Enemies in Low Places╛œ╛Insects Avoid Winter Mortality And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten. -
Diabrotica Speciosa Primary Pest of Soybean Arthropods Cucurbit Beetle Beetle
Diabrotica speciosa Primary Pest of Soybean Arthropods Cucurbit beetle Beetle Diabrotica speciosa Scientific name Diabrotica speciosa Germar Synonyms: Diabrotica amabilis, Diabrotica hexaspilota, Diabrotica simoni, Diabrotica simulans, Diabrotica vigens, and Galeruca speciosa Common names Cucurbit beetle, chrysanthemum beetle, San Antonio beetle, and South American corn rootworm Type of pest Beetle Taxonomic position Class: Insecta, Order: Coleoptera, Family: Chrysomelidae Reason for Inclusion in Manual CAPS Target: AHP Prioritized Pest List - 2010 Pest Description Diabrotica speciosa was first described by Germar in 1824, as Galeruca speciosa. Two subspecies have been described, D. speciosa vigens (Bolivia, Peru and Ecuador), and D. speciosa amabilis (Bolivia, Colombia, Venezuela and Panama). These two subspecies differ mainly in the coloring of the head and elytra (Araujo Marques, 1941; Bechyne and Bechyne, 1962). Eggs: Eggs are ovoid, about 0.74 x 0.36 mm, clear white to pale yellow. They exhibit fine reticulation that under the microscope appears like a pattern of polygonal ridges that enclose a variable number of pits (12 to 30) (Krysan, 1986). Eggs are laid in the soil near the base of a host plant in clusters, lightly agglutinated by a colorless secretion. The mandibles and anal plate of the developing larvae can be seen in mature eggs. Larvae: Defago (1991) published a detailed description of the third instar of D. speciosa. First instars are about 1.2 mm long, and mature third instars are about 8.5 mm long. They are subcylindrical; chalky white; head capsule dirty yellow to light brown, epicraneal and frontal sutures lighter, with long light-brown setae; mandibles reddish dark brown; antennae and palpi pale yellow. -
Barcoding Chrysomelidae: a Resource for Taxonomy and Biodiversity Conservation in the Mediterranean Region
A peer-reviewed open-access journal ZooKeys 597:Barcoding 27–38 (2016) Chrysomelidae: a resource for taxonomy and biodiversity conservation... 27 doi: 10.3897/zookeys.597.7241 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region Giulia Magoga1,*, Davide Sassi2, Mauro Daccordi3, Carlo Leonardi4, Mostafa Mirzaei5, Renato Regalin6, Giuseppe Lozzia7, Matteo Montagna7,* 1 Via Ronche di Sopra 21, 31046 Oderzo, Italy 2 Centro di Entomologia Alpina–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 3 Museo Civico di Storia Naturale di Verona, lungadige Porta Vittoria 9, 37129 Verona, Italy 4 Museo di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano, Italy 5 Department of Plant Protection, College of Agriculture and Natural Resources–University of Tehran, Karaj, Iran 6 Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 7 Dipartimento di Scienze Agrarie e Ambientali–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy Corresponding authors: Matteo Montagna ([email protected]) Academic editor: J. Santiago-Blay | Received 20 November 2015 | Accepted 30 January 2016 | Published 9 June 2016 http://zoobank.org/4D7CCA18-26C4-47B0-9239-42C5F75E5F42 Citation: Magoga G, Sassi D, Daccordi M, Leonardi C, Mirzaei M, Regalin R, Lozzia G, Montagna M (2016) Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 27–38. doi: 10.3897/ zookeys.597.7241 Abstract The Mediterranean Region is one of the world’s biodiversity hot-spots, which is also characterized by high level of endemism. -
Induction of Plant Synomones by Oviposition of a Phytophagous Insect
