A Study of Chemical Bonding Through Quantum Chemical Topology

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Chemical Bonding Through Quantum Chemical Topology Skolkovo Institute of Science and Technology A STUDY OF CHEMICAL BONDING THROUGH QUANTUM CHEMICAL TOPOLOGY Doctoral Thesis by CHRISTIAN TANTARDINI DOCTORAL PROGRAM IN MATERIAL SCIENCES AND ENGINEERING Supervisor Professor Artem R. Oganov Moscow 31-01 2020 © Christian Tantardini 2020 To my father Giuseppe died during my PhD «What does not destroy me makes me stronger» cit. Friedrich Nietzsche The secret of human existence lies not only in living, but also in knowing what we are living for» cit. Fyodor Mihajlovic Dostoevsky CONTENTS 1.0 ABSTRACT………………………………………………………………………………………………………………………2 2.0 PUBLICATIONS……………………………………………………………………………………………………………….3 2.1 Thesis Work…………………………………………………………………………………….……………………….3 2.2 Other Publications………………………………………………………………………………..………………….3 3.0 INTRODUCTION……………………………………………………………………………………………………………..4 4.0 THEORETICAL BACKGROUND……………………………………………………………..………………………...6 4.1 Introduction…………………………………………………………………………………………………………….6 4.2 Bader’s Theory………………………………………………………………………………………………………..6 4.3 Source Function………………………………………………………………………………………………..…..10 4.4 Espinosa Indexes……………………………………………………………………………………………………11 4.5 Delocalization Index……………………………………………………………………………………………….11 4.6 Domain-Averaged Fermi Hole (DAFH)…………………………………………………………………….12 4.7 References……………………………………………………………………………………………………………..14 5.0 OVERVIEW….…………………………………………………………………………………………………………….…18 CHAPTER I…………………………………………………………………………………………………………..….……19 Development of Quantum Chemical Topology. CHAPTER II…………………………………………………………………………………………………………..…….….52 Application of Quantum Chemical Topology in the study of non-covalent interactions within Oxicams. CHAPTER III…………………………………………………………………………………………………………..…..…111 Quantum Chemical Topology applied to Catalysis. CHAPTER IV…………………………………………………………………………………………………………..….…139 Chemical Bonding at High-Pressure. 6.0 CONCLUSION AND FUTURE PROSPECTIVES…………………………………………………………………147 6.1 References……………………………………………………………………………………………………………150 7.0 ACKNOWLEDGMENTS………………………………………………………………………………………………..154 1 | P a g e 1.0 ABSTRACT The chemical behavior of atoms and molecules is entirely defined by the distribution of their electron density. It is by studying the electron density in the field of Quantum Chemical Topology that such key concept as chemical bonding can be used to explain reactivity, atomic hybridization, and the existence of electric multipole moments. In such direction the work here presented is principally focused on development of Quantum Chemical Topology Theory introducing new different concepts, which a new equation style of real gases other that a “energy border” between hydrogen bond and van der Waals interaction with consequent limit of long range interactions, and the investigation of different compounds to investigate the correlations between solubility (oxicams) and reactivity (Dess-martin periodinane) with electronic structure with data supported by literature and experiments. 2 | P a g e 2.0 PUBLICATIONS 2.1 Thesis Work 1_Christian Tantardini* A new equation of state for real gases developed into the framework of Bader’s Theory. Theoretical Chemistry Accounts, 2018, 137, 93. 2_Christian Tantardini*, Sergey G. Arkipov*, Kseniya A. Cherkashina, Alexander S. Kil’met’ev, Elena V. Boldyreva* Synthesis and crystal structure of a meloxicam co-crystal with benzoic acid. Structural Chemistry, 2018, 29 (6), 1867-1874. 3_Christian Tantardini*, Adam A. L. Michalchuk Dess‐martin periodinane: The reactivity of a λ5‐iodane catalyst explained by topological analysis. International Journal of Quantum Chemistry, 2018, 119 (6), e25838. 4_Christian Tantardini* When does a hydrogen bond become a van der Waals interaction? A topological answer. Journal of Computational Chemistry, 2019, 40 (8), 937-943. 5_ Alexey Yu. Fedorov, Tatiana N. Drebushchak and Christian Tantardini* Seeking the best model for non- covalent interactions within the crystal structure of meloxicam. Computational and Theoretical Chemistry, 2019, 1157, 47-53. 6_Sergey G. Arkhipov, Peter S. Sherin*, Alexey S. Kiryutin, Vladimir A. Lazarenk and Christian Tantardini* The Role of S-bond in Tenoxicam Keto-Enolic Tautomerization. CrystEngComm, 2019, 21, 5392-5401. 