Detection of Distinct Changes in Gene-Expression Profiles in Specimens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Systems and Chemical Biology Approaches to Study Cell Function and Response to Toxins
Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by MSc. Yingying Jiang born in Shandong, China Oral-examination: Systems and chemical biology approaches to study cell function and response to toxins Referees: Prof. Dr. Rob Russell Prof. Dr. Stefan Wölfl CONTRIBUTIONS The chapter III of this thesis was submitted for publishing under the title “Drug mechanism predominates over toxicity mechanisms in drug induced gene expression” by Yingying Jiang, Tobias C. Fuchs, Kristina Erdeljan, Bojana Lazerevic, Philip Hewitt, Gordana Apic & Robert B. Russell. For chapter III, text phrases, selected tables, figures are based on this submitted manuscript that has been originally written by myself. i ABSTRACT Toxicity is one of the main causes of failure during drug discovery, and of withdrawal once drugs reached the market. Prediction of potential toxicities in the early stage of drug development has thus become of great interest to reduce such costly failures. Since toxicity results from chemical perturbation of biological systems, we combined biological and chemical strategies to help understand and ultimately predict drug toxicities. First, we proposed a systematic strategy to predict and understand the mechanistic interpretation of drug toxicities based on chemical fragments. Fragments frequently found in chemicals with certain toxicities were defined as structural alerts for use in prediction. Some of the predictions were supported with mechanistic interpretation by integrating fragment- chemical, chemical-protein, protein-protein interactions and gene expression data. Next, we systematically deciphered the mechanisms of drug actions and toxicities by analyzing the associations of drugs’ chemical features, biological features and their gene expression profiles from the TG-GATEs database. -
Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview -
Origins and Functional Impact of Copy Number Variation in the Human Genome
doi:10.1038/nature08516 ARTICLES Origins and functional impact of copy number variation in the human genome Donald F. Conrad1*, Dalila Pinto2*, Richard Redon1,3, Lars Feuk2,4, Omer Gokcumen5, Yujun Zhang1, Jan Aerts1, T. Daniel Andrews1, Chris Barnes1, Peter Campbell1, Tomas Fitzgerald1, Min Hu1, Chun Hwa Ihm5, Kati Kristiansson1, Daniel G. MacArthur1, Jeffrey R. MacDonald2, Ifejinelo Onyiah1, Andy Wing Chun Pang2, Sam Robson1, Kathy Stirrups1, Armand Valsesia1, Klaudia Walter1, John Wei2, Wellcome Trust Case Control Consortium{, Chris Tyler-Smith1, Nigel P. Carter1, Charles Lee5, Stephen W. Scherer2,6 & Matthew E. Hurles1 Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs. -
Cellular Stress Pathways in Pediatric Bone Marrow Failure Syndromes: Many Roads Lead to Neutropenia
nature publishing group Review Cellular stress pathways in pediatric bone marrow failure syndromes: many roads lead to neutropenia Taly Glaubach1–3, Alex C. Minella4 and Seth J. Corey1–3,5 The inherited bone marrow failure syndromes, like severe con- kidney, and gastrointestinal tract. Genetic lesions have been genital neutropenia (SCN) and Shwachman–Diamond syn- identified for all of these syndromes, although not all patients drome (SDS), provide unique insights into normal and impaired with these disorders have a known genetic cause. The inher- myelopoiesis. The inherited neutropenias are heterogeneous ited bone marrow failure syndromes offer genetically defined in both clinical presentation and genetic associations, and experiments of nature that provide unique opportunities for their causative mechanisms are not well established. SCN, for studying and understanding the regulatory networks involved example, is a genetically heterogeneous syndrome associated in hematopoiesis and how perturbations in blood cell function with mutations of ELANE, HAX1, GFI1, WAS, G6PC3, or CSF3R. The result in marrow production failure and peripheral cytopenias. genetic diversity in SCN, along with congenital neutropenias Here, we review the most recent developments in molecular associated with other genetically defined bone marrow failure basis