LTH 1164 Five-dimensional vector multiplets in arbitrary signature L. Gall1 and T. Mohaupt1 1Department of Mathematical Sciences University of Liverpool Peach Street Liverpool L69 7ZL, UK
[email protected],
[email protected] June 19, 2018, revised: August 24, 2018 Abstract We start developing a formalism which allows to construct supersym- metric theories systematically across space-time signatures. Our con- struction uses a complex form of the supersymmetry algebra, which is obtained by doubling the spinor representation. This allows one to partially disentangle the Lorentz and R-symmetry group and gen- eralizes symplectic Majorana spinors. For the case where the spinor representation is complex-irreducible, the R-symmetry only acts on an internal multiplicity space, and we show that the connected groups which occur are SO(2), SO0(1, 1),SU(2) and SU(1, 1). As an application we construct the off-shell supersymmetry trans- formations and supersymmetric Lagrangians for five-dimensional vec- arXiv:1805.06312v2 [hep-th] 24 Aug 2018 tor multiplets in arbitrary signature (t,s). In this case the R-symmetry groups are SU(2) or SU(1, 1), depending on whether the spinor rep- resentation carries a quaternionic or para-quaternionic structure. In Euclidean signature the scalar and vector kinetic terms differ by a rel- ative sign, which is consistent with previous results in the literature and shows that this sign flip is an inevitable consequence of the Euclidean supersymmetry algebra. Contents 1 Introduction and Summary of Results 3 2 Supersymmetry and bilinear forms 8 2.1 Cliffordalgebrasandspinors . 8 2.2 Bilinear Forms, Supersymmetry, and R-Symmetry Groups .