman: From Backyard better for realizing our dreams—scientific or otherwise. Biology to Pituitary Proficiency 1-3 Yes, time flies; one more year has gone by. Professor Dan Llano: From Swinging Bats to If I had to identify one of the happiest moment for Echolocating Bats 3-4 me, in 2019, in my role as Department Head, I would Alumni Highlights - Dr. Janelle Mapes 4 definitely choose the promotion of our colleague Sayee Anakk to Associate Professor with indefinite tenure. Alumni Highlights - Dr. Kirsten Eckstrum 5 Congratulations Sayee! It gives me immense joy to see Alumni Highlights - Dr. Congcong Chen 5 young faculty succeeding not only scientifically but also in teaching and service to the Department. I find that despite being a small Department, the faculty of New MIP Graduate Students 5 MIP step up to a number of administrative tasks and devote time outside of the MIP Retreat and Halloween Party 5 labs or the classroom. I am very grateful for that. Student and Postodc Award/Grant 6 This issue of the MIP Newsletter has been revamped to feature interviews of MIP faculty --Assoc. Prof. Lori Raetzman and Assoc. Prof. Dan Llano PHD Awarded 6 conducted by graduate students Adam Nelson (Nelson lab) and James Nguyen Alumni Updates 6 (Anakk lab), respectively. It also features updates from three of our student alumni Dr.
    [Show full text]
  • Curriculum Vitae - Rex A
    CURRICULUM VITAE - REX A. HESS Date of Preparation: July 2008 TABLE OF CONTENTS 1.0 PERSONAL HISTORY AND PROFESSIONAL EXPERIENCE 1.1 Mailing Address: ←Dr. Rex A. Hess ←Department of Veterinary Biosciences University of Illinois 2001 S. Lincoln Urbana, IL 61802- 6199 Phone: 217-333-8933 / 333-1696 (lab) Fax: 217-244-1652 Email: [email protected] HomePage: http://www.cvm.uiuc.edu/~rexhess 1.2 Citizenship: United States of America 1.3 Educational History: ←B.S. Education/Zoology cum laude, University of Missouri-Columbia 1971 ←M.S.Physiology Area, University of Missouri-Columbia 1975 ←Ph.D. Animal Physiology, Clemson University 1983 1.4 List of Academic Positions since Final Degree 1983-1986 Postdoc; Health Effects Res. Lab, U.S. Environmental Protection Agency, RTP, N.C 1986-1992 Assistant Professor, University of Illinois-Urbana, Champaign; Faculty Director of Microscopic Imaging Laboratory 1992-1993 Interim Director; Center for Electron Microscopy, University of Illinois 1992-1995 Adjunct Scientist; Yerkes Regional Primate Research Center, Emory University Affiliate; Institute for Environmental Studies, University of Illinois 1992-1998 Associate Professor; Dept. of Veterinary Biosciences, University of Illinois 1995-2003 Director of Center for Microscopic Imaging, University of Illinois 1998- Professor; Department of Veterinary Biosciences, University of Illinois Chair of Morphology Division, Department of Veterinary Biosciences 1998-2002 Director and PI, NIEHS Training Grant in Environmental Toxicology 2002- Associate Director, NIEHS Training Grant in Environmental Toxicology 2005- Affiliate member, Institute for Genomic Biology, University of Illinois 1.5 Other Professional Employment ←1973-1976 Electron Microscopy; Veterans Administration Hospital, Columbia, MO ←1976-1979 Research Associate; Washington University School of Medicine, St.
    [Show full text]
  • Molecular Determinants of Tissue Selectivity in Estrogen Receptor Modulators
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 14105–14110, December 1997 Pharmacology Molecular determinants of tissue selectivity in estrogen receptor modulators TIMOTHY A. GRESE*, JAMES P. SLUKA*, HENRY U. BRYANT,GEORGE J. CULLINAN,ANDREW L. GLASEBROOK, CHARLES D. JONES,KEN MATSUMOTO,ALAN D. PALKOWITZ,MASAHIKO SATO,JOHN D. TERMINE, MARK A. WINTER,NA N. YANG, AND JEFFREY A. DODGE* Endocrine Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285 Edited by Paul Talalay, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved October 3, 1997 (received for review July 3, 1997) ABSTRACT Interaction of the estrogen receptoryligand molecular conformation of individual ligands (11–14). The complex with a DNA estrogen response element is known to recent characterization of a new ER isoform, ERb, adds a regulate gene transcription. In turn, specific conformations of further layer of complexity, because ligands with different the receptor-ligand complex have been postulated to influence structural characteristics may exhibit different binding profiles unique subsets of estrogen-responsive genes resulting in differ- depending on which ER isoform is being evaluated (15, 16). ential modulation and, ultimately, tissue-selective outcomes. The To date, ER ligands have been grouped into four classes on the estrogen receptor ligands raloxifene and tamoxifen have dem- basis of in vivo pharmacology, and representatives of these classes onstrated such tissue-specific estrogen agonistyantagonist ef- indeed have been shown to exhibit unique profiles with respect to fects. Both agents antagonize the effects of estrogen on mammary transcriptional activation (9). Differential effects on mammary, tissue while mimicking the actions of estrogen on bone.
