Continuum Modeling of the Deceleration Transient State In

Total Page:16

File Type:pdf, Size:1020Kb

Continuum Modeling of the Deceleration Transient State In CONTINUUM MODELING OF THE DECELERATION TRANSIENT STATE IN STOCHASTIC TRAFFIC FLOW By Alma Cemerlic Dr. Henry McDonald Dr. Timothy Swafford (Chair) (Committee Member) Dr. Ramesh Pankajakshan Dr. Joe Dumas (Committee Member) (Committee Member) CONTINUUM MODELING OF THE DECELERATION TRANSIENT STATE IN STOCHASTIC TRAFFIC FLOW By Alma Cemerlic A Dissertation Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computational Engineering The University of Tennessee at Chattanooga Chattanooga, Tennessee August 2015 ii Copyright © 2015 By Alma Cemerlic All Rights Reserved iii ABSTRACT Due to individual driver behavior, a traffic system is subject to many stochastic factors. Deterministic partial differential equations and their extensions, traditionally used in traffic flow modeling, may not be sufficient in applications such as real-time estimation and prediction of traffic flow conditions. In previous studies, the issue of physical relevance has received little attention in efforts to introduce a stochastic component into deterministic equilibrium-based traffic models. In this work, the stochastic component is derived directly from realistic driver behavior implemented as a fully discrete fine-grained agent-based model and combined into the deterministic Aw-Rascle system of equations via ensemble averaging. The same approach can be applied to any second-order traffic model of a similar form. Solutions for the stopping and deceleration cases are obtained using the second-order Lax-Wendroff scheme and compared to the results obtained from the agent-based simulation. iv TABLE OF CONTENTS LIST OF TABLES........................................................................................................................viii LIST OF FIGURES........................................................................................................................ix CHAPTER 1. INTRODUCTION...............................................................................................................1 2. LITERATURE REVIEW....................................................................................................4 2.1 Continuum Traffic Models.......................................................................................4 2.1.1 Lighthill-Whitham-Richards Traffic Model (LWR).....................................6 2.1.2 Aw-Rascle Traffic Model (AR)....................................................................7 2.2 Car-Following Models........................................................................................... 13 2.2.1 Intelligent Driver Model (IDM)................................................................. 15 2.2.2 Nagel-Schreckenberg Particle-Hopping Model......................................... 16 2.3 Stochastic Traffic Flow........................................................................................... 17 3. METHODOLOGY............................................................................................................ 19 3.1 Aw-Rascle System of Equations - Summary......................................................... 22 3.1.1 Convergence of the Aw-Rascle to the Lighthill-Whitham-Richards Traffic Model............................................................................................. 23 3.1.2 The Influence of the Speed Relaxation Source Term on the Solution of the Aw-Rascle System of Equations...................................................... 24 3.1.3 Second-Order Lax-Wendroff Numerical Scheme...................................... 28 3.2 Fine-Grained Agent-Based Model......................................................................... 30 3.2.1 Nagel-Schreckenberg Particle-Hopping Model and the Fine-Grained Agent-Based Model............................................................ 30 3.2.2 Car-Following Intelligent Driver Model and Fine-Grained Agent-Based Model.................................................................................. 32 3.2.2.1 Effects of Discretization on the Intelligent Driver Model............. 34 v 3.3 Multi-Class Driving Behavior and Driver Population.......................................... 37 3.3.1 Fundamental Diagrams for the Homogenous and Heterogeneous Driver Populations..................................................................................... 40 3.4 Ensemble Averaged Aw-Rascle Equations............................................................ 43 3.4.1 Ensemble Averaging.................................................................................. 43 3.4.2 Ensemble Averaged Aw-Rascle Equation.................................................. 49 3.4.3 Ensemble Averaged Values in the Fine-Grained Agent-Based Model...... 