2.1 Other Publications - Christian Tantardini*, Davide Ceresoli, Enrico Benassi, Source Function and Plane Waves: Toward Complete Bader Analysis, Journal of Computational Chemistry (2016), DOI: 10.1002/jcc.24433. - Christian Tantardini*, Sergey G. Arkhipov*, Ksenya A. Cherkashina, Alexander S. Kil’met’eva and Elena V. Boldyreva*, Crystal structure of a 2:1 co-crystal of meloxicam with acetylendicarboxylic acid, Acta Cryst E (2016), DOI: https://doi.org/10.1107/S2056989016018909. - Christian Tantardini*, Elena V. Boldyreva, and Enrico Benassi*, Hypervalency in Organic Crystals: A Case Study of the Oxicam Sulfonamide Group, J. Phys. Chem. A (2016), DOI: 10.1021/acs.jpca.6b10703. - Christian Tantardini*, Enrico Benassi Topology vs Thermodynamics in Chemical Reactions: The Instability of PH5, Phys. Chem. Chem. Phys. (2017), DOI: 10.1039/C7CP06130G. - Christian Tantardini, Enrico Benassi* Crystal Structure Resolution of a Mott Insulator through Bader’s Theory: The Challenging Case of Cobaltite Oxide Y114, Dalton Transaction (2018), DOI: 10.1039/C8DT00073E * corresponding author 3 | P a g e 3.0 INTRODUCTION The PhD thesis is mainly devoted to the study of fundamental insights on/into chemical bonding within the field of Quantum Chemical Topology using first-principles simulations of different states of matter with both local basis set and plane wave basis set calculations. Some of the chosen systems were investigated not only with a computational approach but also through experimental structural analyses to confirm theoretical results. Great part of the work was focused on non-covalent interactions (NCIs) formulating a new equation of state for describing real gases in the field of theory of atoms in molecules (QTAIM) to overcome the old concept of spherical atoms and in the same field the “energy border” between hydrogen bond (H-bond) and van der Waals (vdW) interaction to fulfill the lacuna of H-bond IUPAC definition based on experimental techniques are not able to discriminate between blurry H-bond and vdW interactions. One important question about the correlation between the intramolecular interactions and the solubility of crystals is also highlighted through first-principles simulations on co-crystals, salts, solvates as compared with pure component solids. In this way, it is possible to explore several issues (i) A first important property to be investigated is the so-called interaction density, i.e. the charge density redistribution that takes place both in the intermolecular region and within the covalent bonding framework of the individual molecules upon 'switching on' their interaction. This charge density rearrangement will be different according to whether cocrystal, salts solvates or pure component crystals are formed. (ii) By applying the topological descriptors that are provided by the wavefunctions, it is possible to explore the different kinds of non-covalent interactions taking place within the examined systems. At the same time, the effect of different crystal fields on the intramolecular interactions can be investigated. Besides the change affecting local properties, also the molecular properties like dipole moments, polarizability and so on, are worth of being monitored when different crystal forms are compared. The role of the symmetry on such properties will be also investigated. It should be noted that molecular properties find their definition in crystals by using topological methods. (iii) As different crystal forms exploit also different thermodynamic stabilities as a function of their environment, how the component molecules vary their energies and their energy decompositions in dependence of the crystal field they experience will be evaluated. It should be noted that energy decomposition may be also afforded in terms of contributions of individual atomic atoms or groups. This is done through QTAIM by exploring the energy landscape through both empirical and quantum mechanical methods eventually gaining insights into thermodynamics of competing polymorphs and with the possibility to predict what kind of structure it will be expected if the crystallization takes place under thermodynamic control. An ulterior employment of QTAIM was focused in order to correlate chemical bonding with molecular reactivity. In the specific case through the study of Dess-Martin periodinane (DMP), which derivatives are popular organic catalysts. DMP is extremely reactive in the presence of alcohols, catalyzing their oxidative conversion into ketones. This work seeks to better understand the intrinsic electronic factors that drive the reactivity of the DMP molecule. 