A Classification of Spanning Surfaces for Alternating Links

Total Page:16

File Type:pdf, Size:1020Kb

A Classification of Spanning Surfaces for Alternating Links A CLASSIFICATION OF SPANNING SURFACES FOR ALTERNATING LINKS COLIN ADAMS AND THOMAS KINDRED Abstract. A classification of spanning surfaces for alternating links is provided up to genus, orientability, and a new invariant that we call aggregate slope. That is, given an alternating link, we determine all possible combinations of genus, orientability, and aggregate slope that a surface spanning that link can have. To this end, we describe a straightforward algorithm, much like Seifert's Algorithm, through which to construct certain spanning surfaces called layered surfaces. A particularly important subset of these will be what we call basic layered surfaces. We can alter these surface by performing the entirely local operations of adding handles and/or crosscaps, each of which increases genus. The main result then shows that if we are given an alternating projection P (L) and a surface S spanning L, we can construct a surface T spanning L with the same genus, orientability, and aggregate slope as S that is a basic layered surface with respect to P , except perhaps at a collection of added crosscaps and/or handles. Furthermore, S must be connected if L is non-splittable. This result has several useful corollaries. In particular, it allows for the determination of nonorientable genus for alternating links. It also can be used to show that mutancy of alternating links preserves nonorientable genus. And it allows one to prove that there are knots that have a pair of minimal nonorientable genus spanning surfaces, one boundary-incompressible and one boundary-compressible. 1. Introduction A Seifert surface for an oriented knot or link L is a compact connected oriented surface in S3 with oriented boundary equal to L. Seifert's Algorithm, wherein one takes an oriented projection of the link, cuts each crossing open in the manner that preserves orientation, fills in each resulting circle with a disk, and connects the disks with a half-twisted band at each crossing, ensures that such a surface exists. The minimal genus of a Seifert surface is defined to be the genus of the knot or link. Given a random link, it is typically difficult to determine its genus. However for one category of link, we have a simple means for finding the genus. Theorem 1.1. Given an oriented alternating link, Seifert's Algorithm applied to a reduced alter- nating projection yields a minimal genus Seifert surface. arXiv:1205.5520v1 [math.GT] 24 May 2012 This theorem has been proven three times, first independently in 1958 by Kunio Murasugi [23] and in 1959 by Richard Crowell [9] using the reduced Alexander Polynomial, and then in 1987 by David Gabai [11] using elementary geometric techniques. Our main theorem will include this theorem as a special case. However, in this paper, we will also be concerned with nonorientable spanning surfaces. The cross- cap number of a nonorientable surface S of n boundary components is defined to be 2 − χ(S) − n. Note that this is the number of projective planes of which the corresponding closed surface is the connected sum. In [8], the crosscap number of a link L is defined to be the minimum crosscap number of any nonorientable surface spanning the link L. Date: May 25, 2012. 12000 Mathematics Subject Classification 57M25, 57M50 Key words: spanning surface, alternating knot, crosscap number 1 2 COLIN ADAMS AND THOMAS KINDRED For the sake of comparison between complexities of orientable and nonorientable surfaces, define the nonorientable genus of L to be 1/2 of the crosscap number of L. Note that this can be either an integer or a half integer, and does not coincide with traditional definitions. We will sometimes refer to the genus of a knot or link as the orientable genus if confusion may otherwise arise. The crosscap number is known only for a relatively small collection of knots and links. In [30], it was determined for torus knots (see also [24]). In [13], a simple method for its determination was provided for two-bridge knots and links. In [15], it was determined for many pretzel knots. In this paper, we present a classification of spanning surfaces for alternating links up to genus, orientability, and a new invariant that we call aggregate slope, and that for knots coincides with the slope. That is, given an alternating link, we determine all possible combinations of genus, ori- entability, and aggregate slope that a surface spanning that link can have. To this end, we describe a straightforward algorithm, much like Seifert's Algorithm, through which to construct spanning sur- faces. We call the surfaces generated by this algorithm layered surfaces. A particularly important subset of these will be what we call basic layered surfaces. Once we have a layered surface, we can also change the surface by