Top-Down Sequencing of Apis Dorsata Apamin by MALDI-TOF MS and Evidence of Its Inactivity Against Microorganisms

Total Page:16

File Type:pdf, Size:1020Kb

Top-Down Sequencing of Apis Dorsata Apamin by MALDI-TOF MS and Evidence of Its Inactivity Against Microorganisms Toxicon 71 (2013) 105–112 Contents lists available at SciVerse ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Top-down sequencing of Apis dorsata apamin by MALDI-TOF MS and evidence of its inactivity against microorganisms D. Baracchi a,*, G. Mazza a, E. Michelucci b, G. Pieraccini b, S. Turillazzi a,b, G. Moneti b a Department of Biologia Evoluzionistica “Leo Pardi”, University of Firenze, Via Romana 17, 50125 Firenze, Italy b Mass Spectrometry Centre, University of Firenze, Viale G. Pieraccini 6, 50139 Firenze, Italy article info abstract Article history: Apis mellifera venom is one of the best characterized venoms among Hymenoptera, yet Received 13 March 2013 relatively little is known about venom belonging to other species in the genus Apis. Received in revised form 18 May 2013 Melittin, one of the most important bioactive peptides, has been isolated and characterized Accepted 22 May 2013 in A. mellifera, Apis cerana, Apis dorsata and Apis florea, while apamin has been only Available online 7 June 2013 characterized in A. mellifera and A. cerana. At present, no information is available about the sequence of A. dorsata apamin. Moreover, while the antiseptic properties of melittin and Keywords: MCD peptides are well documented, the antimicrobial activity of apamin has never been MALDI-TOF Venom tested. In the present study, we isolated and characterized apamin from the venom of the Honeybee giant honeybee A. dorsata. We tested the activity of apamin against bacteria and yeasts in a Antimicrobial peptides microbiological assay to gain a more complete understanding of the antimicrobial Peptide sequencing competence of the medium molecular weight venom fraction. We show that A. dorsata apamin toxin has the same primary sequence as apamin in A. mellifera and A. cerana,yet with a different C-terminal amidation. We did not find any antiseptic activity of apamin against any of the tested microorganisms. We discuss the evolutionary processes con- nected to the ecological context of venom use that drove the generation of Apis venom complexity. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction 2006; Nascimento et al., 2006) that target a myriad of re- ceptors and ion channels, making them ideal for pharma- Arthropods such as scorpions, spiders and stinging hy- ceutical and agrochemical research (King and Hardy, 2013; menopterans have developed venom glands that mainly Morgenstern and King, 2013). Many studies have been produce proteins including several enzymes, peptides, conducted to understand the evolutionary processes that several neurotoxic, antimicrobial and cytolytic compounds drove the generation of this venom complexity (for reviews and low-molecular mass substances such as ionic salts, see Fry et al., 2009). biogenic amines, amino acids and alkaloids (Bettini, 1978; Apis mellifera venom, one of the best characterized Piek, 1986; Kuhn-Nentwig, 2003). Venoms are extremely venoms among Hymenoptera, is composed of a wide spec- complex blends of diverse substances (Escoubas et al., trum of biomolecules, the structure and function of which have been determined in great detail (Kreil, 1973; Hoffman, 1996). Recently, a straightforward characterization of the * Corresponding author. Current address: Queen Mary University of peptidic fraction ranging from 1000 to 4000 Da of the pure London, Research Centre for Psychology, School of Biological and Chem- venom by MALDI-TOF MS allowed the detection of the three ical Sciences, Mile End Road, London E1 4NS, UK. Tel.: þ44 (0)20 7882 4807. major types; apamin, mast cell degranulating peptide E-mail address: [email protected] (D. Baracchi). (MCD) and melittin (Francese et al., 2009). Furthermore, 0041-0101/$ – see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.toxicon.2013.05.020 106 D. Baracchi et al. / Toxicon 71 (2013) 105–112 other minor compounds were detected in the honeybee Hence, this study focuses on the chemical character- venom and they still remain to be identified (Baracchi and ization of apamin isolated from the venom of the giant Turillazzi, 2010; Baracchi et al., 2011). Melittin is a basic honeybee A. dorsata. The peptide sequence was entirely peptide of 26 residues (MWw2.8 kDa), accounts for 45%– obtained by means of top down MALDI-TOF MS experi- 50% of the venom dry weight (de Lima and Brochetto-Braga, ments. Additionally, to complete the framework of the 2003; Ownby et al., 1997) and exhibits an amphipathic antimicrobial competence of the medium MW venom structure; its polar and non-polar ends allow it to interact fraction, a microbiological assay was used to test the ac- with lipid membranes ultimately increasing its perme- tivity of apamin against Gram-positive and Gram-negative ability. Two other peptides are considered major venom bacteria and yeasts. toxins: MCD