Journal of Chemical Ecology, Vol. 26, No. 1, 2000 INDUCTION OF PLANT SYNOMONES BY OVIPOSITION OF A PHYTOPHAGOUS INSECT TORSTEN MEINERS and MONIKA HILKER* Freie Universitat¨ Berlin Institut fur¨ Zoologie D-12163 Berlin, Germany (Received February 18, 1999; accepted September 4, 1999) Abstract—Earlier investigations of host habitat location in the egg parasitoid Oomyzus gallerucae have shown that oviposition of the elm leaf beetle (Xanthogaleruca luteola) induces the field elm (Ulmus minor) to emit volatiles that attract the egg parasitoid. In this study we investigated the mechanism of this induction by testing the effects of differently treated elm leaves on O. gallerucae in a four-arm olfactometer. First we investigated which sequence of the herbivore oviposition behavior is necessary for the synomone induction. The following major sequences were observed: (1) Prior oviposition, the gravid female gnawed shallow grooves into the leaf surface. (2) After gnawing upon the leaf surface, the female attached about 20–30 eggs with oviduct secretion in the grooves. We experimentally mimicked the shallow grooves on the leaf surface by scratching the leaf surface with a scalpel (c scratched leaves). Volatiles from such scratched leaves did not attract the egg parasitoid. However, as soon as eggs with oviduct secretion, or only oviduct secretion, was applied to these scratched leaves, they emitted attractive volatiles. Application of oviduct secretion and eggs on undamaged leaves did not elicit release of attractive synomones. Thus, an elicitor is located in the oviduct secretion, but becomes active only when the leaf surface is damaged. Jasmonic acid is known as a mediator of plant responses induced by feeding of herbivorous arthropods, and we demonstrate that it mediates production of elm synomones that attract O. -
Proceedings of the United States National Museum
: BEETLE LARVAE OF THE SUBFAMILY GALERUCINAE B}^ Adam G. Boving Senior Entoniolotjist, Bureau of Etitomology, United States Department of Agricvltwe INTRODUCTION The present pajxn- is the result of a continued investigation of the Chrysomelid hirvae in the United States National Museum, Wash- ington, D. C. Of the subfamily Galerucinae ^ belonging to this family the larvae are preserved in the Museum of the following species Monocesta coryli Say. Trirhabda canadensis Kirby. TrU'habda hrevicollis LeConte. Trirhabda nitidicollis LeConte. Trirhabda tomentosa Linnaeus. Trirhabda attenuata Say. Oalerucella nymphaeae Liiniaeus. Oalerucella lineola Fabrleius (from Euroiie). Galerucclla sagittarUu' Gylleuhal. Oalerucella luteola Miiller. Galerucclla sp. (from Nanking, China). Galcrucella vibvrni Paykull (from Europe). Oalerucella decora Say. Oalerucella notata Fabricius. Oalerucella cribrata LeConte. Monoxia puncticolUs Say. Monoxia consputa LeConte. Lochmaca capreae Linnaeus (from Europe). Qaleruca tanacett Linnaeus (from Europe). Oaleruca laticollis Sahlberg (from Europe). Oalcruca, pomonae Scopoli. Sermylassa halensls Linnaeus. Agelastica alnl Linnaeus.^ 1 The generic and specific names of tlie North American larvae are as listed in C W. Leng's " Catalogue of Coleoptera of America north of Mexico, 1920," with corrections and additions as given in the "supplement" to the catalogue published by C. W. Leng and A. J. Mutchler, 1927. The European species, not introduced into North America, are named according to the " Catalogus Coleopterorum Europae, second edition, 1906," by L. V. Heyden, E. Rcitter, and .7. Weise. 2 It will be noticed that in the enumeration above no species of Dinhrlica and Pliyllo- brotica are mentioned. The larvae of those genera were considered by tlie present author as Halticinae larvae [Boving, Adam G. -
Two New Species of Baryscapus Förster from Spain (Hymenoptera: Chalcidoidea: Eulophidae)
Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 54 (30/6/2014): 51–60. TWO NEW SPECIES OF BARYSCAPUS FÖRSTER FROM SPAIN (HYMENOPTERA: CHALCIDOIDEA: EULOPHIDAE) Antoni Ribes c/ Lleida 36, 25170 Torres de Segre, Lleida, Spain. – [email protected] Abstract: Two new species of Baryscapus Förster are described. Baryscapus salsolae sp.n. was reared from galls of Stefaniola salsolae (Diptera: Cecidomyiidae) on Salsola vermiculata. Baryscapus artemisiae sp.n. was reared from galls of Rhopalomyia am- brosinae (Diptera: Cecidomyiidae) on Artemisia herba-alba. Key words: Hymenoptera, Chalcidoidea, Eulophidae, Tetrastichinae, Baryscapus, new species, Spain. Dos especies nuevas de Baryscapus Förster de España (Hymenoptera: Chalcidoidea: Eulophidae) Resumen: Se describen dos especies nuevas de Baryscapus Förster. Baryscapus salsolae sp.n. se obtuvo emergiendo de agallas de Stefaniola