Received February 1, 2013, accepted September 2, 2013, date of publication September 16, 2013, date of current version September 24, 2013. Digital Object Identifier 10.1109/ACCESS.2013.2281668 Approximating Extremely Large Networks via Continuum Limits YANG ZHANG1, EDWIN K. P. CHONG1 (Fellow, IEEE), JAN HANNIG2, AND DONALD ESTEP3 1Department of Electrical and Computer Engineering, Colorado State University, Ft. Collins, CO 80523-1373, USA 2Department of Statistics and Operation Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3260, USA 3Department of Mathematics and Department of Statistics, Colorado State University, Fort Collins, CO 80523-1373, USA Corresponding author: Y. Zhang (
[email protected]) The work of Y. Zhang and E. Chong was supported in part by the National Science Foundation (NSF) under Grant ECCS-0700559 and ONR under Grant N00014-08-1-110. The work of J. Hannig was supported in part by NSF under Grants 1007543 and 1016441. The work of D. Estep was supported in part by the Defense Threat Reduction Agency under Grant HDTRA1-09-1-0036, the Department of Energy under Grants DE-FG02-04ER25620, DE-FG02-05ER25699, DE-FC02-07ER54909, DE-SC0001724, DE-SC0005304, and INL00120133, the Lawrence Livermore National Laboratory under Grants B573139, B584647, B590495, the National Aeronautics and Space Administration under Grant NNG04GH63G, the National Institutes of Health under Grant 5R01GM096192-02, the National Science Foundation under Grants DMS-0107832, DMS-0715135, DGE-0221595003, MSPA-CSE-0434354, ECCS-0700559, DMS-1016268, and DMS-FRG-1065046, and the Idaho National Laboratory under Grants 00069249 and 00115474. ABSTRACT This paper is concerned with modeling of networks with an extremely large number of components using partial differential equations (PDEs).