ARRL AMATEUR RADIO AMATEUR the National Association for Association National the TH-F6A(QEX):QST Template 11/10/09 1:53 PM Page 1

Total Page:16

File Type:pdf, Size:1020Kb

ARRL AMATEUR RADIO AMATEUR the National Association for Association National the TH-F6A(QEX):QST Template 11/10/09 1:53 PM Page 1 The national association for ARRL AMATEUR RADIO 225 Main Street Newington, CT USA 06111-1494 WWW.RADiOSCAMATORUL.Hi2.RO WWW.GiURUMELE.Hi2.RO 5 $ TH-F6A(QEX):QST Template 11/10/09 1:53 PM Page 1 WWW.RADiOSCAMATORUL.Hi2.RO WWW.GiURUMELE.Hi2.RO KENWOOD U.S.A. CORPORATION Communications Sector Headquarters 3970 Johns Creek Court, Suite 100, Suwanee, GA 30024 Customer Support/Distribution P.O. Box 22745, 2201 East Dominguez St., Long Beach, CA 90801-5745 Customer Support: (310) 639-4200 Fax: (310) 537-8235 ADS#36709 January/February 2010 About the Cover QEX (ISSN: 0886-8093) is published bimonthly US Military Academy Cadet Thomas Dean, in January, March, May, July, September,WWW.RADiOSCAMATORUL.Hi2.RO and KB1JIJ, describes a spread spectrum transmitter November by the American Radio Relay League, he developed as a digital logic class project. Built 225 Main Street, Newington, CT 06111-1494. on an Altera DE2 Development and Education Periodicals postage paid at Hartford, CT and at additional mailing offices. Board with a Cyclone II FPGA, the transmitter POSTMASTER: Send address changes to: demonstrates some principles of spread QEX, 225 Main St, Newington, CT 06111-1494 spectrum systems and software defined radio Issue No 258 transmitters. Harold Kramer, WJ1B Publisher Larry Wolfgang, WR1B In This Issue Editor Lori Weinberg, KB1EIB Assistant Editor Zack Lau, W1VT Features Ray Mack, W5IFS Contributing Editors Production DepartmentWWW.GiURUMELE.Hi2.RO Amateur Radio Astronomy Projects Steve Ford, WB8IMY By Jon Wallace Publications Manager 3 Michelle Bloom, WB1ENT Production Supervisor Sue Fagan, KB1OKW Graphic Design Supervisor A Digital Frequency Hopping Spread Spectrum Transmitter By Cadet Thomas Dean, KB1JIJ David Pingree, N1NAS 9 Senior Technical Illustrator Advertising Information Contact: Janet L. Rocco, W1JLR Experimental Determination of Ground System Performance Business Services 860-594-0203 – Direct for HF Verticals—Part 7 800-243-7768 – ARRL 18 By Rudy Severns, N6LF 860-594-4285 – Fax Circulation Department Cathy Stepina, QEX Circulation Offices Waveguide Filters You Can Build—and Tune—Part 2 225 Main St, Newington, CT 06111-1494 USA 20 By Paul Wade, W1GHZ Telephone: 860-594-0200 Fax: 860-594-0259 (24 hour direct line) e-mail: [email protected] Subscription rate for 6 issues: Octave for Bessel Functions In the US: ARRL Member $24, 26 By Maynard Wright, W6PAP nonmember $36; US by First Class Mail: ARRL member $37, nonmember $49; International and Canada by Airmail: ARRL member $31, nonmember $43; Columns Members are asked to include their membership control number or a label from their QST when applying. In the Next Issue of QEX Letters In order to ensure prompt delivery, we ask that 25 37 you periodically check the address information on your mailing label. If you find any inaccura- cies, please contact the Circulation Department SDR: Simplified immediately. Thank you for your assistance. 30 By Ray Mack, W5IFS 38 Upcoming Conferences Tech Notes Copyright © 2009 by the American By Mike Hamel, WO1U and Radio Relay League Inc. For permission 2009 QEX Index to quote or reprint material from QEX 35 David Cripes, NMØS 39 or any ARRL publication, send a written request including the issue date (or book title), article, page numbers and a Index of Advertisers description of where you intend to use the reprinted material. Send the request American Radio Relay League: ....... Cover III Nemal Electronics International, Inc: ........29 to the office of the Publications Manager Down East Microwave Inc: ........................25 RF Parts .............................................37, 39 ([email protected]). ICOM ..............................................Cover IV Second Hand Radio .................................34 Kenwood Communications: ............. Cover II Tucson Amateur Packet Radio: ................17 National RF, Inc: .......................................25 QEX – July/August 2008 1 TOFC.indd 1 12/15/2009 4:23:22 PM The American Radio Larry Wolfgang, WR1B Relay League [email protected] The American Radio Relay League, Inc, is a noncommercial association of radio amateurs, organized for the promotion of interest in Amateur Radio communication and