MATHEMATICS OF OPERATIONS RESEARCH Vol. 38, No. 2, May 2013, pp. 294–349 ISSN 0364-765X (print) ISSN 1526-5471 (online) http://dx.doi.org/10.1287/moor.1120.0572 © 2013 INFORMS A Fluid Limit for an Overloaded X Model via a Stochastic Averaging Principle Ohad Perry Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208,
[email protected], http://users.iems.northwestern.edu/~perry/ Ward Whitt Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027,
[email protected], http://www.columbia.edu/~ww2040/ We prove a many-server heavy-traffic fluid limit for an overloaded Markovian queueing system having two customer classes and two service pools, known in the call-center literature as the X model. The system uses the fixed-queue-ratio-with- thresholds (FQR-T) control, which we proposed in a recent paper as a way for one service system to help another in face of an unexpected overload. Under FQR-T, customers are served by their own service pool until a threshold is exceeded. Then, one-way sharing is activated with customers from one class allowed to be served in both pools. After the control is activated, it aims to keep the two queues at a prespecified fixed ratio. For large systems that fixed ratio is achieved approximately. For the fluid limit, or FWLLN (functional weak law of large numbers), we consider a sequence of properly scaled X models in overload operating under FQR-T. Our proof of the FWLLN follows the compactness approach, i.e., we show that the sequence of scaled processes is tight and then show that all converging subsequences have the specified limit.