Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Kgher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Atm Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 CAN WE INTEND AN INTERPRETATION? DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Pierluigi Miraglia, MA. ***** The Ohio State University 1996 Dissertation Committee: Approved by Professor Stewart Shapiro, Adviser Professor Neü Tennant Adviser Professor Mark Wilson Department of Philosophy mix Number: 9710625 UMI Microform 9710625 Copyright 1997, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 u ABSTRACT Some mathematical theories are thought to have intended interpretations: they are thought to be about a reasonably well defined subject matter. For such theories, an intended interpretation is also presumed to encompass the intuitive concepts that the theory represents formally. Thus intended interpretations play a semantic, an ontological and an epistemological role: they give the preferred reference of the terms of the theory; they embody a conception of the objects described by the theory; and they are a source of evidence for judging the adequacy of proposed axiomatizations. Two series of questions naturally arise: are there intended interpretations? And if so, how are they determined? In the context of set theory, these questions summarize the “Skolem problem,” for it is most prominently displayed in the considerations relative to the Skolem paradox. According to some, the challenge posed by the Skolem problem is met only by a strong variety of platonism about mathematical objects. It is also thought that one must embrace this variety of platonism in order to account for the epistemological role of intended interpretations. I argue against this conception, with particular regard to the case of set theory. The thesis is that skeptical challenges such as those mentioned can be rejected on the basis of a moderately realist view according to which the intended lU interpretation of this theory is largely dependent upon the logical and inferential practices which the theory codifies. The centerpiece of the argument is the role played by the axiom of Choice in the formation of the notion of set which is at the basis of the modem understanding of set theory. While Choice, as platonists typically argue, is essential to a proper understanding of set-theoretical ontology, it cannot be easily justified in platonist terms, as a feature of that ontology. Rather, I argue that Choice is a logical principle: it is intrinsically tied to the laws of quantification, and the notion of choice function itself responds to a Tarskian criterion for the distinction between logical and non-logical notions. This approach also illuminates some of Skolem’s original contributions to the philosophy of logic. IV ACKNOWLEDGMENTS This work might never have seen completion without the concerted effort and support of the members of my dissertation committee. I grateftilly acknowledge the contribution of my adviser, Stewart Shapiro. Not only did he guide me through the intellectual development that led to this work, he also supported me in more personal ways in the occasions — more frequent than he may wish to remember — when I most needed it. Similarly generous with their advice and philosophical wisdom (not to mention their time) were Neil Tennant and Mark Wilson. For support of a different kind, I am deeply grateful to my wife, Laurie, and my parents, who stayed with me through thick and thin. VITA 1984 .................................. B.A., Philosophy University of Milan 1989 .................................. M.A., Philosophy The Ohio State University 1987 ' 1992 .......................... Graduate Teaching andResearch Associate, Department of Philosophy, The Ohio State University 1993 - present ....................... Research Associate, College of Humanities The Ohio State University PUBLICATIONS 1. “A Note on Truth, Deflation and Irreahsm,” Sorites 3 (Nov. 1995); 48-63. 2. Review of T. Oberdan, “Godel, Camap and the thesis that mathematics is empty,” Jahrb. der Kurt Godel GeseUschaft, 1991. Mathematical Reviews, March 1994. 3. Review of W. Demopoulos and J.L. Bell, “Frege’s theory of concepts and objects and the interpretation of second-order logic,” Philosophia Mathematica 3, 1, 1993. Mathematical Reviews, 1994. 4. Review of R.L. Kirkham, “Tarski’s Physicalism,” Erkenntnis 38, 1993. Mathematical Reviews, August 1994. 5. Review of A. Drago and 0. Vitiello, “La storia dell’introduzione della matematica costruttiva nella flsica teorica: il caso della termodinamica, ” Conferenza sulla Storia della Matematica, 1988. Mathematical Reviews, April 1994. 6. Review of J. Burgess, “Hintikka et Sandu versus Frege in re Arbitrary Functions,” Philosophia Mathematica 1, 1993. Mathematical Reviews, March 1994. VI 7. Review of I. Jane, “A critical appraisal of second-order logic,” Hist, and Philosophy of Logic 14, 1993. Mathematical Reviews, February 1994 . 