experimenta-tion, WWW.RADiOSCAMATORUL.Hi2.ROEmpirical Outlook for the establishment of networks to provide communications in the event of disasters or other emergencies, for the advancement of the radio art and of the public welfare, for the Where do we go from here? representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and It’s a simple question, really, and one I’ve heard many times over the years. You prob- a high standard of conduct. ably have, too. As we reflect on the past and look to the future, it’s not unusual to wonder ARRL is an incorporated association without what that future holds. It would be nice to have a crystal ball and be able to see a year or capital stock chartered under the laws of the state two or ten years into the future. Of course for all the magic that is ham radio, that’s not part of Connecticut, and is an exempt organization under Section 501(c)(3) of the Internal Revenue of our bag of tricks. Code of 1986. Its affairs are governed by a Board of Directors, whose voting members are elected In years past I have been in a number of meetings, discussing the future of Amateur every three years by the general membership. The Radio. I remember when packet radio was the hot new topic, and there was a lot of discus- officers are elected or appointed by the Directors. The League is noncommercial, and no one who sion about building packet networks to link all Amateur Radio operators through one or could gain financially from the shaping of its another networking plan. While the days of packet bulletin boards and that initial burst of affairs is eligible for membership on its Board. activity may be waning, others have quietly gone on to build new network opportunities “Of, by, and for the radio amateur,” ARRL such as the APRS network, with its messaging opportunities and emergency communica- numbers within its ranksWWW.GiURUMELE.Hi2.RO the vast majority of active tions capabilities. Many operators use WinLink and other message forwarding techniques amateurs in the nation and has a proud history of achievement as the standard-bearer in amateur on a daily basis. affairs. Software defined radio has been a hot topic for many years now. We continue to see A bona fide interest in Amateur Radio is the only new developments and improvements in radio technology and capabilities. Most modern essential qualification of membership; an Amateur Radio license is not a prerequisite, although full transceivers make use of at least some aspects of the SDR concept. While some of the voting membership is granted only to licensed best performing radios still rely on traditional radio circuitry, they also allow new software amateurs in the US. versions to be downloaded directly to the radio, with vast new capabilities and subtle per- Membership inquiries and general corres- formance enhancements. Other high performance radios have moved toward the concept pondence should be addressed to the administrative headquarters: of direct digitization of the RF signals, with all processing done in dedicated digital signal processing ICs and personal computers. Whether you want to buy or build a high-perfor- ARRL mance radio, there are plenty of opportunities to play with SDR. 225 Main Street Newington, CT 06111 USA Another buzzword I’ve heard a number of times is “adaptive radio.” As I understand it, Telephone: 860-594-0200 FAX: 860-594-0259 (24-hour direct line) the concept is that the transceivers might be able to change their operating parameters automatically, based on band conditions and communications modes. Perhaps the radio Officers detects interference from another signal near its operating frequency. Filter bandwidth and President: JOEL HARRISON, W5ZN passband position shifts to cut out the offending signal. The radios communicate about 528 Miller Rd, Judsonia, AR 72081 received signal strength and other band conditions under the operators’ communications Chief Executive Officer: DAVID SUMNER, K1ZZ and adjust transmitter power and perhaps even digital data speeds. All of this happens without any operator intervention. Some of this may sound a little farfetched, but is it The purpose of QEX is to: really? What can we do to build more intelligence into our radios? What new features 1) provide a medium for the exchange of ideas and would you like to find on your next dream radio? information among Amateur Radio experimenters, What other changes do you see on the horizon? Will we see years of subtle changes 2) document advanced technical work in the Amateur and improvements to our current