51 4. RESULTS.......................................................................................................................... 54 4.1 Homogeneous Driver Population........................................................................... 56 4.1.1 Fine-Grained Agent-Based Model; Case: Stopping.................................. 57 4.1.2 Aw-Rascle Model; Case: Stopping............................................................ 60 4.2 Inhomogeneous Driver Population........................................................................ 63 4.2.1 Correlation Terms...................................................................................... 63 4.2.1.1 Functional Approximation for the Ensemble Averaged Terms Used in the Test Cases........................................................ 68 4.2.2 Case 1: Stopping....................................................................................... 71 4.2.2.1 Fine-Grained Agent-Based Solution.............................................. 71 4.2.2.2 Numerical Results of the Aw-Rascle Model and the Aw-Rascle Model with Ensemble Averaged Source Term............ 76 4.2.2.3 Evaluation...................................................................................... 78 4.2.3 Case 2: Bottleneck (Merging with a Slower Traffic Stream)..................... 82 4.2.3.1 Fine-Grained Agent-Based Solution.............................................. 83 4.2.3.2 Numerical Results and Evaluation of the Aw-Rascle Model and the Aw-Rascle Model with Ensemble Averaged Source Term............................................................................................... 85 4.3 Discussion.............................................................................................................. 89 5. CONCLUSION AND FUTURE WORK........................................................................... 92 APPENDIX A. FUNDAMENTAL DIAGRAM.......................................................................................... 95 B. EFFECTS OF DISCRETIZATION ON THE INTELLIGENT DRIVER MODEL....... 100 C. NUMERICAL VERIFICATION OF THE SECOND-ORDER LAX-WENDROFF SCHEME......................................................................................................................... 107 vi D. COMPARISONOF THE NUMERICAL SOLUTIONS OF THE HOMOGENEOUS AR MODEL AND THE LWR MODEL......................................................................... 111 REFERENCES............................................................................................................................ 122 VITA............................................................................................................................................ 127 vii LIST OF TABLES 3.1 Driver safety classification based on behind-the-wheel operating behaviors with assumed Gaussian distribution population percentages [53]................................ 38 3.2 IDM parameters used to distinguish different classes of drivers [50]................................ 38 4.1 Wave propagation speed comparison for Aw-Rascle and Aw-Rascle with ensemble averaging................................................................................................................ 78 4.2 Wave propagation speed for the stopping problem; model comparison............................ 79 viii LIST OF FIGURES 3.1 Fundamental Diagram; empirical data and curve fit [18].................................................. 20 3.2 Initial condition: ρL = 0:28;ρR = 1:0; vR = 0:1(vR = Veq (ρR) for the equilibrium case), vL = 0:0........................................................................................................ 25 3.3 Nonphysical solution as the result of the non-equilibrium initial condition and no speed relaxation source term................................................................................ 25 3.4 Adaptation from low speed to the equilibrium speed, adaptation time τ 10 and 30 seconds, simulation time: 500 time steps (115 seconds)....................................... 26 3.5 Initial condition: initial density: ρL = 0:28;ρR = 1:0; initial velocity: vR = 0:5(vR = Veq (ρR) for the equilibrium case), vL = 0:0........................................................... 27 3.6 Adaptation from high speed to the equilibrium speed, adaptation time τ 10 and 30 seconds, simulation time: 500 time steps (115 seconds)....................................... 28 3.7 Convergence of the IDM acceleration function solved using the explicit first-order Euler method. , L2-norm with respect to the solution obtained with ∆t = 1:0E − 10............................................................................................................... 36 3.8 Assumed Gaussian distribution for the synthetic driver population in heterogeneous case.......................................................................................................................