and apamin. The former causes mast cell break down, accounts for about 2% of the venom dry weight (de 2. Material and methods Lima and Brochetto-Braga, 2003) and comprises 22 amino acid residues (MWw2.6 kDa). Apamin is a well character- 2.1. Venom collection ized small peptide (18 amino acids, MWw2.0 kDa) with two disulphide bridges connecting the four cysteine residues in Sixty adult worker bees were collected from a wild an overlapping pattern that recurs in at least one other colony of A. dorsata located in Bukit Katil (Melaka State, venom peptide component (Gauldie et al., 1978). The sec- Malaysia) and killed by freezing. ondary or tertiary structure of apamin is exceptionally sta- All specimens were dissected and drops of their venom ble with respect to pH, temperature, and denaturants were extracted directly from the tip of the sting with a (Miroshnikov et al., 1978; Pease and Wemmer, 1988). Apa- small capillary glass tube after gently squeezing the venom min accounts for less than 2% of venom dry weight, presents sac with a glass plate. All the collected venom were a neurotoxic action (de Lima and Brochetto-Braga, 2003) reunited in one single tube and 2 ml methanol added. The and possesses unusual functional as well as structural tube with the sample was transported to the Italian mass properties (Habermann, 1972). It is remarkable among spectrometry centre at the university of Firenze, Italy, and peptides in its ability to cross the blood–brain barrier and stored at À20 C until MS analyses. act on the central nervous system. Apamin is known to block þ calcium dependent potassium fluxes by binding to a Ca2 - 2.2. Chemical analysis dependent potassium channel (Banks et al., 1979; Castle et al., 1989; Labbé-Jullié et al., 1991; Ishii et al., 1997). 2.2.1. Chemicals While the antiseptic properties of melittin (from A. melli- Methanol, acetonitrile (ACN), and n-pentane were of fera) and many MCD peptides (from other arthropods) are chromatography grade and purchased of Riedel de Haen well documented (Kuhn-Nentwig, 2003; Konno et al., 2001, (Sigma Aldrich Italia, Milan, Italy). Purified and deionized 2006; Mendes et al., 2004; Souza et al., 2005; Turillazzi et al., water was prepared using a Milli-Q system (Millipore, 2006; Xu et al., 2006), the antimicrobial action for apamin Bedford, MA, USA). Formic acid and trifluoroacetic acid has never been tested. Although apamin lacks the surfactant (TFA) were purchased from Fluka (Sigma Aldrich Italia). character of melittin (Bettini, 1978), this peptide shares at The a-cyano-4-hydroxycinnamic acid (a-CHCA) and least three similar characteristics with a group of membrane 1,5-diaminonaphthalene (1,5-DAN) were obtained from modulators and molecules implicated in defence against Bruker Daltonics (Bremen, Germany). Unless stated other- pathogens, including: scorpion toxin, insects and scorpion wise, all other reagents were of analytical grade and used as defensins, snake sarafotoxins, plant thionins and human supplied. endothelins (Froy and Gurevitz, 1998). In particular, they have an effect on the membrane potential, have similar gene 2.2.2. General procedure organization, and they share a similar cysteine-stabilized a- Apamin was isolated from the crude venom by HPLC helical (CSH) motif, which involves a Cys-X-X-X-Cys stretch and detected by ESI-TOF. To confirm the presence of cystins, of the a-helix bonded through two disulphide bridges to a we compared alkylated apamin to native apamin using Cys-X-Cys triplet of a b-strand (Kobayashi et al., 1991; MALDI-TOF MS. Top-down sequencing of apamin was done Bonmatin et al., 1992; Bruix et al., 1993; Bulet et al., 2004). with MALDI-TOF instruments using Anchor–chips plate. In contrast to the A. mellifera venom, which has one of the We measured the exact mass of apamin using LTQ- best characterized venoms amongst all Hymenoptera, rela- Orbitrap. tively little is known about the venom composition of other Apis species (reviewed in Schmidt, 1995). The three main 2.2.3. Peptide fractionation venom peptides melittin, apamin and MCD are also present in Extracts were taken to dryness and then resuspended in the venom of Apis cerana, Apis dorsata,andApis andreniformis 3 ml of a solution of water and ACN (70:30 v/v containing (Schmidt, 1995; Baracchi et al., 2011). In a pioneering study 0.5% formic acid). The peptide was separated from the other Kreil (1973) showed that melittin has the same amino acid components of the venom by HPLC using a Series 200 sequence in A. mellifera and A. cerana; melittin of A. dorsata (Perkin–Elmer, Boston, MA, USA) HPLC system including an differs in three amino acid residues (Kreil, 1975). autosampler, a quaternary pump, and an UV–VIS detector Apamin also has the same sequence in A. mellifera and A. coupled with a fraction collector (Biologic BioFrac, BioRad, cerana (Haux et al., 1967; Zhang et al., 2003). However, no Hercules, CA, USA). The RP-HPLC column was a Luna C8, information is available on the sequence of apamin in other 150 Â 4.6 mm, 5 mm (Phenomenex, Torrance, CA, USA), Apis species.