circuitry and techniques, or is there some new idea Radio field, and ready to break through and change the way we define “radio” in the future? Are there 3) support efforts to advance the state of the radical new antenna designs waiting to be discovered, or do we know all there is to learn Amateur Radio art. about antenna design? What new digital (or analog) communications techniques and All correspondence concerning QEX should be modes will be invented or evolved? What do you think? addressed to the American Radio Relay League, 225 Main Street, Newington, CT 06111 USA. QEX has published the technical details of all these past developments, and continues Envelopes containing manuscripts and letters for to help advance the state of the radio art. Whether you want to learn about the latest tech- publication in QEX should be marked Editor, QEX. niques or want to experiment and push the envelope yourself, we want to bring you the Both theoretical and practical technical articles are information you need. I am sure we will continue to have articles about packet networking welcomed. Manuscripts should be submitted in word- processor format, if possible.
Recommended publications
  • ANAN-8000DLE Users Guide
    Apache Labs LLC ANAN-8000DLE Users Guide This document contains the words Apache, ANAN-10, ANAN-10E, ANAN-100, ANAN-100D, ANAN-200D, ANAN-8000DLE in reference to the Apache Labs Transceiver products http://www.apache-labs.com In cooperation with VK6PH, NRØV, W5WC, K5SO and the OpenHPSDR Hardware and Software Projects http://openhpsdr.org all images and manufacturer data is copied here with permission of the owner Copyright Apache Labs © 15 March 2017 Contents - ANAN-8000DLE Users Guide Apache Labs LLC, Inc. - Declarations of Conformity.........................................................5 Apache Labs Products CE and RTTE Certified..................................................................5 Heat Dissipation............................................................................................................5 Clarification CCS [60W]/ICAS [200W] operation...............................................................5 1. ANAN-8000DLE Architecture.............................................................6 We are very proud of the 8000DLE Design Team.............................................................6 General Specifications:...................................................................................................6 Electrical Specifications:.................................................................................................6 Mechanical Specifications:..............................................................................................6 Receiver Specifications:..................................................................................................6
    [Show full text]
  • Kiwisdr Design Review Version 2.1 – February 2016
    KiwiSDR design review Version 2.1 – February 2016 John Seamons, ZL/KF6VO [email protected] Summary This document describes the design of KiwiSDR, a software-defined radio (SDR) add-on board (so-called "cape") for the popular BeagleBone Black single-board © bluebison.net computer. Although the first PCBs have been constructed, design feedback is still sought from experts in the community before more units are manufactured. Click for the live receiver in New Zealand. There are also now two beta units, at the University of Victoria, B.C., Canada and the SK3W Contest Station, Sweden. The KiwiSDRs are registered on the SDR.hu network. Complete sources are on github. The design is open-source / open-hardware with full details available to anyone (including PCB layout). The project leverages much existing open SDR technology, but especially the pioneering work of Pieter-Tjerk de Boer, PA3FWM, the creator of WebSDR, Andrew Holme's Homemade GPS Receiver and OpenWebRX from András Retzler, HA7ILM. If a reasonable retail price target can be achieved the intent is to produce and sell boards. Some form of crowd funding is being considered to bootstrap initial production and fund up-front costs such as regulatory compliance testing. The minimum-threshold aspect of crowd funding will also provide a good estimate of overall interest in the project given how crowded the SDR space is these days. TOC 1 How you can help I welcome advice of any kind. Especially if you see an error or misconception on my part. There is also a list of open questions at the end of each description section you can help answer.