Recommended publications
  • Self-Organization and Self-Optimization of Traffic Flows on Freeways and in Urban Networks Prof
    Self-Organization and Self-Optimization of Traffic Flows on Freeways and in Urban Networks Prof. Dr. rer. nat. Dirk Helbing Chair of Sociology, in particular of Modeling and Simulation www.soms.ethz.ch with Amin Mazloumian, Stefan Lämmer, Reik Donner, Johannes Höfener, Jan Siegmeier, ... © ETH Zürich | Dirk Helbing | Chair of Sociology, in particular of Modeling and Simulation | www.soms.ethz.ch Systemic Instability: Spontaneous Traffic Breakdowns Thanks to Yuki Sugiyama Capacity drop, when capacity is most needed! At high densities, free traffic flow is unstable: Despite best efforts, drivers fail to maintain speed © ETH Zürich | Dirk Helbing | Chair of Sociology, in particular of Modeling and Simulation | www.soms.ethz.ch The Intelligent-Driver Model (IDM) ► Equations of motion: ► Dynamic desired distance © ETH Zürich | Dirk Helbing | Chair of Sociology, in particular of Modeling and Simulation | www.soms.ethz.ch Instability of Traffic Flow © ETH Zürich | Dirk Helbing | Chair of Sociology, in particular of Modeling and Simulation | www.soms.ethz.ch Breakdown of Traffic due to a Supercritical Reduction of Traffic Flow © ETH Zürich | Dirk Helbing | Chair of Sociology, in particular of Modeling and Simulation | www.soms.ethz.ch Metastability of Traffic Flow © ETH Zürich | Dirk Helbing | Chair of Sociology, in particular of Modeling and Simulation | www.soms.ethz.ch Assumed Instability Diagram Grey areas = metastable regimes, where result depends on perturbation amplitude © ETH Zürich | Dirk Helbing | Chair of Sociology, in particular of Modeling and Simulation | www.soms.ethz.ch Phase Diagram of Traffic States and Universality Classes Phase diagram for small perturbations for large perturbations After: PRL (1999) Phase diagrams are not only important to understand the conditions under which certain traffic states emerge.
    [Show full text]
  • Mathematical Modelling of Traffic Flow on Highway
    ISSN (Online) 2456 -1304 International Journal of Science, Engineering and Management (IJSEM) Vol 2, Issue 11, November 2017 Mathematical Modelling Of Traffic Flow on Highway [1] Venkatesha P., [2] Ajith.M, [3] Abhijith Patil, [4]Dhamini.T [1] Assistant Professor, [2][3][4] 1st Semester [1] Department of science and humanities Engineering,[2] Department of Computer Science Engineering, [3][4] Department of Electronics & Communication Engineering [1][2][3][4] Sri Sai Ram College of Engineering, Anekal, Bengaluru, India. Abstract:-- This paper intends a mathematical model for the study of traffic flow on the highways. This paper develops a discrete velocity mathematical model in spatially homogeneous conditions for vehicular traffic along a multilane road. The effect of the overall interactions of the vehicles along a given distance of the road was investigated. We also observed that the density of cars per mile affects the net rate of interaction between them. A mathematical macroscopic traffic flow model known as light hill, Whitham and Richards (LWR) model appended with a closure non-linear velocity-density relationship yielding a quasi-linear first order (hyperbolic) partial differential equation as an initial boundary value problem (IBVP) was considered. The traffic model IBVP is a finite difference method which leads to a first order explicit upwind by difference scheme was discretized. keywords:-- Mathematical modeling, traffic flow, Homogeneous conditions, Multilane road, Velocity-density, Quasi-linear first order (hyperbolic) partial differential equation, Finite difference method. I. INTRODUCTION II. HISTORY Attempts to produce a mathematical theory of traffic flow Mathematical modeling is the process of converting a date back to the 1920s, when Frank Knight first produced real-world problem into a mathematical problem and an analysis of traffic equilibrium, which was refined into solving them with certain circumstances and interpreting Wardrop’s first and second principles of equilibrium in 1 those solutions into real world.