salsolae (Diptera: Cecidomyiidae) en Salsola vermiculata. Baryscapus artemisiae sp.n. se obtuvo emergiendo de agallas de Rhopalomyia ambrosinae (Diptera: Cecidomyiidae) en Artemisia herba-alba. Palabras clave: Hymenoptera, Chalcidoidea, Eulophidae, Tetrastichinae, Baryscapus, especie nueva, España. Taxonomy/Taxonomía: Baryscapus salsolae sp.n., Baryscapus artemisiae sp.n. Introduction Materials and methods The genus Baryscapus, in the subfamily Tetrastichinae of Specimens of two new species of Baryscapus in the evony- Eulophidae, is very speciose and biologically diverse, cur- mellae group were found in Lleida province, Spain, during a rently containing 116 recognized -
Parasitism of Plutella Xylostella (Lepidoptera: Plutellidae) in Southern Pakistan
Parasitism of Plutella xylostella (Lepidoptera: Plutellidae) in southern Pakistan T. S. Syed1, G. H. Abro1,2, M. A. Shaikh1, B. Mal1, and A. M. Shelton2,* Abstract Larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) cause severe economic loss to crucifer vegetables in Pakistan. Stud- ies were conducted from 2007 to 2010 to identify and assess the abundance of parasitoids attacking P. xylostella in commercial, insecticide-treated cauliflower fields in southern Pakistan. In total, 6 parasitoid species were found attacking larvae and pupae of P. xylostella. These included the larval parasitoid Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae); Cotesia sp. (Hymenoptera: Braconidae); Diadegma sp. (Hymenoptera: Ichneu- monidae); a larval-pupal parasitoid Oomyzus sokolowskii Kurdjumov (Hymenoptera: Eulophidae); a pupal parasitoid Diadromus collaris Gravenhorst (Hymenoptera: Ichneumonidae); and a pupal parasitoid, Brachymeria excarinata Gahan (Hymenoptera: Chalcididae). Cotesia plutellae provided 2.3 to 52.2% parasitism, followed by O. sokolowskii with 2.1 to 6.7% parasitism. The average parasitism caused by Cotesia sp. was < 5%. The remaining parasitoids were scarce with < 0.5% parasitism. Additional studies on parasitism by O. sokolowskii showed that there was a significant positive cor- relation between P. xylostella pupal weight and the number of parasitoids emerging from a pupa. More than 50% of P. xylostella parasitized pupae supported 6 to 10 O. sokolowskii adults per pupa. Efforts should be undertaken to preserve these natural enemies through cultural practices and the use of soft insecticides to allow them to function more effectively in an integrated pest management program. Key Words: biological control; Oomyzus sokolowskii, Cotesia plutellae Resumen Las larvas de la palomilla de dorso de diamante, Plutella xylostella (L.) (Lepidoptera: Plutellidae) causan pérdidas económicas severas a los vegetales crucíferos en Pakistán. -
Worldwide Integrated Assessment of the Impacts of Systemic Pesticides
WORLDWIDE INTEGRATED ASSESSMENT OF THE IMPACTS OF SYSTEMIC PESTICIDES ON BIODIVERSITY AND ECOSYSTEMS http://www.tfsp.info/assets/WIA_2015.pdf Report in brief The Task Force on Systemic Pesticides is an independent group of scientists from all over the globe, who came together to work on the Worldwide Integrated Assessment of the Impact of Systemic Pesticides on Biodiversity and Ecosystems. The mandate of the Task Force on Systemic Pesticides (TFSP) has been “to carry out a comprehensive, objective, scientific review and assessment of the impact of systemic pesticides on biodiversity, and on the basis of the results of this review to make any recommendations that might be needed with regard to risk management procedures, governmental approval of new pesticides, and any other relevant issues that should be brought to the attention of decision makers, policy developers and society in general” (see appendix 2). The Task Force has adopted a science-based approach and aims to promote better informed, evidence-based, decision-making. The method followed is Integrated Assessment (IA) which aims to provide policy-relevant but not policy-prescriptive information on key aspects of the issue at hand. To this end a highly multidisciplinary team of 30 scientists from all over the globe jointly made a synthesis of 1,121 published peer-reviewed studies spanning the last five years, including industry-sponsored ones. All publications of the TFSP have been subject to the standard scientific peer review procedures of the journal (http://www.springer.com/environment/journal/11356). Key findings of the Task Force have been presented in a special issue of the peer reviewed Springer journal “Environmental Science and Pollution Research” entitled “Worldwide Integrated Assessment of the Impacts of Systemic Pesticides on Biodiversity and Ecosystems” and consists of eight scientific papers, reproduced here with permission of Springer. -