8. Review of A. Oberschelp, Logik fUr Philosophen, Bibliographisches Institut, Mannheim 1992. Mathematical Reviews, September 1993. 9. Review of T. Koetsier, Imre Lakatos’ Philosophy of Mathematics, North-HoUand, 1992. Mathematical Reviews, January 1993. FIELDS OF STUDY Major Field: Philosophy vu TABLE OF CONTENTS ABSTRACT...........................................................................................................i i i ACKNOWLEDGMENTS..........................................................................................v VITA ..........................................................................................................................v i CHAPTER 1 ............................................................................................................... 1 INTRODUCTION ...................................................................................................1 The Skolem problem ..................................................................................1 Skepticism, through and th rou gh? ................................................... 16 The thesis of moderate anti-skepticism ..................................................22 Use and practice ........................................................................... 24 The role of the axiom of choice ........................................... 26 A twist of epistemology ...............................................................32 An o u tlin e .................................................................................................... 34 CHAPTER 2 .............................................................................................................38 SKOLEMITE R ELATIVISM ........................................................................ 38 The paradox and the skeptic ............................................................ 41 The Lowenheim-Skolem T h e o r e m ..............................................41 The argument for relativism ............................................... 44 Foundations and axiomatic t h e o r ie s ............................................... 58 The big p ictu re................................................................................58 Skolem’s view of axiomatic theories .................................. 68 The role of C hoice ........................................................................... 70 Conclusion: skepticism a g a i n ...................................................................87 CHAPTER 3 ................................................................................................................. 91 SKEPTICISM VS RELATIVITY................................................................................91 Introduction ......................................................................................... 91 Quinean r e la tiv ity ............................................................................ 98 viii How to commit oneself to an ontology ................................................107 Is ontological
Recommended publications
  • Automating Free Logic in HOL, with an Experimental Application in Category Theory
    Noname manuscript No. (will be inserted by the editor) Automating Free Logic in HOL, with an Experimental Application in Category Theory Christoph Benzm¨uller and Dana S. Scott Received: date / Accepted: date Abstract A shallow semantical embedding of free logic in classical higher- order logic is presented, which enables the off-the-shelf application of higher- order interactive and automated theorem provers for the formalisation and verification of free logic theories. Subsequently, this approach is applied to a selected domain of mathematics: starting from a generalization of the standard axioms for a monoid we present a stepwise development of various, mutually equivalent foundational axiom systems for category theory. As a side-effect of this work some (minor) issues in a prominent category theory textbook have been revealed. The purpose of this article is not to claim any novel results in category the- ory, but to demonstrate an elegant way to “implement” and utilize interactive and automated reasoning in free logic, and to present illustrative experiments. Keywords Free Logic · Classical Higher-Order Logic · Category Theory · Interactive and Automated Theorem Proving 1 Introduction Partiality and undefinedness are prominent challenges in various areas of math- ematics and computer science. Unfortunately, however, modern proof assistant systems and automated theorem provers based on traditional classical or intu- itionistic logics provide rather inadequate support for these challenge concepts. Free logic [24,25,30,32] offers a theoretically appealing solution, but it has been considered as rather unsuited towards practical utilization. Christoph Benzm¨uller Freie Universit¨at Berlin, Berlin, Germany & University of Luxembourg, Luxembourg E-mail: [email protected] Dana S.