performing the entirely local operations of adding handles and/or crosscaps, each of which increases genus. Our main result, which appears in Section 5, is as follows: Theorem 5.3. Given an alternating projection P (L) and a surface S spanning L, we can construct a surface T spanning L with the same genus, orientability, and aggregate slope as S such that T is a basic layered surface with respect to P , except perhaps at a collection of added crosscaps and/or handles. When S is orientable, T can be chosen to be orientable with respect to the orientation that L inherits from S. This result has several useful corollaries that appear in Section 6, including the already mentioned classification of spanning surfaces for alternating links. Additionally, it allows us to easily find and construct a minimal nonorientable genus surface spanning a given alternating link. Note, for example 2 in [33], that a substantial amount of work is necessary to show the crosscap number of the link 63 is 3. Theorem 5.4 and the algorithm given below make this an immediate conclusion. At the end of the paper, we include the nonorientable genus of all the alternating knots of nine or fewer crossings and alternating 2-component links of eight or fewer crossings. It would be straightforward to write a computer program to determine the nonorientable genus of all knots in the census of alternating knots through 22 crossings given in [14],[28] and [29]. In [13], Hatcher and Thurston proved that a 2-bridge knot cannot have two minimal nonorientable genus spanning surfaces, one boundary-incompressible and one boundary-compressible. They then asked whether or not this is true in general. We utilize the results of this paper to answer that question in the negative with a specific example. In a recent paper (cf. [10]),Curtis and Taylor give a further corollary of Theorem 5.4, showing that the two checkerboard surfaces of a reduced alternating projection of an alternating knot must yield the maximum and minimum integral slopes for all essential boundary surfaces of the knot. This implies that these maximum and minimum integral slopes must be twice the number of positive crossings and the negative of twice the number of negative crossings in the projection respectively. Since all slopes are integral for Monesinos knots, this yields the maximum and minimum slopes for all surfaces in that case. A CLASSIFICATION OF SPANNING SURFACES FOR ALTERNATING LINKS 3 The layered surfaces that appear here have independently been considered previously in [27] (see footnote on p.10 of the ArXiv version) and in [26], where they are called state surfaces and where a criterion is provided that proves certain such surfaces are essential. 2. Background Standard definitions of reduced projections, flypes, positive and negative crossings, oriented links, incompressible and boundary-incompressible surfaces apply. A surface that is incompressible and boundary-incompressible is said to be essential. If a projection P contains p positive crossings and n negative crossings, then the writhe w(P ) is p − n. Writhe varies across projections of a given link and across orientations of a given projection, but is invariant across all reduced, alternating projections of an oriented link. We define the aggregate linking number lk(L) to be the sum of the linking numbers of all pairs of link components. We define the aggregate linking number of a knot to be zero. Equivalently, the aggregate linking number can be calculated in the same way as writhe, but only counting crossings between distinct link components, and halving at the end. Linking number and aggregate linking number are invariant across all projections of a given oriented link, but may well vary across various orientations of a given link. A projection divides the projection surface S2 into regions, each of whose boundary consists alter- nately of strands and crossings from L. A region with n crossings on its boundary will be called a projection n-gon. A spanning surface for a link L is a surface S ⊂ S3 with boundary equal to L such that S \@N(L) consists of one (p; 1)-curve on each component of @N(L), where p refers to the number of meridians. We will not distinguish between the spanning surface S as a subset of S3 and the spanning surface as a subset of S3nN(L), calling both S. Two spanning surfaces for L are considered equivalent if one is ambient isotopic to the other in S3nN(L). We will assume that S contains no closed components, so that every point in S is connected to L by a path in S. We need a special form of boundary-incompressibility for spanning surfaces. A spanning surface S in S3nN(L) is meridianally boundary-compressible if there exists a disk D embedded in S3nN(L) such that @D = α [ β where D \ S = β and D \ @N(L) = α are both arcs, β does not cut a disk off S, @D \ @S cuts @S into two arcs φ1 and φ2, and α [ φi is a meridian of the knot for at least one of i = 1; 2.