4 | P a g e Furthermore, the chemical bonding was investigated at high pressure through the analysis of one very well-known property: electronegativity, which is a property of bonded atom defined as the capacity of an atom to attract on itself the shared electron cloud in the bond. This property as defined by Pauling represents a definition of ionicity of bond and it is calculated on arbitrarily electronegativity value associated to fluorine of 4.0. During this work such property is evaluated with variation of pressure to understand the hellish chemistry at high pressure. High-Pressure is responsible to modify different atomic properties with repercussion on chemical bonding. The understanding of how pressure modifies chemical
Recommended publications
  • BI(III) Initiated Cyclization Reactions and Iodonium Fragmentation Kinetics
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2005 BI(III) Initiated Cyclization Reactions and Iodonium Fragmentation Kinetics Yajing Lian College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Inorganic Chemistry Commons Recommended Citation Lian, Yajing, "BI(III) Initiated Cyclization Reactions and Iodonium Fragmentation Kinetics" (2005). Dissertations, Theses, and Masters Projects. Paper 1539626842. https://dx.doi.org/doi:10.21220/s2-zj7g-fp23 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BI(III) INITIATED CYCLIZATION REACTIONS AND IODONIUM FRAGMENTATION KINETICS A Thesis Presented to The Faculty of the Department of Chemistry The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Yajing Lian 2005 APPROVAL SHEET This thesis is submitted in partial fulfillment of The requirements for the degree of Master of Science A Yajing Lian Approved by the Committee, December 20, 2005 Robert J. Hinkle, Chair Christopher Jl A] Robert D. Pike TABLE OF CONTENTS Page Acknowledgements VI List of Tables Vll List of Schemes V lll List of Figures IX Abstract XI Introduction Chapter I Secondary
    [Show full text]
  • Quantum Crystallography†
    Chemical Science View Article Online MINIREVIEW View Journal | View Issue Quantum crystallography† Simon Grabowsky,*a Alessandro Genoni*bc and Hans-Beat Burgi*de Cite this: Chem. Sci.,2017,8,4159 ¨ Approximate wavefunctions can be improved by constraining them to reproduce observations derived from diffraction and scattering experiments. Conversely, charge density models, incorporating electron-density distributions, atomic positions and atomic motion, can be improved by supplementing diffraction Received 16th December 2016 experiments with quantum chemically calculated, tailor-made electron densities (form factors). In both Accepted 3rd March 2017 cases quantum chemistry and diffraction/scattering experiments are combined into a single, integrated DOI: 10.1039/c6sc05504d tool. The development of quantum crystallographic research is reviewed. Some results obtained by rsc.li/chemical-science quantum crystallography illustrate the potential and limitations of this field. 1. Introduction today's organic, inorganic and physical chemistry. These tools are usually employed separately. Diffraction and scattering Quantum chemistry methods and crystal structure determina- experiments provide structures at the atomic scale, while the Creative Commons Attribution 3.0 Unported Licence. tion are highly developed research tools, indispensable in techniques of quantum chemistry provide wavefunctions and aUniversitat¨ Bremen, Fachbereich 2 – Biologie/Chemie, Institut fur¨ Anorganische eUniversitat¨ Zurich,¨ Institut fur¨ Chemie, Winterthurerstrasse 190, CH-8057 Zurich,¨ Chemie und Kristallographie, Leobener Str. NW2, 28359 Bremen, Germany. Switzerland E-mail: [email protected] † Dedicated to Prof. Louis J. Massa on the occasion of his 75th birthday and to bCNRS, Laboratoire SRSMC, UMR 7565, Vandoeuvre-l`es-Nancy, F-54506, France Prof. Dylan Jayatilaka on the occasion of his 50th birthday in recognition of their cUniversit´e de Lorraine, Laboratoire SRSMC, UMR 7565, Vandoeuvre-l`es-Nancy, F- pioneering contributions to the eld of X-ray quantum crystallography.