of inherited bone marrow failure syndromes, particularly syndromes (e.g., SDS), suggests that various pathways may be SCN. One emerging theme is that different pathways involv- involved in their pathogenesis. Alternatively, all may lead to a ing cellular stress mechanisms drive apoptosis of blood cell final common pathway of enhanced apoptosis. The pursuit for precursors, resulting in cytopenia(s). These stress mechanisms a more complete understanding of the molecular mechanisms include endoplasmic reticulum (ER) stress and the unfold pro- that drive inherited neutropenias remains at the forefront tein response, defective ribosome assembly, and induction of of pediatric translational and basic science investigation. -
Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes. -
Extraocular Muscle Characteristics Related to Myasthenia Gravis Susceptibility
Extraocular Muscle Characteristics Related to Myasthenia Gravis Susceptibility Rui Liu1., Hanpeng Xu2., Guiping Wang3, Jie Li4, Lin Gou2, Lihua Zhang1, Jianting Miao5*, Zhuyi Li5* 1 Department of Geratology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, P. R. China, 2 LONI, Department of Neurology, UCLA, Los Angeles, California, United States of America, 3 Department of Neurosurgery, 208th Hospital of PLA, Changchun, Jilin Province, P. R. China, 4 Department of Endocrinology, 451 Hospital of PLA,Xi’an, Shaanxi Province, P. R. China, 5 Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, P. R. China Abstract Background: The pathogenesis of extraocular muscle (EOM) weakness in myasthenia gravis might involve a mechanism specific to the EOM. The aim of this study was to investigate characteristics of the EOM related to its susceptibility to myasthenia gravis. Methods: Female F344 rats and female Sprague-Dawley rats were assigned to experimental and control groups. The experimental group received injection with Ringer solution containing monoclonal antibody against the acetylcholine receptor (AChR), mAb35 (0.25 mg/kg), to induce experimental autoimmune myasthenia gravis, and the control group received injection with Ringer solution alone. Three muscles were analyzed: EOM, diaphragm, and tibialis anterior. Tissues were examined by light microscopy, fluorescence histochemistry, and transmission electron microscopy. Western blot analysis was used to assess marker expression and ELISA analysis was used to quantify creatine kinase levels. Microarray assay was conducted to detect differentially expressed genes. Results: In the experimental group, the EOM showed a simpler neuromuscular junction (NMJ) structure compared to the other muscles; the NMJ had fewer synaptic folds, showed a lesser amount of AChR, and the endplate was wider compared to the other muscles. -
FGF21 Regulates Hepatic Metabolic Pathways to Improve Steatosis and Inflammation
ID: 20-0152 9 8 H Keinicke et al. Hepatic gene regulation by 9:8 755–768 FGF21 in DIO mice RESEARCH FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation Helle Keinicke1, Gao Sun2,*, Caroline M Junker Mentzel3, Merete Fredholm4, Linu Mary John5, Birgitte Andersen5, Kirsten Raun5 and Marina Kjaergaard5 1Insulin and Device Trial Operations, Novo Nordisk A/S, Søborg, Denmark 2Pharmacology and Histopathology, Novo Nordisk A/S, China 3Department of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark 4Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark 5Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark Correspondence should be addressed to M Kjaergaard: [email protected] *(G Sun is now at Pegbio Co., Ltd, Su Zhou, China) Abstract The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically Key Words worldwide and, subsequently, also the risk of developing non-alcoholic steatohepatitis f fibroblast growth factor 21 (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available (FGF21) treatment, but administration of fibroblast growth factor 21 (FGF21) analogues have, f non-alcoholic fatty liver disease (NAFLD) in addition to weight loss, shown improvements on liver metabolic health but the f lipid metabolism mechanisms behind are not entirely clear. The aim of this study was to investigate the f glucose metabolism hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) f inflammation mice were treated with s.c. administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss and changes were compared to vehicle dosed DIO mice. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Loss of Pax5 Exploits Sca1-BCR-Ablp190 Susceptibility to Confer the Metabolic Shift Essential for Pb-ALL Alberto Martín-Lorenzo1,2, Franziska Auer3,4, Lai N