Recommended publications
  • Oriented Pair (S 3,S1); Two Knots Are Regarded As
    S-EQUIVALENCE OF KNOTS C. KEARTON Abstract. S-equivalence of classical knots is investigated, as well as its rela- tionship with mutation and the unknotting number. Furthermore, we identify the kernel of Bredon’s double suspension map, and give a geometric relation between slice and algebraically slice knots. Finally, we show that every knot is S-equivalent to a prime knot. 1. Introduction An oriented knot k is a smooth (or PL) oriented pair S3,S1; two knots are regarded as the same if there is an orientation preserving diffeomorphism sending one onto the other. An unoriented knot k is defined in the same way, but without regard to the orientation of S1. Every oriented knot is spanned by an oriented surface, a Seifert surface, and this gives rise to a matrix of linking numbers called a Seifert matrix. Any two Seifert matrices of the same knot are S-equivalent: the definition of S-equivalence is given in, for example, [14, 21, 11]. It is the equivalence relation generated by ambient surgery on a Seifert surface of the knot. In [19], two oriented knots are defined to be S-equivalent if their Seifert matrices are S- equivalent, and the following result is proved. Theorem 1. Two oriented knots are S-equivalent if and only if they are related by a sequence of doubled-delta moves shown in Figure 1. .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .. .... .... .... .... .... .... .... .... .... ...
    [Show full text]
  • Of the American Mathematical Society August 2017 Volume 64, Number 7
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society August 2017 Volume 64, Number 7 The Mathematics of Gravitational Waves: A Two-Part Feature page 684 The Travel Ban: Affected Mathematicians Tell Their Stories page 678 The Global Math Project: Uplifting Mathematics for All page 712 2015–2016 Doctoral Degrees Conferred page 727 Gravitational waves are produced by black holes spiraling inward (see page 674). American Mathematical Society LEARNING ® MEDIA MATHSCINET ONLINE RESOURCES MATHEMATICS WASHINGTON, DC CONFERENCES MATHEMATICAL INCLUSION REVIEWS STUDENTS MENTORING PROFESSION GRAD PUBLISHING STUDENTS OUTREACH TOOLS EMPLOYMENT MATH VISUALIZATIONS EXCLUSION TEACHING CAREERS MATH STEM ART REVIEWS MEETINGS FUNDING WORKSHOPS BOOKS EDUCATION MATH ADVOCACY NETWORKING DIVERSITY blogs.ams.org Notices of the American Mathematical Society August 2017 FEATURED 684684 718 26 678 Gravitational Waves The Graduate Student The Travel Ban: Affected Introduction Section Mathematicians Tell Their by Christina Sormani Karen E. Smith Interview Stories How the Green Light was Given for by Laure Flapan Gravitational Wave Research by Alexander Diaz-Lopez, Allyn by C. Denson Hill and Paweł Nurowski WHAT IS...a CR Submanifold? Jackson, and Stephen Kennedy by Phillip S. Harrington and Andrew Gravitational Waves and Their Raich Mathematics by Lydia Bieri, David Garfinkle, and Nicolás Yunes This season of the Perseid meteor shower August 12 and the third sighting in June make our cover feature on the discovery of gravitational waves
    [Show full text]
  • Non-Orientable Lagrangian Cobordisms Between Legendrian Knots
    NON-ORIENTABLE LAGRANGIAN COBORDISMS BETWEEN LEGENDRIAN KNOTS ORSOLA CAPOVILLA-SEARLE AND LISA TRAYNOR 3 Abstract. In the symplectization of standard contact 3-space, R × R , it is known that an orientable Lagrangian cobordism between a Leg- endrian knot and itself, also known as an orientable Lagrangian endo- cobordism for the Legendrian knot, must have genus 0. We show that any Legendrian knot has a non-orientable Lagrangian endocobordism, and that the crosscap genus of such a non-orientable Lagrangian en- docobordism must be a positive multiple of 4. The more restrictive exact, non-orientable Lagrangian endocobordisms do not exist for any exactly fillable Legendrian knot but do exist for any stabilized Legen- drian knot. Moreover, the relation defined by exact, non-orientable La- grangian cobordism on the set of stabilized Legendrian knots is symmet- ric and defines an equivalence relation, a contrast to the non-symmetric relation defined by orientable Lagrangian cobordisms. 