    [Show full text]
  • Gao Potentiates Estrogen Receptor a Activity Via the ERK Signaling Pathway
    45 Gao potentiates estrogen receptor a activity via the ERK signaling pathway Melyssa R Bratton1,2, James W Antoon1, Bich N Duong1, Daniel E Frigo5, Syreeta Tilghman1,2, Bridgette M Collins-Burow1, Steven Elliott1, Yan Tang2, Lilia I Melnik2, Ling Lai3, Jawed Alam4, Barbara S Beckman2, Steven M Hill3, Brian G Rowan1, John A McLachlan2 and Matthew E Burow1 1Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, 1430 Tulane Avenue, SL-78, New Orleans, Louisiana 70112, USA Departments of 2Pharmacology and 3Structural and Cellular Biology, Tulane University, New Orleans, Louisiana 70112, USA 4Department of Medical Genetics, Alton-Ochsner Medical Foundation, New Orleans, Louisiana 70121, USA 5Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA (Correspondence should be addressed to M E Burow; Email: [email protected]) Abstract The estrogen receptor a (ERa) is a transcription factor that cancer cell line MCF-7 showed that Gao augments the mediates the biological effects of 17b-estradiol (E2). ERa transcription of several ERa-regulated genes. Western blots of transcriptional activity is also regulated by cytoplasmic HEK293T cells transfected with ERGGao revealed that Gao signaling cascades. Here, several Ga protein subunits were stimulated phosphorylation of ERK 1/2 and subsequently tested for their ability to regulate ERa activity. Reporter increased the phosphorylation of ERa on serine 118. In assays revealed that overexpression of a constitutively active summary, our results show that Gao, through activation of the Gao protein subunit potentiated ERa activity in the absence MAPK pathway, plays a role in the regulation of ERa activity.
    [Show full text]
  • CHERIAN-DISSERTATION-2018.Pdf
    NOVEL TOOLS TO IDENTIFY ESTROGEN REGULATED GENES IMPORTANT FOR BREAST AND OVARIAN CANCER CELL PROLIFERATION BY MATHEW MUTHUTHOTTATHU CHERIAN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Molecular and Integrative Physiology in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Doctoral Committee: Professor David Shapiro, Chair Professor Jongsook Kim Kemper Associate Professor Lori Raetzman Assistant Professor Eric C. Bolton Abstract Estrogens are steroid hormones produced by the ovaries and extra ovarian tissues including the adrenal gland and adipose tissue. There are 3 major physiologically relevant estrogens in the human body, the most potent and biologically relevant of which is 17b-estradiol (E2). E2 exerts its physiologic functions by acting through two isoforms of Estrogen Receptor (ER); ERa and ERb. ERs are normally bound to heat shock chaperone proteins but once E2 diffuses across the cell membrane and binds to the ligand binding pocket of ER it sheds these proteins, homodimerizes and binds to DNA recruiting transcriptional machinery and upregulating a number of target genes including those important for proliferation. Estrogens acting through ERa play a central role in the proliferation of breast and ovarian cancer cells as evidenced by the mainstay clinical adjuvant therapies for breast cancer which target the ligand pocket of estrogen receptor by either competitively displacing endogenous ligand, or by inhibiting the rate dependent enzymes responsible for synthesizing the endogenous ligand. While the importance of E2-ERa as a central regulator in breast cancer proliferation is unquestioned, it remains unclear how ERa is activated when the clear majority of women who develop breast cancer are post-menopausal.
    [Show full text]
  • Mutation of the Palmitoylation Site of Estrogen Receptor Α in Vivo Reveals
    Mutation of the palmitoylation site of estrogen PNAS PLUS receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions Marine Adlanmerinia, Romain Solinhaca,1, Anne Abota,1, Aurélie Fabrea,1, Isabelle Raymond-Letronb, Anne-Laure Guihotc, Frédéric Boudoua, Lucile Sautiera,b, Emilie Vessièresc, Sung Hoon Kimd, Philippe Lièree, Coralie Fontainea, Andrée Krustf, Pierre Chambonf,2, John A. Katzenellenbogend, Pierre Gourdya, Philip W. Shaulg, Daniel Henrionc, Jean-François Arnala,2, and Françoise Lenfanta aInstitut National de la Santé et de la Recherche Médicale U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 31 432 Toulouse Cedex 4, France; bInstitut National Polytechnique, École Nationale Vétérinaire de Toulouse, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Service 006, Université de Toulouse, F-31076 Toulouse, France; cInstitut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6214, Université d’Angers, 49000 Angers, France; dDepartment of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61820; eInstitut National de la Santé et de la Recherche Médicale, Université Paris Sud, 94270 Kremlin Bicêtre, France; fInstitut de Génétique et de Biologie Moléculaire et Cellulaire, Collège de France, Université de Strasbourg, FR-67404 Illkirch, France; and gDepartment of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 Contributed by Pierre Chambon, November 27, 2013 (sent for review October 7, 2013) Estrogen receptor alpha (ERα) activation functions AF-1 and AF-2 to minutes), nonnuclear signal transduction, usually termed classically mediate gene transcription in response to estradiol (E2).
    [Show full text]