Recommended publications
  • Ecology, Behaviour and Control of Apis Cerana with a Focus on Relevance to the Australian Incursion
    Insects 2013, 4, 558-592; doi:10.3390/insects4040558 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Ecology, Behaviour and Control of Apis cerana with a Focus on Relevance to the Australian Incursion Anna H. Koetz Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, 21-23 Redden St., Portsmith, QLD 4870, Australia; E-Mail: [email protected]; Tel.: +61-419-726-698; Fax: +61-7-4057-3690 Received: 27 June 2013; in revised form: 13 September 2013 / Accepted: 24 September 2013 / Published: 21 October 2013 Abstract: Apis cerana Fabricius is endemic to most of Asia, where it has been used for honey production and pollination services for thousands of years. Since the 1980s, A. cerana has been introduced to areas outside its natural range (namely New Guinea, the Solomon Islands, and Australia), which sparked fears that it may become a pest species that could compete with, and negatively affect, native Australian fauna and flora, as well as commercially kept A. mellifera and commercial crops. This literature review is a response to these concerns and reviews what is known about the ecology and behaviour of A. cerana. Differences between temperate and tropical strains of A. cerana are reviewed, as are A. cerana pollination, competition between A. cerana and A. mellifera, and the impact and control strategies of introduced A. cerana, with a particular focus on gaps of current knowledge. Keywords: Apis cerana; Apis mellifera; incursion; pest species; Australia; pollination; competition; distribution; control 1. Introduction Apis cerana Fabricius (also known as the Asian honeybee, Asiatic bee, Asian hive bee, Indian honeybee, Indian bee, Chinese bee, Mee bee, Eastern honeybee, and Fly Bee) is endemic to most of Asia where it has been used for honey production and pollination services for thousands of years.
    [Show full text]
  • The Distribution and Nest-Site Preference of Apis Dorsata Binghami at Maros Forest, South Sulawesi, Indonesia
    Journal of Insect Biodiversity 4(23): 1‐14, 2016 http://www.insectbiodiversity.org RESEARCH ARTICLE The distribution and nest-site preference of Apis dorsata binghami at Maros Forest, South Sulawesi, Indonesia Muhammad Teguh Nagir1 Tri Atmowidi1* Sih Kahono2 1Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor 16680, Indonesia. 2Zoology Division, Research Center for Biology-LIPI, Bogor 16911, Indonesia. *Corresponding author: [email protected] Abstract: The giant honey bee, Apis dorsata binghami is subspecies of Apis dorsata. This species of bee was only found in Sulawesi and its surrounding islands. This study is aimed to study the distribution and characteristics of nest and nesting trees, nesting behavior of Apis dorsata binghami in the forests of Maros, South Sulawesi, Indonesia. The distributions of nests were observed using a survey method to record the species and characteristics of nesting trees, as well as the conditions around the nest. Results showed that 102 nests (17 active nests, 85 abandoned combs) of A. d. binghami were found. We found 34 species belong to 27 genera in 17 families of plants as nesting sites of giant honey bee. The common tree species used as nesting sites were Ficus subulata (Moraceae), Adenanthera sp. (Fabaceae), Spondias pinnata (Anacardiaceae), Artocarpus sericoarpus (Moraceae), Alstonia scholaris (Apocynaceae), Knema cinerea (Myristicaceae), Litsea mappacea (Lauraceae), and Palaquium obovatum (Sapotaceae). The nests were found in 0-11 meters (11 nests), 11-20 meters (40 nests), and more than 21 meters (51 nests) from ground level. The nests of giant honey bee were found in sturdy and woody branches, hard to peel, the slope of the branches was <60°, and nests were protected by liane plants, foliage, or both them.