1. Introduction Smooth cobordisms are a common object of study in topology. Motivated by ideas in symplectic field theory, [19], Lagrangian cobordisms that are cylindrical over Legendrian submanifolds outside a compact set have been an active area of research interest. Throughout this paper, we will study 3 Lagrangian cobordisms in the symplectization of the standard contact R , 3 t namely the symplectic manifold (R×R ; d(e α)) where α = dz−ydx, that co- incide with the cylinders R×Λ+ (respectively, R×Λ−) when the R-coordinate is sufficiently positive (respectively, negative). Our focus will be on non- orientable Lagrangian cobordisms between Legendrian knots Λ+ and Λ− and non-orientable Lagrangian endocobordisms, which are non-orientable Lagrangian cobordisms with Λ+ = Λ−.
    [Show full text]
  • Commentary on Thurston's Work on Foliations
    COMMENTARY ON FOLIATIONS* Quoting Thurston's definition of foliation [F11]. \Given a large supply of some sort of fabric, what kinds of manifolds can be made from it, in a way that the patterns match up along the seams? This is a very general question, which has been studied by diverse means in differential topology and differential geometry. ... A foliation is a manifold made out of striped fabric - with infintely thin stripes, having no space between them. The complete stripes, or leaves, of the foliation are submanifolds; if the leaves have codimension k, the foliation is called a codimension k foliation. In order that a manifold admit a codimension- k foliation, it must have a plane field of dimension (n − k)." Such a foliation is called an (n − k)-dimensional foliation. The first definitive result in the subject, the so called Frobenius integrability theorem [Fr], concerns a necessary and sufficient condition for a plane field to be the tangent field of a foliation. See [Spi] Chapter 6 for a modern treatment. As Frobenius himself notes [Sa], a first proof was given by Deahna [De]. While this work was published in 1840, it took another hundred years before a geometric/topological theory of foliations was introduced. This was pioneered by Ehresmann and Reeb in a series of Comptes Rendus papers starting with [ER] that was quickly followed by Reeb's foundational 1948 thesis [Re1]. See Haefliger [Ha4] for a detailed account of developments in this period. Reeb [Re1] himself notes that the 1-dimensional theory had already undergone considerable development through the work of Poincare [P], Bendixson [Be], Kaplan [Ka] and others.
    [Show full text]
  • MUTATIONS of LINKS in GENUS 2 HANDLEBODIES 1. Introduction
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 1, January 1999, Pages 309{314 S 0002-9939(99)04871-6 MUTATIONS OF LINKS IN GENUS 2 HANDLEBODIES D. COOPER AND W. B. R. LICKORISH (Communicated by Ronald A. Fintushel) Abstract. A short proof is given to show that a link in the 3-sphere and any link related to it by genus 2 mutation have the same Alexander polynomial. This verifies a deduction from the solution to the Melvin-Morton conjecture. The proof here extends to show that the link signatures are likewise the same and that these results extend to links in a homology 3-sphere. 1. Introduction Suppose L is an oriented link in a genus 2 handlebody H that is contained, in some arbitrary (complicated) way, in S3.Letρbe the involution of H depicted abstractly in Figure 1 as a π-rotation about the axis shown. The pair of links L and ρL is said to be related by a genus 2 mutation. The first purpose of this note is to prove, by means of long established techniques of classical knot theory, that L and ρL always have the same Alexander polynomial. As described briefly below, this actual result for knots can also be deduced from the recent solution to a conjecture, of P. M. Melvin and H. R. Morton, that posed a problem in the realm of Vassiliev invariants. It is impressive that this simple result, readily expressible in the language of the classical knot theory that predates the Jones polynomial, should have emerged from the technicalities of Vassiliev invariants.
