KNOTS and SEIFERT SURFACES Your Task As a Group, Is to Research the Topics and Questions Below, Write up Clear Notes As a Group
KNOTS AND SEIFERT SURFACES MATH 180, SPRING 2020 Your task as a group, is to research the topics and questions below, write up clear notes as a group explaining these topics and the answers to the questions, and then make a video presenting your findings. Your video and notes will be presented to the class to teach them your findings. Make sure that in your notes and video you give examples and intuition, along with formal definitions, theorems, proofs, or calculations. Make sure that you point out what the is most important take away message, and what aspects may be tricky or confusing to understand at first. You will need to work together as a group. Every member of the group must understand Problems 1,2, and 3, and each group member should solve at least one example from problem (4). You may split up Problems 5-9. 1. Resources The primary resource for this project is The Knot Book by Colin Adams, Chapter 4.3 (page 95-106). An Introduction to Knot Theory by Raymond Lickorish Chapter 2, could also be helpful. You may also look at other resources online about knot theory and Seifert surfaces. Make sure to cite the sources you use. 2. Topics and Questions As you research, you may find more examples, definitions, and questions, which you defi- nitely should feel free to include in your notes and/or video, but make sure you at least go through the following discussion and questions. (1) What is a Seifert surface for a knot? Describe Seifert's algorithm for finding Seifert surfaces: how do you find Seifert circles and how do you use those Seifert
[Show full text]