    [Show full text]
  • Chronic Social Isolation Reduces 5-HT Neuronal Activity Via Upregulated SK3 Calcium-Activated Potassium Channels Derya Sargin1, David K Oliver1, Evelyn K Lambe1,2,3*
    SHORT REPORT Chronic social isolation reduces 5-HT neuronal activity via upregulated SK3 calcium-activated potassium channels Derya Sargin1, David K Oliver1, Evelyn K Lambe1,2,3* 1Department of Physiology, University of Toronto, Toronto, Canada; 2Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada; 3Department of Psychiatry, University of Toronto, Toronto, Canada Abstract The activity of serotonin (5-HT) neurons is critical for mood regulation. In a mouse model of chronic social isolation, a known risk factor for depressive illness, we show that 5-HT neurons in the dorsal raphe nucleus are less responsive to stimulation. Probing the responsible cellular mechanisms pinpoints a disturbance in the expression and function of small-conductance Ca2+-activated K+ (SK) channels and reveals an important role for both SK2 and SK3 channels in normal regulation of 5-HT neuronal excitability. Chronic social isolation renders 5-HT neurons insensitive to SK2 blockade, however inhibition of the upregulated SK3 channels restores normal excitability. In vivo, we demonstrate that inhibiting SK channels normalizes chronic social isolation- induced anxiety/depressive-like behaviors. Our experiments reveal a causal link for the first time between SK channel dysregulation and 5-HT neuron activity in a lifelong stress paradigm, suggesting these channels as targets for the development of novel therapies for mood disorders. DOI: 10.7554/eLife.21416.001 Introduction *For correspondence: evelyn. Major depression is a prevalent and debilitating disease for which standard treatments remain inef- [email protected] fective. Social isolation has long been implicated as a risk factor for depression in humans Competing interests: The (Cacioppo et al., 2002,2006; Holt-Lunstad et al., 2010) and induces anxiety- and depressive-like authors declare that no behaviors in rodents (Koike et al., 2009; Wallace et al., 2009; Dang et al., 2015; Shimizu et al., competing interests exist.
    [Show full text]
  • Apamin As a Selective Blocker of the Calcium-Dependent Potassium
    Proc. NatL Acad. Sci. USA Vol. 79, pp. 1308-1312, February 1982 Neurobiology Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: Voltage-clamp and biochemical characterization of the toxin receptor (receptor binding/neuroblastoma cell differentiation) M. HUGUES, G. ROMEY, D. DUVAL, J. P. VINCENT, AND M. LAZDUNSKI Centre de Biochimie du Centre National de la Recherche Scientifique, Facult, des Sciences, Parc Valrose, 06034 Nice Cedex, France Communicated by Jean-Marie P. Lehn, October 13, 1981 ABSTRACT This paper describes the interaction of apamin, MATERIALS AND METHODS a bee venom neurotoxin, with the mouse neuroblastoma cell mem- brane. Voltage-clamp analyses have shown thatapamin atlowcon- Cultures of Neuroblastoma Cells. Neuroblastoma cells centrations specifically blocks the Ca2"-dependent K+ channel in (clone N1E 115) were grown as described (12); they were in- differentiated neuroblastoma cells. Binding experiments with duced to differentiate in the presence of1% fetal calfserum and highly radiolabeled toxin indicate that the dissociation constant of 1.5% dimethyl sulfoxide. the apamin-receptor complex in differentiated neuroblastoma lodination ofApamin. Apamin was purified as described (13). cells is 15-22 pM and the maximal binding capacity is 12 fmol/ There is no tyrosine residue in the sequence, but there is his- mg ofprotein. The receptor is destroyed by proteases, suggesting tidine residue that is not essential for activity (4) and that can that it is a protein.The binding capacity ofneuroblastoma cells for be iodinated. It has been found that the previously radiolabeled apamin dramatically increases during the transition described to prepare "2I-labeled apamin ('p9rocedureI-apamin) (14) could from the nondifferentiated to the differentiated state.