    [Show full text]
  • Arxiv:Math/0208110V1 [Math.GT] 14 Aug 2002 Disifiieymn Itntsraebnl Structures
    STRONGLY IRREDUCIBLE SURFACE AUTOMORPHISMS SAUL SCHLEIMER Abstract. A surface automorphism is strongly irreducible if every essential simple closed curve in the surface has nontrivial geomet- ric intersection with its image. We show that a three-manifold admits only finitely many inequivalent surface bundle structures with strongly irreducible monodromy. 1. Introduction A surface automorphism h : F F is strongly irreducible if every es- sential simple closed curve γ F→has nontrivial geometric intersection with its image, h(γ). This paper⊂ shows that a three-manifold admits only finitely many inequivalent surface bundle structures with strongly irreducible monodromy. This imposes a serious restriction; for exam- ple, any three-manifold which fibres over the circle and has b2(M) 2 admits infinitely many distinct surface bundle structures. ≥ The main step is an elementary proof that all weakly acylindrical sur- faces inside of an irreducible triangulated manifold are isotopic to fun- damental normal surfaces. As weakly acylindrical surfaces are a larger class than the acylindrical surfaces this strengthens a result of Hass [5]; an irreducible three-manifold contains only finitely many acylindrical surfaces. Section 2 gives necessary topological definitions, examples of strongly irreducible automorphisms, and precise statements of the theorems. arXiv:math/0208110v1 [math.GT] 14 Aug 2002 The required tools of normal surface theory are presented in Section 3. Section 4 defines weakly acylindrical and proves that every such sur- face is isotopic to a fundamental surface. In the spirit of the Georgia Topology Conference the paper ends by listing several open questions. Many of the ideas and terminology discussed come from the study of Heegaard splittings as in [2] and in my thesis [11].
    [Show full text]
  • Counting Essential Surfaces in 3-Manifolds
    Counting essential surfaces in 3-manifolds Nathan M. Dunfield, Stavros Garoufalidis, and J. Hyam Rubinstein Abstract. We consider the natural problem of counting isotopy classes of es- sential surfaces in 3-manifolds, focusing on closed essential surfaces in a broad class of hyperbolic 3-manifolds. Our main result is that the count of (possibly disconnected) essential surfaces in terms of their Euler characteristic always has a short generating function and hence has quasi-polynomial behavior. This gives remarkably concise formulae for the number of such surfaces, as well as detailed asymptotics. We give algorithms that allow us to compute these generating func- tions and the underlying surfaces, and apply these to almost 60,000 manifolds, providing a wealth of data about them. We use this data to explore the delicate question of counting only connected essential surfaces and propose some con- jectures. Our methods involve normal and almost normal surfaces, especially the work of Tollefson and Oertel, combined with techniques pioneered by Ehrhart for counting lattice points in polyhedra with rational vertices. We also introduce arXiv:2007.10053v1 [math.GT] 20 Jul 2020 a new way of testing if a normal surface in an ideal triangulation is essential that avoids cutting the manifold open along the surface; rather, we use almost normal surfaces in the original triangulation. Contents 1 Introduction3 1.2 Main results . .4 1.5 Motivation and broader context . .5 1.7 The key ideas behind Theorem 1.3......................6 2 1.8 Making Theorem 1.3 algorithmic . .8 1.9 Ideal triangulations and almost normal surfaces . .8 1.10 Computations and patterns .