    [Show full text]
  • Mathematical Logic. Introduction. by Vilnis Detlovs And
    1 Version released: May 24, 2017 Introduction to Mathematical Logic Hyper-textbook for students by Vilnis Detlovs, Dr. math., and Karlis Podnieks, Dr. math. University of Latvia This work is licensed under a Creative Commons License and is copyrighted © 2000-2017 by us, Vilnis Detlovs and Karlis Podnieks. Sections 1, 2, 3 of this book represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs. Vilnis Detlovs. Memorial Page In preparation – forever (however, since 2000, used successfully in a real logic course for computer science students). This hyper-textbook contains links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. 2 Table of Contents References..........................................................................................................3 1. Introduction. What Is Logic, Really?.............................................................4 1.1. Total Formalization is Possible!..............................................................5 1.2. Predicate Languages.............................................................................10 1.3. Axioms of Logic: Minimal System, Constructive System and Classical System..........................................................................................................27 1.4. The Flavor of Proving Directly.............................................................40
    [Show full text]
  • An Axiomatic Approach to Physical Systems
    ' An Axiomatic Approach $ to Physical Systems & % Januari 2004 ❦ ' Summary $ Mereology is generally considered as a formal theory of the part-whole relation- ship concerning material bodies, such as planets, pickles and protons. We argue that mereology can be considered more generally as axiomatising the concept of a physical system, such as a planet in a gravitation-potential, a pickle in heart- burn and a proton in an electro-magnetic field. We design a theory of sets and physical systems by extending standard set-theory (ZFC) with mereological axioms. The resulting theory deductively extends both `Mereology' of Tarski & L`esniewski as well as the well-known `calculus of individuals' of Leonard & Goodman. We prove a number of theorems and demonstrate that our theory extends ZFC con- servatively and hence equiconsistently. We also erect a model of our theory in ZFC. The lesson to be learned from this paper reads that not only is a marriage between standard set-theory and mereology logically respectable, leading to a rigorous vin- dication of how physicists talk about physical systems, but in addition that sets and physical systems interact at the formal level both quite smoothly and non- trivially. & % Contents 0 Pre-Mereological Investigations 1 0.0 Overview . 1 0.1 Motivation . 1 0.2 Heuristics . 2 0.3 Requirements . 5 0.4 Extant Mereological Theories . 6 1 Mereological Investigations 8 1.0 The Language of Physical Systems . 8 1.1 The Domain of Mereological Discourse . 9 1.2 Mereological Axioms . 13 1.2.0 Plenitude vs. Parsimony . 13 1.2.1 Subsystem Axioms . 15 1.2.2 Composite Physical Systems .
    [Show full text]
  • On the Boundary Between Mereology and Topology
    On the Boundary Between Mereology and Topology Achille C. Varzi Istituto per la Ricerca Scientifica e Tecnologica, I-38100 Trento, Italy [email protected] (Final version published in Roberto Casati, Barry Smith, and Graham White (eds.), Philosophy and the Cognitive Sciences. Proceedings of the 16th International Wittgenstein Symposium, Vienna, Hölder-Pichler-Tempsky, 1994, pp. 423–442.) 1. Introduction Much recent work aimed at providing a formal ontology for the common-sense world has emphasized the need for a mereological account to be supplemented with topological concepts and principles. There are at least two reasons under- lying this view. The first is truly metaphysical and relates to the task of charac- terizing individual integrity or organic unity: since the notion of connectedness runs afoul of plain mereology, a theory of parts and wholes really needs to in- corporate a topological machinery of some sort. The second reason has been stressed mainly in connection with applications to certain areas of artificial in- telligence, most notably naive physics and qualitative reasoning about space and time: here mereology proves useful to account for certain basic relation- ships among things or events; but one needs topology to account for the fact that, say, two events can be continuous with each other, or that something can be inside, outside, abutting, or surrounding something else. These motivations (at times combined with others, e.g., semantic transpar- ency or computational efficiency) have led to the development of theories in which both mereological and topological notions play a pivotal role. How ex- actly these notions are related, however, and how the underlying principles should interact with one another, is still a rather unexplored issue.
    [Show full text]
  • The Modal Logic of Potential Infinity, with an Application to Free Choice
    The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity.
    [Show full text]
  • A Translation Approach to Portable Ontology Specifications