    [Show full text]
  • Common Traffic Congestion Features Studied in USA, UK, and Germany Employing Kerner’S Three-Phase Traffic Theory
    Common Traffic Congestion Features studied in USA, UK, and Germany employing Kerner’s Three-Phase Traffic Theory Hubert Rehborn, Sergey L. Klenov*, Jochen Palmer# Daimler AG, HPC: 050-G021, D-71059 Sindelfingen, Germany, e-mail: [email protected] , Tel. +49-7031-4389-594, Fax: +49-7031-4389-210 *Moscow Institute of Physics and Technology, Department of Physics, 141700 Dolgoprudny, Moscow Region, Russia, e-mail: [email protected] #IT-Designers GmbH, Germany, e-mail: [email protected] Corresponding author : Hubert Rehborn, e-mail: [email protected] Abstract - Based on a study of real traffic data measured on American, UK and German freeways common features of traffic congestion relevant for many transportation engineering applications are revealed by the application of Kerner’s three-phase traffic theory. General features of traffic congestion, i.e., features of traffic breakdown and of the further development of congested regions, are shown on freeways in the USA and UK beyond the previously known German examples. A general proof of the theory’s statements and its parameters for international freeways is of high relevance for all applications related to traffic congestion. The application ASDA/FOTO based on Kerner’s three-phase traffic theory demonstrates its capability to properly process raw traffic data in different countries and environments. For the testing of Kerner’s “line J”, representing the wide moving jam’s downstream front, four different methods are studied and compared for each congested traffic situation occurring in the three countries. Keywords - Traffic congestion, Kerner’s three-phase theory, traffic data analysis, congestion, traffic models, traffic flow, Intelligent Transportation Systems 1 INTRODUCTION In many countries of the world, traffic on freeways is often heavily congested during many hours of the day.
    [Show full text]
  • Traffic and Transportation Simulation
    TRANSPORTATION RESEARCH Number E-C195 April 2015 Traffic and Transportation Simulation Looking Back and Looking Ahead: Celebrating 50 Years of Traffic Flow Theory, A Workshop January 12, 2014 Washington, D.C. TRANSPORTATION RESEARCH BOARD 2015 EXECUTIVE COMMITTEE OFFICERS Chair: Daniel Sperling, Professor of Civil Engineering and Environmental Science and Policy; Director, Institute of Transportation Studies, University of California, Davis Vice Chair: James M. Crites, Executive Vice President of Operations, Dallas–Fort Worth International Airport, Texas Division Chair for NRC Oversight: Susan Hanson, Distinguished University Professor Emerita, School of Geography, Clark University, Worcester, Massachusetts Executive Director: Neil J. Pedersen, Transportation Research Board TRANSPORTATION RESEARCH BOARD 2015–2016 TECHNICAL ACTIVITIES COUNCIL Chair: Daniel S. Turner, Emeritus Professor of Civil Engineering, University of Alabama, Tuscaloosa Technical Activities Director: Mark R. Norman, Transportation Research Board Peter M. Briglia, Jr., Consultant, Seattle, Washington, Operations and Preservation Group Chair Alison Jane Conway, Assistant Professor, Department of Civil Engineering, City College of New York, New York, Young Members Council Chair Mary Ellen Eagan, President and CEO, Harris Miller Miller and Hanson, Inc., Burlington, Massachusetts, Aviation Group Chair Barbara A. Ivanov, Director, Freight Systems, Washington State Department of Transportation, Olympia, Freight Systems Group Chair Paul P. Jovanis, Professor, Pennsylvania
    [Show full text]
  • Transportation Network Analysis
    Transportation Network Analysis Volume I: Static and Dynamic Traffic Assignment Stephen D. Boyles Civil, Architectural, and Environmental Engineering The University of Texas at Austin Nicholas E. Lownes Civil and Environmental Engineering University of Connecticut Avinash Unnikrishnan Civil and Environmental Engineering Portland State University Version 0.8 (Public beta) Updated August 25, 2019 ii Preface This book is the product of ten years of teaching transportation network anal- ysis, at the The University of Texas at Austin, the University of Wyoming, the University Connecticut, and Portland State University. This version is being released as a public beta, with a final first edition hopefully to be released within a year. In particular, we aim to improve the quality of the figures, add some additional examples and exercises, and add historical and bibliographic notes to each chapter. A second volume, covering transit, freight, and logistics, is also under preparation. Any help you can offer to improve this text would be greatly appreciated, whether spotting typos, math or logic errors, inconsistent terminology, or any other suggestions about how the content can be better explained, better orga- nized, or better presented. We gratefully acknowledge the support of the National Science Foundation under Grants 1069141/1157294, 1254921, 1562109/1562291, 1636154, 1739964, and 1826230. Travis Waller (University of New South Wales) and Chris Tamp`ere (Katholieke Universiteit Leuven) hosted visits by the first author to their re- spective institutions, and provided wonderful work environments where much of this writing was done. Difficulty Scale for Exercises Inspired by Donald Knuth's The Art of Computer Programming, the exercises are marked with estimates of their difficulty.