    [Show full text]
  • Crosscap Number and Knot Projections
    CROSSCAP NUMBER AND KNOT PROJECTIONS NOBORU ITO AND YUSUKE TAKIMURA Abstract. We introduce an unknotting-type number of knot projections that gives an upper bound of the crosscap number of knots. We determine the set of knot projections with the unknotting-type number at most two, and this result implies classical and new results that determine the set of alternating knots with the crosscap number at most two. 1. Introduction In this paper, we introduce an unknotting-type number of knot projections (Def- inition 1) as follows. Every double point in a knot projection can be spliced two different ways (Figure 2), one of which gives another knot projection (Definition 2). A special case of such operations is a first Reidemeister move RI−, as shown in Fig- ure 2. If the other case of such operations, which is not of type RI−, it is denoted by S−. Beginning with an n-crossing knot projection P , there are many sequences of n splices of type RI− and type S−, all of which end with the simple closed curve O. Then, we define the number u−(P ) as the minimum number of splices of type S− (Definition 3). For this number, we determine the set of knot projections with u−(P ) = 1 or u−(P ) = 2 (Theorem 1, Section 3). Here, we provide an efficient method to obtain a knot projection P with u−(P ) = n for a given n (Move 1). Further, for a connected sum (Definition 4) of knot projections, we show that the additivity of u− under the connected sum (Section 7).
    [Show full text]
  • Crosscap Numbers of Alternating Knots Via Unknotting Splices
    Crosscap numbers of alternating knots via unknotting splices THOMAS KINDRED Ito-Takimura recently defined a splice-unknotting number u−(D) for knot diagrams. They proved that this number provides an upper bound for the crosscap number of any prime knot, asking whether equality holds in the alternating case. We answer their question in the affirmative. (Ito has independently proven the same result.) As an application, we compute the crosscap numbers of all prime alternating knots through at least 13 crossings, using Gauss codes. 57M25 1 Introduction Let K ⊂ S3 be a knot. An embedded, compact, connected surface F ⊂ S3 is said to span K if @F = K . The crosscap number of K , denoted cc(K), is the smallest value of 12 β1(F) among all 1-sided spanning surfaces for K. A theorem of Adams and the author [4] states that, given an alternating diagram D of a knot K, the crosscap number of K is realized by some state surface from D. (Section 2 reviews background.) Moreover, given such D and K, an algorithm in [4] finds a 1-sided state surface F from D with β1(F) = cc(K). Ito-Takimura recently introduced a splice-unknotting number u−(D) for knot diagrams. Minimizing this number across all diagrams of a given knot K defines a knot invariant, arXiv:1905.11367v1 [math.GT] 27 May 2019 u−(K). After proving that u−(D) ≥ cc(K) holds for any diagram D of any nontrivial knot K, Ito-Takimura ask whether this inequality is ever strict in the case of prime alternating diagrams.