    [Show full text]
  • 2015 Dcc Rest.Indd
    34th ARRL and TAPR DIGITAL COMMUNICATIONS CONFERENCE Chicago, Illinois October 9-11, 2015 ISBN: 978-1-62595-040-6 34th ARRL and TAPR DIGITAL COMMUNICATIONS CONFERENCE ARRL 225 Main Street Newington, CT 06111-1494 USA tel: 860-594-0200 www.arrl.org Tucson Amateur Packet Radio PO Box 852754 Richardson, TX 75085-2754 USA tel: 972-671-8277 www.tapr.org 1 Copyright ¤ 2015 The American Radio Relay League, Inc. Copyright secured under the Pan-American Convention International Copyright secured All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation reserved. Printed in USA. Quedan reservados todos los derechos. ISBN: 978-1-62595-040-6 First Edition Copies of this book can be ordered from www.lulu.com. 2 Welcome! The ARRL/TAPR Digital Communications Conference is the premier gathering of Amateur Radio digital enthusiasts in the country, if not the world. This year we welcome everyone to Chicago for the 34th meeting since these annual conferences began. As anyone who has ever attended a Digital Communications Conference will tell you, these gatherings are excellent venues for innovative ideas and discussions. Within these proceedings, for example, you’ll find papers on topics ranging from HF receiver testing to ARDOP, the Amateur Radio Digital Open Protocol. Most of these papers are appearing in public for the very first time. The ARRL thanks Tucson Amateur Packet Radio (TAPR) for all the hard work they do to make these conferences successful. Were it not for TAPR, it is possible that the conferences would not occur at all.
    [Show full text]
  • Redalyc.Software Defined Radio: Basic Principles and Applications
    Facultad de Ingeniería ISSN: 0121-1129 [email protected] Universidad Pedagógica y Tecnológica de Colombia Colombia Machado-Fernández, José Raúl Software Defined Radio: Basic Principles and Applications Facultad de Ingeniería, vol. 24, núm. 38, enero-junio, 2015, pp. 79-96 Universidad Pedagógica y Tecnológica de Colombia Tunja, Colombia Available in: http://www.redalyc.org/articulo.oa?id=413940775007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative José Raúl Machado-Fernández ISSN 0121-1129 eISSN 2357-5328 Software Defined Radio: Basic Principles and Applications Software Defined Radio: Principios y aplicaciones básicas Software Defined Radio: Princípios e Aplicações básicas Fecha de Recepción: 29 de Septiembre de 2014 José Raúl Machado-Fernández* Fecha de Aceptación: 15 de Noviembre de 2014 Abstract The author makes a review of the SDR (Software Defined Radio) technology, including hardware schemes and application fields. A low performance device is presented and several tests are executed with it using free software. With the acquired experience, SDR employment opportunities are identified for low-cost solutions that can solve significant problems. In addition, a list of the most important frameworks related to the technology developed in the last years is offered, recommending the use of three of them. Keywords: Software Defined Radio (SDR), radiofrequencies receiver, radiofrequencies transmitter, radio development frameworks, superheterodyne receiver, SDR hardware devices, SDR-Sharp, RTLSDR-Scanner. Resumen El autor realiza una revisión de la tecnología Radio Definido por Software (SDR, Software Defined Radio) incluyendo esquemas de hardware y campos de aplicación.