    [Show full text]
  • Quantum Reform
    feature Quantum reform Leonie Mueck Quantum computers potentially offer a faster way to calculate chemical properties, but the exact implications of this speed-up have only become clear over the last year. The first quantum computers are likely to enable calculations that cannot be performed classically, which might reform quantum chemistry — but we should not expect a revolution. t had been an exhausting day at the 2012 International Congress of Quantum IChemistry with countless presentations reporting faster and more accurate methods for calculating chemical information using computers. In the dry July heat of Boulder, Colorado, a bunch of young researchers decided to end the day with a cool beer, but the scientific discussion didn’t fade away. Thoughts on the pros and cons of all the methods — the approximations they involved and the chemical problems that they could solve — bounced across the table, until somebody said “Anyway, in a few years we will have a quantum computer and our approximate methods will be obsolete”. An eerie silence followed. What a frustrating thought! They were devoting their careers to quantum chemistry — working LIBRARY PHOTO RICHARD KAIL/SCIENCE tirelessly on applying the laws of quantum mechanics to treat complex chemical of them offering a different trade-off between cannot do on a ‘classical’ computer, it does problems with a computer. And in one fell accuracy and computational feasibility. not look like all the conventional quantum- swoop, would all of those efforts be wasted Enter the universal quantum computer. chemical methods will become obsolete or as chemists turn to quantum computers and This dream machine would basically work that quantum chemists will be out of their their enormous computing power? like a normal digital computer; it would jobs in the foreseeable future.
    [Show full text]
  • Design, Synthesis and Applications of Novel Hypervalent Iodine Reagents
    Design, Synthesis and Applications of Novel Hypervalent Iodine Reagents A Thesis Submitted to Cardiff University in Fulfilment of the Requirements for the Degree of Doctor of Philosophy by Jihan Qurban PhD Thesis July 2019 Cardiff University Jihan Qurban PhD Thesis 2019 __________________________________________________________________________________ DECLARATION This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed …………………………… (Jihan Qurban) Date ………………….… STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of ……………………… (insert MCh, MD, MPhil, PhD etc, as appropriate) Signed …………………………… (Jihan Qurban) Date ………………….… STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s Policy on the Use of Third-Party Editors by Research Degree Students. Other sources are acknowledged by explicit references. The views expressed are my own. Signed …………………………… (Jihan Qurban) Date ………………….… STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed …………………………… (Jihan Qurban) Date ………………….… STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee.
    [Show full text]
  • Quantum Chemistry and Spectroscopy – Spring 2018
    CHE 336 – Quantum Chemistry and Spectroscopy – Spring 2018 Instructor: Dr. Jessica Sarver Email: [email protected] Office: HSC 364 (email hours: 8 am – 10 pm) Office Hours: 10am-12pm Tuesday, 2-3pm Wednesday, 10:30-11:30am Friday, or by appointment Course Description (from Westminster undergraduate catalog) Quantum chemistry and spectroscopy is the study of the microscopic behavior of matter and its interaction with electromagnetic radiation. Topics include the formulation and application of quantum mechanical models, atomic and molecular structure, and various spectroscopic techniques. Laboratory activities demonstrate the fundamental principles of physical chemistry. Methods that will be used during the laboratory portion include: polarimetry, UV-Vis and fluorescence spectroscopies, electrochemistry, and computational/molecular modeling. Prerequisites: C- grade in CHE 117 and MTH 152 and PHY 152. Course Outcomes The chemistry major outcomes are: • Describe and explain quantum theory and the three quantum mechanical models of motion. • Describe and explain how these theories/models are applied and incorporated to applications of atomic/molecular structure and spectroscopy. • Describe and explain the principles of four major types of spectroscopy and their applications. • Describe and explain the measurable thermodynamic parameters for physical and chemical processes and equilibria. • Describe and explain how chemical kinetics can be used to investigate time-dependent processes. • Solve mathematical problems based on physical chemical principles and connect the numerical results with these principles. Textbook The text for this course is Physical Chemistry, 10th Ed. by Atkins and de Paula. Readings and problem set questions will be assigned from this text. You are strongly urged to get a copy of this textbook and complete all the assigned readings and homework.
    [Show full text]
  • A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 4-3-2015 A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates Kuruppu Lilanthi Jayatissa Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Catalysis and Reaction Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Jayatissa, Kuruppu Lilanthi, "A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates" (2015). Dissertations and Theses. Paper 2229. https://doi.org/10.15760/etd.2226 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates. by Kuruppu Lilanthi Jayatissa A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Chemistry Thesis Committee: David Stuart, Chair Robert Strongin Theresa McCormick Portland State University 2015 Abstract Biaryl moieties are important structural motifs in many industries, including pharmaceutical, agrochemical, energy and technology. The development of novel and efficient methods to synthesize these carbon-carbon bonds is at the forefront of synthetic methodology. Since Ullmann’s first report of stoichiometric Cu-mediated homo-coupling of aryl halides, there has been a dramatic evolution in transition metal catalyzed biaryl cross-coupling reactions.