    [Show full text]
  • KNOTS and SEIFERT SURFACES Your Task As a Group, Is to Research the Topics and Questions Below, Write up Clear Notes As a Group
    KNOTS AND SEIFERT SURFACES MATH 180, SPRING 2020 Your task as a group, is to research the topics and questions below, write up clear notes as a group explaining these topics and the answers to the questions, and then make a video presenting your findings. Your video and notes will be presented to the class to teach them your findings. Make sure that in your notes and video you give examples and intuition, along with formal definitions, theorems, proofs, or calculations. Make sure that you point out what the is most important take away message, and what aspects may be tricky or confusing to understand at first. You will need to work together as a group. Every member of the group must understand Problems 1,2, and 3, and each group member should solve at least one example from problem (4). You may split up Problems 5-9. 1. Resources The primary resource for this project is The Knot Book by Colin Adams, Chapter 4.3 (page 95-106). An Introduction to Knot Theory by Raymond Lickorish Chapter 2, could also be helpful. You may also look at other resources online about knot theory and Seifert surfaces. Make sure to cite the sources you use. 2. Topics and Questions As you research, you may find more examples, definitions, and questions, which you defi- nitely should feel free to include in your notes and/or video, but make sure you at least go through the following discussion and questions. (1) What is a Seifert surface for a knot? Describe Seifert's algorithm for finding Seifert surfaces: how do you find Seifert circles and how do you use those Seifert
    [Show full text]
  • CROSSCAP NUMBERS of PRETZEL KNOTS 1. Introduction It Is Well
    CROSSCAP NUMBERS OF PRETZEL KNOTS 市原 一裕 (KAZUHIRO ICHIHARA) 大阪産業大学教養部 (OSAKA SANGYO UNIVERSITY) 水嶋滋氏 (東京工業大学大学院情報理工学研究科) との共同研究 (JOINT WORK WITH SHIGERU MIZUSHIMA (TOKYO INSTITUTE OF TECHNOLOGY)) Abstract. For a non-trivial knot in the 3-sphere, the crosscap number is de¯ned as the minimal ¯rst betti number of non-orientable spanning surfaces for it. In this article, we report a simple formula of the crosscap number for pretzel knots. 1. Introduction It is well-known that any knot in the 3-sphere S3 bounds an orientable subsurface in S3; called a Seifert surface. One of the most basic invariant in knot theory, the genus of a knot K, is de¯ned to be the minimal genus of a Seifert surface for K. On the other hand, any knot in S3 also bounds a non-orientable subsurface in S3: Consider checkerboard surfaces for a diagram of the knot, one of which is shown to be non-orientable. In view of this, similarly as the genus of a knot, B.E. Clark de¯ned the crosscap number of a knot as follows. De¯nition (Clark, [1]). The crosscap number γ(K) of a knot K is de¯ned to be the minimal ¯rst betti number of a non-orientable surface spanning K in S3. For completeness we de¯ne γ(K) = 0 if and only if K is the unknot. Example. The ¯gure-eight knot K in S3 bounds a once-punctured Klein bottle S, appearing as a checkerboard surface for the diagram of K with minimal crossings. Thus γ(K) · ¯1(S) = 2.
    [Show full text]
  • Arxiv:2101.02945V3 [Math.GT] 15 Apr 2021
    On Crossing Ball Structure in Knot and Link Complements Wei Lin Abstract We develop a word mechanism applied in knot and link diagrams for the illustra- tion of a diagrammatic property. We also give a necessary condition for determining incompressible and pairwise incompressible surfaces, that are embedded in knot or link complements. Finally, we give a finiteness theorem and an upper bound on the Euler characteristic of such surfaces. 1 Introduction 1.1 Preliminary Discussion Let L ⊂ S3 be a link and π(L) ⊂ S2(⊂ S3) be a regular link projection. Additionally, let F ⊂ S3 − L be an closed incompressible surface. In 1981 Menasco introduced his crossing ball technology for classical link projections [7] that replaced π(L) in S2 with two 2-spheres, 2 2 2 3 2 2 S±, which had the salient features that L was embedded in S+ [ S− and S n (S+ [ S−) 3 2 was a collection of open 3-balls|B± that correspond to the boundaries S± and a collect of crossing balls. (Please see §1.2 for formal definition.) Using general position arguments, 2 2 this technology allows for placing F into normal position with respect to S± so that F \S± is a collection of simple closed curves (s.c.c.'s). When one imposes the assumption that π(L) is an alternating projection, the normal position of an essential surface is exceedingly well behaved to the point where by direct observation one can definitively state whether the link is split, prime, cabled or a satellite. As such, any alternating knot can by direct observation be placed into one of William Thurston's three categories|torus knot, satellite knot or hyperbolic knot [10].
    [Show full text]