    [Show full text]
  • Antimicrobial Activity of Apitoxin, Melittin and Phospholipase A2 of Honey Bee (Apis Mellifera) Venom Against Oral Pathogens
    Anais da Academia Brasileira de Ciências (2015) 87(1): 147-155 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520130511 www.scielo.br/aabc Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens LUÍS F. LEANDRO, CARLOS A. MENDES, LUCIANA A. CASEMIRO, ADRIANA H.C. VINHOLIS, WILSON R. CUNHA, ROSANA DE ALMEIDA and CARLOS H.G. MARTINS Laboratório de Pesquisas em Microbiologia Aplicada (LaPeMA), Universidade de Franca, Av. Dr. Armando Salles Oliveira, 201, Bairro Parque Universitário, 14404-600 Franca, SP, Brasil Manuscript received on November 19, 2013; accepted for publication on June 30, 2014 ABSTRACT In this work, we used the Minimum Inhibitory Concentration (MIC) technique to evaluate the antibacterial potential of the apitoxin produced by Apis mellifera bees against the causative agents of tooth decay. Apitoxin was assayed in natura and in the commercially available form. The antibacterial actions of the main components of this apitoxin, phospholipase A2, and melittin were also assessed, alone and in combination. The following bacteria were tested: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, Lactobacillus casei, and Enterococcus faecalis. The MIC results obtained for the commercially available apitoxin and for the apitoxin in natura were close and lay between 20 and 40µg / mL, which indicated good antibacterial activity. Melittin was the most active component in apitoxin; it displayed very promising MIC values, from 4 to 40µg / mL. Phospholipase A2 presented MIC values higher than 400µg / mL. Association of mellitin with phospholipase A2 yielded MIC values ranging between 6 and 80µg / mL.
    [Show full text]
  • UC Berkeley UC Berkeley Previously Published Works
    UC Berkeley UC Berkeley Previously Published Works Title Effects of forest and cave proximity on fruit set of tree crops in tropical orchards in Southern Thailand Permalink https://escholarship.org/uc/item/9bv4z153 Journal Journal of Tropical Ecology, 32(4) ISSN 0266-4674 Authors Sritongchuay, T Kremen, C Bumrungsri, S Publication Date 2016-07-01 DOI 10.1017/S0266467416000353 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Tropical Ecology http://journals.cambridge.org/TRO Additional services for Journal of Tropical Ecology: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Effects of forest and cave proximity on fruit set of tree crops in tropical orchards in Southern Thailand Tuanjit Sritongchuay, Claire Kremen and Sara Bumrungsri Journal of Tropical Ecology / Volume 32 / Issue 04 / July 2016, pp 269 - 279 DOI: 10.1017/S0266467416000353, Published online: 13 July 2016 Link to this article: http://journals.cambridge.org/abstract_S0266467416000353 How to cite this article: Tuanjit Sritongchuay, Claire Kremen and Sara Bumrungsri (2016). Effects of forest and cave proximity on fruit set of tree crops in tropical orchards in Southern Thailand. Journal of Tropical Ecology, 32, pp 269-279 doi:10.1017/ S0266467416000353 Request Permissions : Click here Downloaded from http://journals.cambridge.org/TRO, IP address: 136.152.209.123 on 10 Aug 2016 Journal of Tropical Ecology (2016) 32:269–279. © Cambridge University Press 2016
    [Show full text]
  • Training Manual for Rafter Beekeeping
    Training Manual The following document is intended to serve as a training manual and has been developed on the basis of related literature and the personal observations of the author. It aims to provide the essential requirements for the implementation of rafter beekeeping and presents guidelines for rafter construction and management as a means of sustainable harvesting. Nevertheless, it should not be considered as a substitute for practical training by an experienced rafter beekeeper, at least in the first stages of implementation. As is the case for any beekeeping activity, experience is a key factor for success. Eric Guerin Beekeeping consultant [email protected] December 2019 1. INTRODUCTION .............................................................................. 