    [Show full text]
  • Hamvention with TAPR by Steve Bible, N7HPR
    TAPR PSR #128 Spring 2015 President’s Corner Hamvention with TAPR By Steve Bible, N7HPR Hamvention is nearly here and TAPR will be present in full-force! The biggest ham radio convention of the year runs from May 15 to May 17 in the Greater Dayton, Ohio metroplex and TAPR has plans for the event to fill your weekend. Booths TAPR’s suite of booths will be in the Ballarena section of HARA at booths 451 through 454 (the same location as last year) where we will be showing what we have been up to lately. Our booths and other inside exhibits will be accessible 9 AM to 6 PM on Friday and 9 AM to 5 PM on Saturday from 9 AM to 1 PM on Sunday. Board Meeting The Hamvention in-person TAPR Board of Directors meeting will be Thursday evening at The Hamvention with TAPR 01 Hilton Garden Inn Dayton South/Austin Landing, 12000 Innovation Drive, just off I-75 (exit 41) Hamvention TAPR Forum Schedule 03 south of downtown Dayton. All TAPR members are invited to attend the meeting and speak their TAPR Calendar 04 piece. The meeting starts at approximately 7 PM. DCC in Chicago, October 9-11 05 TAPR Forum Penelope for PennyLane Friday morning, Scotty Cowling, WA2DFI, will moderate the TAPR Forum in Room 1 of the Trade-In Program 05 HARA Arena starting at 9:15 AM. Near Space Flights as a Tool for STEM Education 07 This years’ TAPR Forum speakers include: Build a Better Demodulator for • TAPR President Steve Bible, N7HPR’s “Introduction” APRS / AX.25 Packet 13 • Steve Ford, WB8IMY ‘s “Write for QST” Amateur Radio Lectures in India 24 • Bill Curtice, WA8APB and Bob Dixon, W8ERD on “Hamnet Mesh: Consider the Write Here! 30 Possibilities!” On the Net 30 • Bryan Fields, W9CR on “High Speed IP Radio” The Fine Print 31 • Chris Testa, KD2BMH on “Whitebox Project: New Charlie Prototype” Our Membership App 32 • Michael Ossman/AD0NR on “Spectrum Monitoring with Software Defined Radio.” TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.
    [Show full text]
  • Low Frequency Quadrature Detector Design, Simulation and Implementation for Use in Underground Communication
    Graduate Theses, Dissertations, and Problem Reports 2014 Low frequency Quadrature detector design, simulation and implementation for use in underground communication Zenaneh Ashebir Kebede West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Kebede, Zenaneh Ashebir, "Low frequency Quadrature detector design, simulation and implementation for use in underground communication" (2014). Graduate Theses, Dissertations, and Problem Reports. 219. https://researchrepository.wvu.edu/etd/219 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Low frequency Quadrature detector design, simulation and implementation for use in underground communication Zenaneh Ashebir Kebede Thesis submitted to Benjamin M. Statler college of Engineering and mineral resources at West Virginia University in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering Roy S. Nutter, Jr. , Ph.D Matthew C. Valenti, Ph.D David W. Graham, Ph.D Lane department of computer science and electrical engineering Morgantown, West Virginia 2014 Key word: Low frequency quadrature detector.