    [Show full text]
  • Metathetical Redox Reaction of (Diacetoxyiodo)Arenes and Iodoarenes
    Article Metathetical Redox Reaction of (Diacetoxyiodo)arenes and Iodoarenes Antoine Jobin-Des Lauriers and Claude Y. Legault * Received: 25 November 2015 ; Accepted: 15 December 2015 ; Published: 17 December 2015 Academic Editors: Wesley Moran and Arantxa Rodríguez Centre in Green Chemistry and Catalysis, Department of Chemistry, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, QC J1K 2R1, Canada; [email protected] * Correspondence: [email protected]; Tel./Fax: +1-819-821-8017 Abstract: The oxidation of iodoarenes is central to the field of hypervalent iodine chemistry. It was found that the metathetical redox reaction between (diacetoxyiodo)arenes and iodoarenes is possible in the presence of a catalytic amount of Lewis acid. This discovery opens a new strategy to access (diacetoxyiodo)arenes. A computational study is provided to rationalize the results observed. Keywords: hypervalent iodine; (diacetoxyiodo)arenes; metathesis 1. Introduction In the recent years, the development of hypervalent iodine-mediated synthetic transformations has been receiving growing attention [1–5]. This is not surprising considering the importance of improving oxidative reactions and reducing their environmental impact. Hypervalent iodine reagents are a great alternative to toxic heavy metals often used to effect similar transformations [6–10]. Among the plethora of iodine(III) compounds [11], it is undeniable that the (diacetoxyiodo)arenes remain the most common and used ones [12]. They are usually stable solids and can serve as precursors to numerous other iodanes, such as other (diacyloxyiodo)arenes and [hydroxy(tosyloxy) iodo]arenes [13,14]. Access to (diacetoxyiodo)arenes is, of course, usually accomplished by the oxidation of the corresponding iodoarene substrate.
    [Show full text]
  • Intuitive Chemical Topology Concepts. / In
    1 Intuitive Chemical Topology Concepts Eugene V. Babaev Moscow State University, Moscow 119899, RUSSIA 1. Introduction During last two decades, chemistry underwent a strong influence from nonroutine mathematical methods. Chemical applications of graph theory [1–10], topology [11–18], and related fields of fundamental mathematics [21–27] are growing rapidly. This trend may indicate the birth of a novel interdisciplinary field, mathematical chemistry, imperceptibly flourishing on the border of chemistry and pure mathematics. The term “chemical topology” (the title of this volume) has become frequent in papers, books, and scientific conferences. Similarly, the term molecular topology (differing in its sense from molecular geometry) has become frequently used, although there may exist diverse viewpoints on the meaning of this concept. The key difference between topology and geometry is that in geometry the concepts of distances and angles are important, whereas in topology they are not. Instead, the essential topological properties are connectedness and continuity. Chemical structural formulas are good examples of topological models of molecules: the pattern of connectivity between atoms is essential, whereas the interatomic distances and angles are less important and may be neglected. A colloquial definition of topology is “rubber” geometry. Indeed, one may consider a topological object made of an ideal elastic material, so that any deformation (like stretching or distortion) retains points of this elastic object “close enough” one to another. In contrast, cutting separates previously close points, and any joining of parts makes points “closer” one to another. Such a continuous transformation of an object without cutting and joining any parts is called homeomorphism. (The term should not be confused with homomorphism.) The study of properties that are invariant to homeomorphic transformations is the fundamental goal of topology.
    [Show full text]
  • Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rappoport, Dmitrij, Cooper J. Galvin, Dmitry Zubarev, and Alán Aspuru-Guzik. 2014. “Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.” Journal of Chemical Theory and Computation 10 (3) (March 11): 897–907. Published Version doi:10.1021/ct401004r Accessed February 19, 2015 5:14:37 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12697373 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP (Article begins on next page) Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry Dmitrij Rappoport,∗,† Cooper J Galvin,‡ Dmitry Yu. Zubarev,† and Alán Aspuru-Guzik∗,† Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, and Pomona College, 333 North College Way, Claremont, CA 91711, USA E-mail: [email protected]; [email protected] Abstract While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for mod- eling complex structures and large-scale chemical systems. Here we present heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in metabolism and prebiotic chemistry.