    Knowledge Systems Laboratory September 1992 Technical Report KSL 92-71 Revised April 1993 A Translation Approach to Portable Ontology Specifications by Thomas R. Gruber Appeared in Knowledge Acquisition, 5(2):199-220, 1993. KNOWLEDGE SYSTEMS LABORATORY Computer Science Department Stanford University Stanford, California 94305 A Translation Approach to Portable Ontology Specifications Thomas R. Gruber Knowledge System Laboratory Stanford University 701 Welch Road, Building C Palo Alto, CA 94304 [email protected] Abstract To support the sharing and reuse of formally represented knowledge among AI systems, it is useful to define the common vocabulary in which shared knowledge is represented. A specification of a representational vocabulary for a shared domain of discourse — definitions of classes, relations, functions, and other objects — is called an ontology. This paper describes a mechanism for defining ontologies that are portable over representation systems. Definitions written in a standard format for predicate calculus are translated by a system called Ontolingua into specialized representations, including frame-based systems as well as relational languages. This allows researchers to share and reuse ontologies, while retaining the computational benefits of specialized implementations. We discuss how the translation approach to portability addresses several technical problems. One problem is how to accommodate the stylistic and organizational differences among representations while preserving declarative content. Another is how
    [Show full text]
  • Model Theory, Arithmetic & Algebraic Geometry
    MODEL THEORY, ARITHMETIC & ALGEBRAIC GEOMETRY JOEL TORRES DEL VALLE 1. LANGUAGES AND STRUCTURES. 1.1. What is Model Theory? Model Theory is the study of the relationship between theories and mathematical struc- tures which satisfies them [11]. Model Theory introduces Mathematical Logic in the prac- tice of Universal Algebra, so we can think it like Model Theory = Universal Algebra + Mathematical Logic. I started this pages with the same question Chang-Keisler started their celebrated book [3]: ‘What is Model Theory?’ They also summarize the answer to the equation above. In this pages I summarize the relationship between Model Theory, Arithmetic and Algebraic Geometry. The topics will be the basic ones in the area, so this is just an invitation, in the presentation of topics I mainly follow the philosophy of the references, my basic reference is [9]. The early pioneers in Model Theory were Leopold L¨owenheim in 1915, in his work ‘Uber¨ M¨oglichkeiten im Relativkalk¨ul’1 there he proved that if a first order theory T that has an infinite model then has a countable model. Thoralf Skolem in 1920 proved a second version of L¨owenheim result, in his work ‘Logisch-kombinatorische Untersuchungen ¨uber die Erf¨ullbarkeit oder Beweisbarkeit mathematischer S¨atze nebst einem Theoreme ¨uber dichte Mengen’2. Kurt G¨odel in 1930 proved his Completeness and Compactness Theorems for countable languages in his Doctoral dissertation at the University of Viena titled ‘Die Vollst¨andigkeit der Axiome des logischen Funktionenkalk¨uls’3. Alfred Tarski in 1931
    [Show full text]
  • Cantor-Von Neumann Set-Theory Fa Muller
    Logique & Analyse 213 (2011), x–x CANTOR-VON NEUMANN SET-THEORY F.A. MULLER Abstract In this elementary paper we establish a few novel results in set the- ory; their interest is wholly foundational-philosophical in motiva- tion. We show that in Cantor-Von Neumann Set-Theory, which is a reformulation of Von Neumann's original theory of functions and things that does not introduce `classes' (let alone `proper classes'), developed in the 1920ies, both the Pairing Axiom and `half' the Axiom of Limitation are redundant — the last result is novel. Fur- ther we show, in contrast to how things are usually done, that some theorems, notably the Pairing Axiom, can be proved without invok- ing the Replacement Schema (F) and the Power-Set Axiom. Also the Axiom of Choice is redundant in CVN, because it a theorem of CVN. The philosophical interest of Cantor-Von Neumann Set- Theory, which is very succinctly indicated, lies in the fact that it is far better suited than Zermelo-Fraenkel Set-Theory as an axioma- tisation of what Hilbert famously called Cantor's Paradise. From Cantor one needs to jump to Von Neumann, over the heads of Zer- melo and Fraenkel, and then reformulate. 0. Introduction In 1928, Von Neumann published his grand axiomatisation of Cantorian Set- Theory [1925; 1928]. Although Von Neumann's motivation was thoroughly Cantorian, he did not take the concept of a set and the membership-relation as primitive notions, but the concepts of a thing and a function — for rea- sons we do not go into here. This, and Von Neumann's cumbersome nota- tion and terminology (II-things, II.I-things) are the main reasons why ini- tially his theory remained comparatively obscure.
    [Show full text]
  • Henkin's Method and the Completeness Theorem
    Henkin's Method and the Completeness Theorem Guram Bezhanishvili∗ 1 Introduction Let L be a first-order logic. For a sentence ' of L, we will use the standard notation \` '" for ' is provable in L (that is, ' is derivable from the axioms of L by the use of the inference rules of L); and \j= '" for ' is valid (that is, ' is satisfied in every interpretation of L). The soundness theorem for L states that if ` ', then j= '; and the completeness theorem for L states that if j= ', then ` '. Put together, the soundness and completeness theorems yield the correctness theorem for L: a sentence is derivable in L iff it is valid. Thus, they establish a crucial feature of L; namely, that syntax and semantics of L go hand-in-hand: every theorem of L is a logical law (can not be refuted in any interpretation of L), and every logical law can actually be derived in L. In fact, a stronger version of this result is also true. For each first-order theory T and a sentence ' (in the language of T ), we have that T ` ' iff T j= '. Thus, each first-order theory T (pick your favorite one!) is sound and complete in the sense that everything that we can derive from T is true in all models of T , and everything that is true in all models of T is in fact derivable from T . This is a very strong result indeed. One possible reading of it is that the first-order formalization of a given mathematical theory is adequate in the sense that every true statement about T that can be formalized in the first-order language of T is derivable from the axioms of T .
