Blind Demixing via Wirtinger Flow with Random Initialization Jialin Dong Yuanming Shi
[email protected] [email protected] ShanghaiTech University ShanghaiTech University Abstract i = 1; ··· ; s, i.e., s This paper concerns the problem of demixing X \ \ a series of source signals from the sum of bi- yj = bj∗hixi∗aij; 1 ≤ j ≤ m; (1) linear measurements. This problem spans di- i=1 verse areas such as communication, imaging N K processing, machine learning, etc. However, where faijg 2 C , fbjg 2 C are design vectors. semidefinite programming for blind demixing Here, the first K columns of the matrix F form the ma- m K m m is prohibitive to large-scale problems due to trix B := [b1; ··· ; bm]∗ 2 C × , where F 2 C × high computational complexity and storage is the unitary discrete Fourier transform (DFT) ma- cost. Although several efficient algorithms \ trix with FF ∗ = Im. Our goal is to recover fxig and have been developed recently that enjoy the \ fhig from the sum of bilinear measurements, which is benefits of fast convergence rates and even known as blind demixing [1, 2]. regularization free, they still call for spec- tral initialization. To find simple initial- This problem has spanned a wide scope of applications ization approach that works equally well as ranging from imaging processing [3, 4] and machine spectral initialization, we propose to solve learning [5, 6] to communication [7, 8]. Specifically, blind demixing problem via Wirtinger flow by solving the blind demixing problem, both original with random initialization, which yields a images and corresponding convolutional kernels can be natural implementation.