    [Show full text]
  • THETIS User Manual
    THETIS User Manual Edited by Laurence Barker G8NJJ on behalf of the HPSDR Project THETIS User Manual Page 1 of 129 Table of Contents Contents 1 Introduction .................................................................................................................................... 7 1.1 History ..................................................................................................................................... 8 1.2 Purpose and Structure of this Document ............................................................................... 8 1.3 Writing Style ............................................................................................................................ 9 1.4 Alternatives to THETIS ............................................................................................................. 9 2 THETIS Overview ........................................................................................................................... 10 2.1 Screen Layout - Expanded view ............................................................................................ 10 2.2 Screen Layout - Collapsed view............................................................................................. 10 2.2.1 Classic ............................................................................................................................ 10 2.2.2 Andromeda view ........................................................................................................... 11 2.3 Changing Appearance with “Skins”
    [Show full text]
  • All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable
    Purdue University Purdue e-Pubs Birck and NCN Publications Birck Nanotechnology Center 6-2014 All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters Muhammad Shoaib Arif Birck Nanotechnology Center, Purdue University, [email protected] Dimitrios Peroulis Purdue University, Birck Nanotechnology Center, [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/nanopub Part of the Nanoscience and Nanotechnology Commons Arif, Muhammad Shoaib and Peroulis, Dimitrios, "All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters" (2014). Birck and NCN Publications. Paper 1638. http://dx.doi.org/10.1109/JMEMS.2013.2281119 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 23, NO. 3, JUNE 2014 727 All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters Muhammad Shoaib Arif, Student Member, IEEE, and Dimitrios Peroulis, Member, IEEE Abstract— This paper presents a new fabrication technology relatively large size, difficulty in planar integration, high power and the associated design parameters for realizing compact consumption, need of controlled temperature environment and widely-tunable cavity filters with a high unloaded quality for proper operation, and high cost [4]. The planar or 2-D factor ( Qu) maintained throughout the analog tuning range. This all-silicon technology has been successfully employed to tunable filter technology is another extensively explored demonstrate tunable resonators in mobile form factors in the approach. In these filters, transmission lines are loaded with C, X, Ku, and K bands with simultaneous high unloaded lumped tunable elements (varactors) for frequency tuning.
    [Show full text]
  • An Evaluation of Low Cost Fpga-Based Software Defined Radios For
    AN EVALUATION OF LOW COST FPGA-BASED SOFTWARE DEFINED RADIOS FOR EDUCATION AND RESEARCH A Thesis Presented for the Master of Science Degree The University of Tennessee at Chattanooga Abhilash M. Purani April 23, 2010 To the Graduate Council: I am submitting herewith a thesis written by Abhilash M. Purani entitled “An Evaluation of Low Cost FPGA-Based Software Defined Radios for Education and Research.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Electrical Engineering. Dr. Stephen Craven Major advisor We have read this thesis And recommend its acceptance: Dr. Ahmed Eltom Dr. Clifford Parten Accepted for the Council: Dr. Stephanie Bellar Interim Dean of the Graduate School ii ABSTRACT The purpose of this study is to evaluate a low-cost Software Defined Radio (SDR) platform for educational and research purposes. An evaluation of existing SDR platforms and design techniques was performed, identifying low cost hardware and software suitable for a laboratory environment. The idea behind the project is to provide undergraduate students with a generic hardware platform so that they can perform simple radio communication experiments. This paper compares and evaluates the existing research projects and educational lab experiments done for SDR. Basic AM and FM radios are created and simulated on the hardware. The detailed procedure to create a design and download the design onto the hardware has been documented, and tutorials are created for step-by-step procedures to perform the experiments.
    [Show full text]
  • PSR #118 SPRING 2012 President's Corner by Steven Bible, N7HPR, TAPR President
    TAPR PSR #118 SPRING 2012 President's Corner By Steven Bible, N7HPR, TAPR President Now for something completely different: instead of describing Working on SDR presentations for FDIM what TAPR is up to in this installment of President's Corner, <http://fdim.qrparci.org/content/view/70/79/> and for Sea­Pac the TAPR officers and board of directors will describe what <http://www.seapac.org/workshop.htm> they are up to. Steve Bible, N7HPR, President, Director DCC hotel planning. The contract is signed and now promotion begins. Dayton Hamvention planning. Gathering and scheduling Forum speakers. TAPR/AMSAT Banquet. Booth preparations. President's Corner 01 Before Hamvention on Thursday May 17th I am invited to WA2DFI at Four Days in May 03 speak at the AIAA Dayton­Cincinnati Section Lunch n' Learn Short Bits 03 about the ARISSat­1 Program. TAPR at Hamvention 04 openHPSDR Hermes planning. Working with Scotty on the DCC Update 05 interest list and planning. WA2DFI's MTR QRPrig, front and back views TADD­2 Mini Is Now Available 06 Hermes Is On His Way 07 Scotty Cowling, WA2DFI, Stan Horzepa, WA1LOU, Getting Started: Doodle Labs Data Radio 08 Vice President, Director Secretary, Director UDPSDR­HF2 SDRstick 11 Getting openHPSDR Hermes and Apollo through pre­ EditSRP (Packet Status Register), TAPR's quarterly newsletter Deploying a KPC­3P as a "BBS­in­a­Box" 12 production testing and ready for manufacturing. Moderate APRSSIG, APRSNEWS, APRSSAT, HTAPRS, and Twitter & Facebook 19 Working on some new SDRs for announcement at Dayton, APRSSPEC TAPR e­mail lists. Write Here! 19 from my company Zephyr Engineering, Inc.