    [Show full text]
  • Sets and Classes As Many
    SETS AND CLASSES AS MANY by John L. Bell INTRODUCTION Set theory is sometimes formulated by starting with two sorts of entities called individuals and classes, and then defining a set to be a class as one, that is, a class which is at the same time an individual, as indicated in the diagram: Individuals Sets Classes If on the other hand we insist—as we shall here—that classes are to be taken in the sense of multitudes, pluralities, or classes as many, then no class can be an individual and so, in particular, the concept of set will need to be redefined. Here by “class as many” we have in mind what Erik Stenius refers to in [5] as set of, which he defines as follows: If we start from a Universe of Discourse given in advance, then we may define a set-of things as being many things in this UoD or just one thing - or even no things, if we want to introduce this way of speaking. Stenius draws a sharp distinction between this concept and that of 2 set as a thing. As he says, The distinction between a set-as-a-thing and a set of corresponds to the Russellian distinction between a “class as one” and a “class as many” (Principles of Mathematics, p. 76). Only I use the expressions ‘set-as-a- thing” and “set-of” instead, in order to stress the (grammatical and) ontological character of the distinction; and also because of the difficulty that a set-of need not consist of many things; it can comprise just one thing or no things.
    [Show full text]
  • The Z of ZF and ZFC and ZF¬C
    From SIAM News , Volume 41, Number 1, January/February 2008 The Z of ZF and ZFC and ZF ¬C Ernst Zermelo: An Approach to His Life and Work. By Heinz-Dieter Ebbinghaus, Springer, New York, 2007, 356 pages, $64.95. The Z, of course, is Ernst Zermelo (1871–1953). The F, in case you had forgotten, is Abraham Fraenkel (1891–1965), and the C is the notorious Axiom of Choice. The book under review, by a prominent logician at the University of Freiburg, is a splendid in-depth biography of a complex man, a treatment that shies away neither from personal details nor from the mathematical details of Zermelo’s creations. BOOK R EV IEW Zermelo was a Berliner whose early scientific work was in applied By Philip J. Davis mathematics: His PhD thesis (1894) was in the calculus of variations. He had thought about this topic for at least ten additional years when, in 1904, in collaboration with Hans Hahn, he wrote an article on the subject for the famous Enzyclopedia der Mathematische Wissenschaften . In point of fact, though he is remembered today primarily for his axiomatization of set theory, he never really gave up applications. In his Habilitation thesis (1899), Zermelo was arguing with Ludwig Boltzmann about the foun - dations of the kinetic theory of heat. Around 1929, he was working on the problem of the path of an airplane going in minimal time from A to B at constant speed but against a distribution of winds. This was a problem that engaged Levi-Civita, von Mises, Carathéodory, Philipp Frank, and even more recent investigators.
    [Show full text]
  • Semantics of First-Order Logic
    CSC 244/444 Lecture Notes Sept. 7, 2021 Semantics of First-Order Logic A notation becomes a \representation" only when we can explain, in a formal way, how the notation can make true or false statements about some do- main; this is what model-theoretic semantics does in logic. We now have a set of syntactic expressions for formalizing knowledge, but we have only talked about the meanings of these expressions in an informal way. We now need to provide a model-theoretic semantics for this syntax, specifying precisely what the possible ways are of using a first-order language to talk about some domain of interest. Why is this important? Because, (1) that is the only way that we can verify that the facts we write down in the representation actually can mean what we intuitively intend them to mean; representations without formal semantics have often turned out to be incoherent when examined from this perspective; and (2) that is the only way we can judge whether proposed methods of making inferences are reasonable { i.e., that they give conclusions that are guaranteed to be true whenever the premises are, or at least are probably true, or at least possibly true. Without such guarantees, we will probably end up with an irrational \intelligent agent"! Models Our goal, then, is to specify precisely how all the terms, predicates, and formulas (sen- tences) of a first-order language can be interpreted so that terms refer to individuals, predicates refer to properties and relations, and formulas are either true or false. So we begin by fixing a domain of interest, called the domain of discourse: D.
    [Show full text]