    [Show full text]
  • Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software
    Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software PUBLICATION NO. FHWA-HRT-04-040 JULY 2004 Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 Foreword Traffic simulation software has become increasingly more popular as a traffic analysis tool used in transportation analyses. One reason for this increase in the use of simulation is the need to model and analyze the operation of complex transportation systems under congested conditions. Where some analytical techniques break down under these types of conditions, simulation shines. However, despite the widespread use of traffic simulation software, there are a variety of conflicting thoughts and practices on how simulation should be used. The purpose of the Guidelines for Applying Traffic Microsimulation Modeling Software is to provide a recommended process for using traffic simulation software in transportation analyses. The guidelines provide the reader with a seven-step process that begins with project scope and ends with the final project report. The process is generic, in that it is independent of the specific software tool used in the analysis. In fact, the first step in the process involves picking the appropriate tool for the job at hand. It is hoped that these guidelines will assist the transportation community in creating a more consistent process in the use of traffic simulation software. This document serves as Volume III in the Traffic Analysis Toolbox. Other volumes currently in the toolbox include: Volume I: Traffic Analysis Tools Primer and Volume II: Decision Support Methodology for Selecting Traffic Analysis Tools. The intended audience for this report includes the simulation analyst, the reviewer of simulation analyses, and the procurer of simulation services.
    [Show full text]
  • Development of a State of the Art Traffic Microsimulation Model for Nebraska Justice Appiah University of Nebraska–Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Department of Transportation Research Nebraska LTAP Reports 12-2011 Development of a State of the Art Traffic Microsimulation Model for Nebraska Justice Appiah University of Nebraska–Lincoln, [email protected] Bhaven Naik University of Nebraska-Lincoln, [email protected] Laurence Rilett University of Nebraska - Lincoln, [email protected] Yifeng Chen University of Nebraska - Lincoln Seung-Jun Kim University of Nebraska - Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/ndor Part of the Transportation Engineering Commons Appiah, Justice; Naik, Bhaven; Rilett, Laurence; Chen, Yifeng; and Kim, Seung-Jun, "Development of a State of the Art Traffic Microsimulation Model for Nebraska" (2011). Nebraska Department of Transportation Research Reports. 141. http://digitalcommons.unl.edu/ndor/141 This Article is brought to you for free and open access by the Nebraska LTAP at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Department of Transportation Research Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Nebraska Transportation Center Report # UNL: SPR-1(06) P584 Final Report WBS: 26-1118-0075-001 DEVELOPMENT OF A STATE OF THE ART TRAFFIC MICROSIMULATION MODEL FOR NEBRASKA Laurence R. Rilett, Ph.D., P.E. Justice Appiah, Ph.D. Bhaven Naik, Ph.D. Laurence R. Rilett, Ph.D., P.E. Yifeng Chen Seung-Jun Kim, Ph.D. Nebraska Transportation Center 262 WHIT 2200 Vine Street Lincoln, NE 68583-0851 (402) 472-1975 “This report was funded in part through grant[s] from the Federal Highway Administration [and Federal Transit Administration], U.S.