    [Show full text]
  • SELECTIVE C–H and ALKENE FUNCTIONALIZATION VIA ORGANIC PHOTOREDOX CATALYSIS Nicholas Paul Ralph Onuska a Dissertation Submitte
    SELECTIVE C–H AND ALKENE FUNCTIONALIZATION VIA ORGANIC PHOTOREDOX CATALYSIS Nicholas Paul Ralph Onuska A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry Chapel Hill 2021 Approved by: David Nicewicz Erik Alexanian Jeffrey Aubé Alexander Miller Andrew Moran © 2021 Nicholas Paul Ralph Onuska ALL RIGHTS RESERVED ii ABSTRACT Nicholas Paul Ralph Onuska: Selective C–H and Alkene Functionalization Via Organic Photoredox Catalysis (Under the direction of David A. Nicewicz) Photoinduced electron transfer (PET) can be defined as the promotion of an electron transfer reaction through absorption of a photon by a reactive species in solution. Photoredox catalysis has leveraged previous knowledge of PET processes to enable a wide variety of high value chemical transformations. Most early work in the field of photoredox catalysis centered around the use of visible-light absorbing transition metal catalyst systems based on ruthenium or iridium polypyridyl scaffolds, organic redox chromophores offer a more sustainable, accessible, and versatile alternative to these complexes. Organic photoredox catalysts are often less expensive, easier to prepare, and have expanded redox windows relative to many known transition-metal photoredox catalysts, enabling the generation of a wider variety of single electron reduced/oxidized species. This ultimately translates into the development of previously undiscovered modes of reactivity. Herein is described the development and mechanistic study of a several C–H and alkene functionalization reactions facilitated by visible light-absorbing acridinium salts, as well as the discovery and characterization of a neutral organic radical which possess one of the most negative excited state oxidation potentials observed to date.
    [Show full text]
  • Introduction to Quantum Chemistry
    Chem. 140B Dr. J.A. Mack Introduction to Quantum Chemistry Why as a chemist, do you need to learn this material? 140B Dr. Mack 1 Without Quantum Mechanics, how would you explain: • Periodic trends in properties of the elements • Structure of compounds e.g. Tetrahedral carbon in ethane, planar ethylene, etc. • Bond lengths/strengths • Discrete spectral lines (IR, NMR, Atomic Absorption, etc.) • Electron Microscopy & surface science Without Quantum Mechanics, chemistry would be a purely empirical science. (We would be no better than biologists…) 140B Dr. Mack 2 1 Classical Physics On the basis of experiments, in particular those performed by Galileo, Newton came up with his laws of motion: 1. A body moves with a constant velocity (possibly zero) unless it is acted upon by a force. 2. The “rate of change of motion”, i.e. the rate of change of momentum, is proportional to the impressed force and occurs in the direction of the applied force. 3. To every action there is an equal and opposite reaction. 4. The gravitational force of attraction between two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. m m F = G × 1 2 r 2 140B Dr. Mack 3 The Failures of Classical Mechanics 1. Black Body Radiation: The Ultraviolet Catastrophe 2. The Photoelectric Effect: Einstein's belt buckle 3. The de Broglie relationship: Dude you have a wavelength! 4. The double-slit experiment: More wave/particle duality 5. Atomic Line Spectra: The 1st observation of quantum levels 140B Dr. Mack 4 2 Black Body Radiation Light Waves: Electromagnetic Radiation Light is composed of two perpendicular oscillating vectors waves: A magnetic field & an electric field As the light wave passes through a substance, the oscillating fields can stimulate the movement of electrons in a substance.
    [Show full text]
  • Computational Analysis of the Mechanism of Chemical Reactions
    Computational Analysis of the Mechanism of Chemical Reactions in Terms of Reaction Phases: Hidden Intermediates and Hidden Transition States ELFI KRAKA* AND DIETER CREMER Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314 RECEIVED ON JANUARY 9, 2009 CON SPECTUS omputational approaches to understanding chemical reac- Ction mechanisms generally begin by establishing the rel- ative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening spe- cies via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by- step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an effi- cient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mech- anism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase.
    [Show full text]