3 2. WHAT IS RAFTER BEEKEEPING? ................................................... 4 3. BASIC REQUIREMENTS FOR RAFTERING ...................................... 6 3.1 Presence of bees in the environment ........................................................... 6 3.2 Lack of “natural” nesting sites ..................................................................... 6 3.3 Abundance of bee friendly floral resources ................................................. 7 3.4 A widely recognized tenure or ownership of the rafters by individuals enforced by community laws and culture .......................................................... 8 3.5 Clarity on the tenure and management of the land ...................................... 9 4. RAFTER DESIGN AND CONSTRUCTION
    [Show full text]
  • Distinctive Hydrocarbons Among Giant Honey Bees, the Apis Dorsata Group (Hymenoptera: Apidae) Da Carlson, Dw Roubik, K Milstrey
    Distinctive hydrocarbons among giant honey bees, the Apis dorsata group (Hymenoptera: Apidae) Da Carlson, Dw Roubik, K Milstrey To cite this version: Da Carlson, Dw Roubik, K Milstrey. Distinctive hydrocarbons among giant honey bees, the Apis dorsata group (Hymenoptera: Apidae). Apidologie, Springer Verlag, 1991, 22 (3), pp.169-181. hal- 00890905 HAL Id: hal-00890905 https://hal.archives-ouvertes.fr/hal-00890905 Submitted on 1 Jan 1991 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Distinctive hydrocarbons among giant honey bees, the Apis dorsata group (Hymenoptera: Apidae) DA Carlson DW Roubik K Milstrey 1 US Department of Agriculture, IAMARL, PO Box 14565, Gainesville, FL 32604, USA; 2 Smithsonian Tropical Research Institute, APDO 2072, Balboa, Panamá; 3 University of Florida, Department of Entomology and Nematology, Gainesville, FL 32611, USA (Received 10 April 1988; accepted 11 February 1991) Summary &mdash; Cuticular hydrocarbon pattern (CHP) analysis was performed on giant honey bees (the Apis dorsata group) including: 1), those occasionally given species status-Himalayan honey bees, Philippine honey bees, Sulawesi honey bees; 2), those separated since the Pleistocene- common A dorsata of the Indian and Asian lowlands and islands on the continental shelf (India and Sri Lanka, Thailand and Sumatra); and 3), giant honey bees of Borneo and Palawan, potential step- ping-stones to the Philippines and Sulawesi.
    [Show full text]
  • Synthesis and Structure-Activity Studies of Novel Potassium K+ Ion
    P^ge Urn Replace with 30 8 ...its responce being... ...and its response is... 31 1 Dispite... Despite... 32 10 These channels were... This channel was... 33 5 ...and can be envisaged... ...and it can be envisaged... 38 13 ...with rise... ...with a rise... 42 11 etal etal. 42 13 ...of Lys^... ...or Lys^... 43 15 etal etal. 44 16 etal etal. 45 7 etal etal. 48 13 Concequently... Consequently... 49 1 etal etal. 52 14 etal etal. 52 25 ...suggeted... ...suggested... 60 2 etal etal. 77 14 ...quatermaiy... ...quaternary... 79 3 ...whch... ...which... 82 9 ...appart... ...apart... 99 6 ...excert... ...exert... 104 entry 14 26.0 + 14 26 ±14 109 9 ...propeiies... ...properties... 122 7 ...accosiated... ...associated... 123 4 —Elumo consists... -E lumo provides... 123 5 ...ralationships... ...relationships... 124 12 etal etal. 131 4 ...section 2.3... ...section 2.4... 133 12 ...IC-jS... ...Ki values... 133 13 ...500 times... ...50 times... 135 Table Kcal/raol kcal/mol 135 11 Kcal/mol kcal/mol 136 6 Kcal/mol kcal/mol 136 23 Kcal/mol kcal/mol 136 26 Kcal/mol kcal/mol 136 27 Kcal/mol kcal/mol 137 13 Kcal/mol kcal/mol 137 14 Kcal/mol kcal/mol 137 15 Kcal/mol kcal/mol 137 16 Kcal/mol kcal/mol 138 6 Kcal/mol kcal/mol 138 Table KcalAnol kcal/mol 139 9 Kcal/mol kcal/mol 139 Table Kcal/mol kcal/mol 140 Table Kcal/mol kcal/mol 141 10 Kcal/mol kcal/mol 141 12 Kcal/mol kcal/mol 143 6 ...space i.e.... ...space, i.e...