    [Show full text]
  • Traffic Microsimulation Modelling
    Traffic Microsimulation Modelling Microsimulation models replicate the movements of individual vehicles travelling through a network in real time. Cundall utilises microsimulation modelling to evaluate the impacts of proposed interventions before implementation. Traffic flow simulation We can model any geometry and type of junction, from simple Microsimulation modelling facilitates simulating traffic to the priority junctions to signal-controlled nodes and roundabouts finest detail, whether in cities or motorways, and to develop with public transport priority and pedestrian interaction or efficient traffic management strategies to test and mitigate ‘magic roundabouts’, or complex motorway interchanges. traffic issues. Using PTV Vissim, a detailed multi-modal microscopic modelling software, Cundall helps create a balanced mobility ecosystem by improving the traffic situation and consequently reduce congestion and emissions. We use microsimulation modelling for: • Simulating complex vehicle interactions realistically and detailed junction geometries. • Parking simulation. • Modelling demand, supply, and behaviour in detail. • Fine tuning of traffic signals/representation of intelligent transportation systems. • Simulating autonomous vehicles and new forms of mobility. • Assessing the impact of road designs, traffic signal optimisation, or traffic flow management measures before implementation. • Modelling the interaction of all modes, including public transport simulation, simulation of cyclists and pedestrians. • Providing realistic 3D
    [Show full text]
  • Simulation Models of Traffic Flow
    SIMULATION MODELS OF TRAFFIC FLOW ∗ John Taplin Department of Information Management and Marketing University of Western Australia [email protected] Abstract This paper reviews the range of traffic models, with particular attention to microsimulation. Although there are major types, there are so many hybrids that it is difficult to classify them all. The standard way of assigning traffic to a network is to find a static equilibrium from which no driver would be able to find a quicker route. This gives fairly good predictions of the link flows resulting from driver choices. Traffic is loaded on to shortest routes, times are modified by a speed-flow function, leading to reassignment to more routes, and the solution is iterated until all used routes between each origin-destination pair take equal time. An alternative is stochastic user equilibrium, taking explicit account of the variability of choice. Each route between an O-D pair that does not backtrack is given an initial share by logit distribution. Again, travel times are modified to take account of congestion, and there is a somewhat messy iterative process to reach equilibrium. Curiously, stochastic user equilibrium is as deterministic as ‘deterministic user equilibrium’. A criticism of equilibrium models is that the process of adjustment after a change to the network may be of more interest than the apparently stable outcome. Microsimulation has been used for small components of the network but recent models at the single vehicle level can simulate whole urban networks, using a great deal of computer power. One uses cellular automata, such that each cell in a spatial lattice is updated according to its own state and the states of its nearby neighbours at the previous time step.
    [Show full text]
  • Traffic Flow Theory and Characteristics with Applications for Intelligent Transportation System Technologies
    TRANSPORTATION RESEARCH RECORD No. 1510 Highway Operations, Capacity, and Traffic Control Traffic Flow Theory and Characteristics with Applications for Intelligent Transportation System Technologies A peer-reviewed publiCation of the Transportation Research Board TRANSPORTATION RESEARCH BOARD NATIONAL RESEARCH COUNCIL NATIONAL ACADEMY PRESS WASH_INGTON, D.C. 1995 Transportation Research Record 1510 Sponsorship of Transportation Research Record 1510 ISSN 0361-1981 ISBN 0-309-06203-9 GROUP 3--0PERATION, SAFETY, AND MAINTENANCE OF Price: $ 23.00 TRANSPORTATION FACILITIES Chairman: Jerome W. Hall, University of New Mexico Subscriber Category IV A highway operations, capacity, and traffic control Facilities and Operation Section Chairman: Jack L. Kay, JHK & Associates Printed in the United States of America Committee on Traffic Flow Theory and Characteristics Chairman: Hani S. Mahmassani, University of Texas at Austin Secretary: James C. Williams, University of Texas Siamak (Sia) A. Ardekani, Rahim F. Benekohal, Gang-Len Chang, Gary A. Davis, Richard W. Denney, Jr., Nathan H. Gartner, Fred L. Hall, Benjami G. Heydecker, R. Jayakrishnan, Masao Kuwahara, Michael Kyte, John Leonard, Henry C. Lieu, David Maha/el, Carroll J. Messer, Abbas Mohaddes, Kyriacos C. Mouskos, Markos Papageorgiou, Ajay K. Rathi, Nagui M. Rouphail, Michael A. P. Taylor, Michel Van Aerde Transportation Research Board Staff Robert E. Spicher, Director, Technical Activities Richard A. Cunard, Engineer of Traffic and Operations Nancy A. Ackerman, Director, Reports and Editorial Services Sponsorship is indicated by a footnote at the end of each paper. The organizational units, officers, and members are as of December 31, 1994. Transportation Research Record 1510 Contents Foreword v Another Look at A Priori Relationships Among Traffic Flow Characteristics 1 James H.