Case Study from the Zsolca Mounds (Ne Hungary)
18/2 • 2019, 189–200 DOI: 10.2478/hacq-2019-0009 Iron age burial mounds as refugia for steppe specialist plants and invertebrates – case study from the Zsolca mounds (ne hungary) Csaba Albert Tóth1, Balázs Deák2, István nyilas3, László Bertalan1, , Orsolya Valkó4 * , Tibor József novák5 Key words: kurgan, prehistoric Abstract mound, loess steppe, biodiversity, Prehistoric mounds of the Great Hungarian Plain often function as refuges for relic cropland matrix, microhabitat, loess steppe vegetation and their associated fauna. The Zsolca mounds are a typical slope, ground-dwelling invertebrates. example of kurgans acting as refuges, and even though they are surrounded by agri- cultural land, they harbour a species rich loess grassland with an area of 0.8 ha. With Ključne besede: kurgan, a detailed field survey of their geomorphology, soil, flora and fauna, we describe the predzgodovinske gomile, stepa na most relevant attributes of the mounds regarding their maintenance as valuable grass- lesu, biotska pestrost, kmetisjki land habitats. We recorded 104 vascular plant species, including seven species that matriks, mikrohabitat, pobočje, talni are protected in Hungary and two species (Echium russicum and Pulsatilla grandis) nevretenčarji. listed in the IUCN Red List and the Habitats Directive. The negative effect of the surrounding cropland was detectable in a three-metre wide zone next to the mound edge, where the naturalness of the vegetation was lower, and the frequency of weeds, ruderal species and crop plants was higher than in the central zone. The ancient man-made mounds harboured dry and warm habitats on the southern slope, while the northern slopes had higher biodiversity, due to the balanced water supplies. -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4. -
A New Species of Oomyzus Rondani (Hymenoptera, Eulophidae) and First Record of O
ZooKeys 950: 41–49 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.950.48795 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Oomyzus Rondani (Hymenoptera, Eulophidae) and first record of O. gallerucae (Fonscolombe) from China, with a key to Chinese species Wen-Jian Li1, Cheng-De Li1 1 School of Forestry, Northeast Forestry University, Harbin, 150040, China Corresponding author: Cheng-De Li ([email protected]) Academic editor: T. Dörfel | Received 26 November 2019 | Accepted 17 May 2020 | Published 20 July 2020 http://zoobank.org/13E3811E-C178-4F9B-BEB7-3351295F4441 Citation: Li W-J, Li C-D (2020) A new species of Oomyzus Rondani (Hymenoptera, Eulophidae) and first record of O. gallerucae (Fonscolombe) from China, with a key to Chinese species. ZooKeys 950: 41–49. https://doi.org/10.3897/ zookeys.950.48795 Abstract Oomyzus flavotibialis sp. nov. is described from Liaoning and Shandong provinces, China. Oomyzus galleru- cae (Fonscolombe) is reported for the first time from China. A key to Chinese species ofOomyzus is provided. Keywords Chalcidoidea, new species, taxonomy, Tetrastichinae Introduction The genus Oomyzus currently contains 26 valid species worldwide (Noyes 2019), with only four species known from China: O. scaposus (Thomson), O. sokolowskii (Kurdju- mov), O. sinensis Sheng & Zhu, and O. hubeiensis Sheng & Zhu (Li 1984; Sheng and Zhu 1998; Wang et al. 1998). Most species of the genus are parasitoids of Coleoptera, Neuroptera, Diptera, and Lepidoptera. They attack larvae or pupae, and even eggs of their hosts, and several species were widely used in classical biological control (Yaseen 1978; Alam 1982; LaSalle 1994; Liu et al.