Published OnlineFirst February 28, 2018; DOI: 10.1158/0008-5472.CAN-17-3262 Cancer Tumor Biology and Immunology Research Loss of Pax5 Exploits Sca1-BCR-ABLp190 Susceptibility to Confer the Metabolic Shift Essential for pB-ALL Alberto Martín-Lorenzo1,2, Franziska Auer3,4, Lai N. Chan3, Idoia García-Ramírez1,2, Ines Gonzalez-Herrero 1,2, Guillermo Rodríguez-Hernandez 1,2, Christoph Bartenhagen5, Martin Dugas5, Michael Gombert4, Sebastian Ginzel4, Oscar Blanco6, Alberto Orfao7, Diego Alonso-Lopez 8, Javier De Las Rivas2,9, Maria B. García-Cenador10, Francisco J. García-Criado10, Markus Muschen€ 3, Isidro Sanchez-García 1,2, Arndt Borkhardt5, Carolina Vicente-Duenas~ 1,2, and Julia Hauer5 Abstract p190 Preleukemic clones carrying BCR-ABL oncogenic lesions are the Pax5-deficient leukemic pro-B cells exhibited a metabolic found in neonatal cord blood, where the majority of preleukemic switch toward increased glucose utilization and energy carriers do not convert into precursor B-cell acute lymphoblastic metabolism. Transcriptome analysis revealed that metabolic leukemia (pB-ALL). However, the critical question of how these genes (IDH1, G6PC3, GAPDH, PGK1, MYC, ENO1, ACO1) were preleukemic cells transform into pB-ALL remains undefined. upregulated in Pax5-deficient leukemic cells, and a similar Here, we model a BCR-ABLp190 preleukemic state and show metabolic signature could be observed in human leukemia. Our that limiting BCR-ABLp190 expression to hematopoietic stem/ studies unveil the first in vivo evidence that the combination progenitor cells (HS/PC) in mice (Sca1-BCR-ABLp190) causes between Sca1-BCR-ABLp190 and metabolic reprogramming pB-ALL at low penetrance, which resembles the human disease. -
Transcriptomic and Proteomic Profiling Provides Insight Into
BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes. -
A Clinical and Molecular Review of Ubiquitous Glucose-6-Phosphatase Deficiency Caused by G6PC3 Mutations Siddharth Banka1,2* and William G Newman1,2
Banka and Newman Orphanet Journal of Rare Diseases 2013, 8:84 http://www.ojrd.com/content/8/1/84 REVIEW Open Access A clinical and molecular review of ubiquitous glucose-6-phosphatase deficiency caused by G6PC3 mutations Siddharth Banka1,2* and William G Newman1,2 Abstract The G6PC3 gene encodes the ubiquitously expressed glucose-6-phosphatase enzyme (G-6-Pase β or G-6-Pase 3 or G6PC3). Bi-allelic G6PC3 mutations cause a multi-system autosomal recessive disorder of G6PC3 deficiency (also called severe congenital neutropenia type 4, MIM 612541). To date, at least 57 patients with G6PC3 deficiency have been described in the literature. G6PC3 deficiency is characterized by severe congenital neutropenia, recurrent bacterial infections, intermittent thrombocytopenia in many patients, a prominent superficial venous pattern and a high incidence of congenital cardiac defects and uro-genital anomalies. The phenotypic spectrum of the condition is wide and includes rare manifestations such as maturation arrest of the myeloid lineage, a normocellular bone marrow, myelokathexis, lymphopaenia, thymic hypoplasia, inflammatory bowel disease, primary pulmonary hypertension, endocrine abnormalities, growth retardation, minor facial dysmorphism, skeletal and integument anomalies amongst others. Dursun syndrome is part of this extended spectrum. G6PC3 deficiency can also result in isolated non-syndromic severe neutropenia. G6PC3 mutations in result in reduced enzyme activity, endoplasmic reticulum stress response, increased rates of apoptosis of affected cells and dysfunction of neutrophil activity. In this review we demonstrate that loss of function in missense G6PC3 mutations likely results from decreased enzyme stability. The condition can be diagnosed by sequencing the G6PC3 gene. A number of G6PC3 founder mutations are known in various populations and a possible genotype-phenotype relationship also exists. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in