    [Show full text]
  • The Evaluation of Traffic Microsimulation Modelling
    Urban Transport 769 The evaluation of traffic microsimulation modelling D. O’Cinnéide & B. O’Mahony Traffic Research Unit, University College Cork, Ireland Abstract In recent years, traffic simulation software which models each vehicle on the network separately has been developed. These models are becoming more accessible due to the increases in computing power. However, the acceptance of microsimulation by traffic modellers has been far from enthusiastic. While modellers agree that conventional macroscopic software cannot represent dynamic phenomenon or many ITS applications, they are sceptical regarding the accuracy of microsimulation in modelling even conventional traffic systems. One reason is that there has been surprisingly little independent, objective evaluation of microsimulation models. In this paper, microsimulation modelling is evaluated based on indicators for accuracy, calibration requirements and model construction time by using the Paramics program to model various small traffic networks, including the Leeds Network developed by the European Union Smartest Project which has previously been used to evaluate other microscopic models from different European countries. A number of microscopic/macroscopic comparisons are also undertaken using the Transyt and Arcady programs. The main conclusions are that microsimulation is at least as accurate as macroscopic modelling and the only logical method of modelling dynamic effects on a traffic network. Microsimulation was found to require additional model construction time and input data for calibration. The importance of providing a list of assumptions used and changes to default parameters made with every traffic model is highlighted as is the importance of using multiple model outputs to aid model calibration and validation. Keywords: microsimulation, Paramics, evaluation, traffic modelling.
    [Show full text]
  • Traffic Congestion And
    INSTITUTE OF TRANSPORTATION ENGINEERS A TOOLBOX FOR ALLEVIATING TRAFFIC CONGESTION AND ENCHANCING MOBILITY DOT/FHWA 150240 A TOOLBOX FOR ALLEVIATING TRAFFIC CONGESTION AND ENHANCING MOBILITY Institute of Transportation Engineers Prepared by Michael D. Meyer, Ph.D., P.E. Georgia Institute of Technology The Institute of Transportation Engineers published the first edition of&e Toolbox in 1989. Thii edition was one of the first efforts to develop a comprehensive summary of all the tools available to “solve” the urban con- gestion problem.We have learned much since 1989, and much has happened in the way of how we look at the urban transportation system and the types of strategies that can now be considered in a toolbox. Perhaps most dramatically, we are now seeing the initial application of advanced electronic technologies to better manage the transportation system. Known as intelligent transportation system (ITS) technologies, these tools are laying the foundation for the management of system operations that will be the basic component of many urban areas’ transportation strategy in the not-too-distant future. In addition to ITS, there are several other tools discussed in this edition that are not found in the earlier ver- sion. These include: nonmotorized transportation, transit-oriented development and urban design, traffic calming, freight movement, congestion pricing, intermodal terminals, and multimodal corridor investment. The remaining sections from the 1989 edition have been greatly expanded and updated. In many cases, the original chapters have been kept largely intact with new material added.The authors of the original chapters were: Chapter 1, Dr. Michael Meyer; Chapter 2, Thomas E Humphrey; Chapter 3, Dr.
    [Show full text]