    [Show full text]
  • Apis Mellifera 7
    Invite international cooperation and investors By Ir. Bambang Soekartiko Bina Apiary Indonesia Email : [email protected] INDONESIA GLOBAL Located between Asia and Australia continent – 200.000.000 ha land and 500.000.000 ha of sea. – 243.000.000 population ( No 4 after China, India, USA) – 120.000.000 ha of Tropical Rain Forest – Consist of 17.508 islands A potential country for bee products producers and consumers Beekeeping to make people healthy and wealthy 241 millions population, 4th after China, India and USA – 60 % in Java island – Many people living at isolated and remote area and small islands – Health problems : infection deseases – Honey bee products and Apitherapy best alternative to maintain healthy and wealthy for rural people Variety of Honey Bee in Indonesia 1. Apis dorsata 2. Apis andreniformis 3. Apis cerana Ada di Indonesia 4. Apis koschevnikovi 5. Apis nigrocincta 6. Apis mellifera 7. Apis nuluensis 8. Apis laboriosa 9. Apis florea Apis dorsata Apis cerana Apis mellifera - Traditional beekeeping Apis cerana have been practiced by rural people of Java and Bali long time ago using hollow logs and clay pots – Honey hunting of Apis dorsata in Natural forest at Sumatera, Kalimantan, Sulawesi, NTT, NTB, and Papua/Irian – Modern beekeeping Apis mellifera start in 1974 at Java island by small beekeepers Honey hunting of indigeneous species of Tropical Rain Forest Apis dorsata practice by people living surrounding forest at outer island of Java. – Nesting at big trees protecting by Law – Claims as individual ownership
    [Show full text]
  • Diversity in Traditional Techniques for Enticing Apis Dorsata Colonies in Indonesia
    DIVERSITY IN TRADITIONAL TECHNIQUES FOR ENTICING APIS DORSATA COLONIES IN INDONESIA Soesilawati Hadisoesilo Forest and Nature Conservation Research and Development Jl. Gunung Batu 5, Bogor, Indonesia Telp. 62-251-315-222, Fax. 62-251-325-111 [email protected] or [email protected] It is known that Indonesia has the most diverse honey bee species in the world. Apis dorsata or the giant honey bee is one of the seven indigenous honey bees of Indonesia. Although A. dorsata is the main honey producer in Indonesia, especially outside the island of Java, every attempt to manage this bee like the cavity-nesting honey bees always fails. However, in some parts of Indonesia, honey collectors have been practicing traditional techniques to entice A. dorsata colonies to artificial nesting sites. On the island of Belitung this technique is called “Sunggau”, in Lake Sentarum, West Kalimantan it is named “Tikung”, and in an area close to Poso Lake, Central Sulawesi, it is called “Tingku”. The principles of these three techniques are similar. The differences among them are the condition and the topography of the place where they are built, and the way they are erected. Sunggau are built in dry places with flat topography, Tikung are built in wetland areas, and Tingku are built in hilly areas. Sunggau are erected with the support of one or two poles or branches of a tree which act as poles, whereas Tikung are erected with the support of two branches of a tree. Tingku, on the other hand, are erected without any support but are inserted into slopes.
    [Show full text]
  • Crucial Role of a Shared Extracellular Loop in Apamin Sensitivity and Maintenance of Pore Shape of Small- Conductance Calcium-Activated Potassium (SK) Channels
    Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small- conductance calcium-activated potassium (SK) channels Kate L. Weatheralla, Vincent Seutinb, Jean-François Liégeoisc, and Neil V. Marriona,1 aSchool of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom; and Laboratories of bPharmacology and Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neuroscience and cCentre Interfacultaire de Recherche du Médicament, University of Liège, B-4000 Liège, Belgium Edited by Michael D. Cahalan, University of California, Irvine, CA, and approved September 29, 2011 (received for review July 3, 2011) Activation of small-conductance calcium (Ca2+)-dependent potas- apamin does not behave as a classical pore blocker, but blocks sium (KCa2) channels (herein called “SK”) produces membrane hy- using an allosteric mechanism (7). Apamin also interacts with perpolarization to regulate membrane excitability. Three subtypes a serine residue in the S3–S4 extracellular loop to impart a high- (SK1–3) have been cloned and are distributed throughout the ner- sensitivity block of SK2, with mutation of the corresponding vous system, smooth muscle, and heart. It is difficult to discern the threonine in hSK1 to a serine increasing sensitivity of block of physiological role of individual channel subtypes as most blockers hSK1 by the toxin (8). Block of SK channel current by apamin is or enhancers do not discriminate between subtypes. The archetyp- clearly more complicated than these data suggest, as despite ical blocker apamin displays some selectivity between SK channel containing an identical outer pore sequence to the apamin-sen- – subtypes, with SK2 being the most sensitive, followed by SK3 and sitive hSK1 and a serine in this position in the S3 S4 loop, rSK1 – then SK1.
    [Show full text]