    [Show full text]
  • Gnuradio February 27, 2021 Tom Mcdermott, N5EG Medford, OR
    Gnuradio February 27, 2021 Tom McDermott, N5EG Medford, OR Life Member ARRL Life Senior Member IEEE Outline • What is Gnuradio? • Where do I get it? • Are there tutorials? • Core Concepts. • Using gnuradio: • Simulation, learning the fundamentals of DSP. • Test equipment. • Example: measuring receiver Noise Figure • A radio (of course). TECHCON 2021 - Gnuradio 2 What is Gnuradio? • A free Open Source software package. GUI and Command line. • Linux, Windows, Mac. • Create and run DSP without writing code. • Great way to learn signal processing. • Includes virtual instrumentation • Oscilloscope, Spectrum analyzer, Waterfall, Constellation plotter. • Signal sources and sinks. Radios, files, sockets, pipes. • User-created add-ons (gui widgets, specialized functions). • Supports a long list of radios (Ettus, OpenHPSDR / Red Pitaya, Pluto, plus many others). • Based on Python and C++ • Python for the interconnection, graphics, management. • C++ for high-speed DSP functions, buffers, and I/O. TECHCON 2021 - Gnuradio 3 Getting Started with Gnuradio (thanks to John Petrich, W7FU) How to install GNU Radio https://wiki.gnuradio.org/index.php/InstallingGR Guided Tutorials (Novice level) https://www.youtube.com/watch?v=N9SLAnGlGQs&list=PL618122BD66C8B3C4 Tutorials (More advanced Level) https://wiki.gnuradio.org/index.php/Tutorials TECHCON 2021 - Gnuradio 4 Gnuradio flowgraph • You don’t need to know Python or C++ • Gnuradio Companion (GRC) is the graphical GUI. • Allows you to create flowgraph modules, parameters, and wiring using a GUI. • Compiles your flowgraph into Python program and saves the file to disk. • Allows you to Start and Stop your flowgraph. • A flowgraph is a Python program: • Automatically generated by GRC. • A text file containing the Python source code: • Defines all the DSP blocks, GUI blocks, Radios, Sources, Sinks.
    [Show full text]
  • Mercury Operation with Powersdr™
    High Performance Software Defined Radio Open Source Hardware and Software Project Project Description: http://hpsdr.org Mercury Operation with PowerSDR™ Text: Phil Harman, VK6APH Graham Haddock, KE9H Joe de Groot, AB1DO Revision 1.0 Graphics and Layout: Joe de Groot, AB1DO M ERCURY OPERATION WITH P OWER SDR Table of Contents Introduction........................................................................................................3 What you will Need.............................................................................................3 Mercury Set-up...................................................................................................4 1 RF Input..............................................................................................................................4 2 Power Indicator Through Connector...............................................................................5 3 Alex Connector..................................................................................................................5 4 Audio Line Out...................................................................................................................5 5 Headphones Out................................................................................................................5 Operation............................................................................................................6 Configuring PowerSDR Software for use with Mercury...................................................6 Level and S-Meter
    [Show full text]