View/Pedant3view?Method=Analysis&Db= Cell Death Via the Mitochondrial Apoptotic Pathway
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Races of Maize in Bolivia
RACES OF MAIZE IN BOLIVIA Ricardo Ramírez E. David H. Timothy Efraín DÍaz B. U. J. Grant in collaboration with G. Edward Nicholson Edgar Anderson William L. Brown NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Publication 747 Funds were provided for publication by a contract between the National Academythis of Sciences -National Research Council and The Institute of Inter-American Affairs of the International Cooperation Administration. The grant was made the of the Committee on Preservation of Indigenousfor Strainswork of Maize, under the Agricultural Board, a part of the Division of Biology and Agriculture of the National Academy of Sciences - National Research Council. RACES OF MAIZE IN BOLIVIA Ricardo Ramírez E., David H. Timothy, Efraín Díaz B., and U. J. Grant in collaboration with G. Edward Nicholson Calle, Edgar Anderson, and William L. Brown Publication 747 NATIONAL ACADEMY OF SCIENCES- NATIONAL RESEARCH COUNCIL Washington, D. C. 1960 COMMITTEE ON PRESERVATION OF INDIGENOUS STRAINS OF MAIZE OF THE AGRICULTURAL BOARD DIVISIONOF BIOLOGYAND AGRICULTURE NATIONALACADEMY OF SCIENCES- NATIONALRESEARCH COUNCIL Ralph E. Cleland, Chairman J. Allen Clark, Executive Secretary Edgar Anderson Claud L. Horn Paul C. Mangelsdorf William L. Brown Merle T. Jenkins G. H. Stringfield C. O. Erlanson George F. Sprague Other publications in this series: RACES OF MAIZE IN CUBA William H. Hatheway NAS -NRC Publication 453 I957 Price $1.50 RACES OF MAIZE IN COLOMBIA M. Roberts, U. J. Grant, Ricardo Ramírez E., L. W. H. Hatheway, and D. L. Smith in collaboration with Paul C. Mangelsdorf NAS-NRC Publication 510 1957 Price $1.50 RACES OF MAIZE IN CENTRAL AMERICA E. -
Popped Secret: the Mysterious Origin of Corn Film Guide Educator Materials
Popped Secret: The Mysterious Origin of Corn Film Guide Educator Materials OVERVIEW In the HHMI film Popped Secret: The Mysterious Origin of Corn, evolutionary biologist Dr. Neil Losin embarks on a quest to discover the origin of maize (or corn). While the wild varieties of common crops, such as apples and wheat, looked much like the cultivated species, there are no wild plants that closely resemble maize. As the film unfolds, we learn how geneticists and archaeologists have come together to unravel the mysteries of how and where maize was domesticated nearly 9,000 years ago. KEY CONCEPTS A. Humans have transformed wild plants into useful crops by artificially selecting and propagating individuals with the most desirable traits or characteristics—such as size, color, or sweetness—over generations. B. Evidence of early maize domestication comes from many disciplines including evolutionary biology, genetics, and archaeology. C. The analysis of shared characteristics among different species, including extinct ones, enables scientists to determine evolutionary relationships. D. In general, the more closely related two groups of organisms are, the more similar their DNA sequences will be. Scientists can estimate how long ago two populations of organisms diverged by comparing their genomes. E. When the number of genes is relatively small, mathematical models based on Mendelian genetics can help scientists estimate how many genes are involved in the differences in traits between species. F. Regulatory genes code for proteins, such as transcription factors, that in turn control the expression of several—even hundreds—of other genes. As a result, changes in just a few regulatory genes can have a dramatic effect on traits. -
11 the Evolutionary Strategy of Claviceps
Pažoutová S. (2002) Evolutionary strategy of Claviceps. In: Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol and Cultural Impacts. White JF, Bacon CW, Hywel-Jones NL (Eds.) Marcel Dekker, New York, Basel, pp.329-354. 11 The Evolutionary Strategy of Claviceps Sylvie Pažoutová Institute of Microbiology, Czech Academy of Sciences Vídeòská 1083, 142 20 Prague, Czech Republic 1. INTRODUCTION Members of the genus Claviceps are specialized parasites of grasses, rushes and sedges that specifically infect florets. The host reproductive organs are replaced with a sclerotium. However, it has been shown that after artificial inoculation, C. purpurea can grow and form sclerotia on stem meristems (Lewis, 1956) so that there is a capacity for epiphytic and endophytic growth. C. phalaridis, an Australian endemite, colonizes whole plants of pooid hosts in a way similar to Epichloë and it forms sclerotia in all florets of the infected plant, rendering it sterile (Walker, 1957; 1970). Until now, about 45 teleomorph species of Claviceps have been described, but presumably many species may exist only in anamorphic (sphacelial) stage and therefore go unnoticed. Although C. purpurea is type species for the genus, it is in many aspects untypical, because most Claviceps species originate from tropical regions, colonize panicoid grasses, produce macroconidia and microconidia in their sphacelial stage and are able of microcyclic conidiation from macroconidia. Species on panicoid hosts with monogeneric to polygeneric host ranges predominate. 329 2. PHYLOGENETIC TREE We compared sequences of ITS1-5.8S-ITS2 rDNA region for 19 species of Claviceps, Database sequences of Myrothecium atroviride (AJ302002) (outgroup from Bionectriaceae), Epichloe amarillans (L07141), Atkinsonella hypoxylon (U57405) and Myriogenospora atramentosa (U57407) were included to root the tree among other related genera. -
The Fungi Constitute a Major Eukary- Members of the Monophyletic Kingdom Fungi ( Fig
American Journal of Botany 98(3): 426–438. 2011. T HE FUNGI: 1, 2, 3 … 5.1 MILLION SPECIES? 1 Meredith Blackwell 2 Department of Biological Sciences; Louisiana State University; Baton Rouge, Louisiana 70803 USA • Premise of the study: Fungi are major decomposers in certain ecosystems and essential associates of many organisms. They provide enzymes and drugs and serve as experimental organisms. In 1991, a landmark paper estimated that there are 1.5 million fungi on the Earth. Because only 70 000 fungi had been described at that time, the estimate has been the impetus to search for previously unknown fungi. Fungal habitats include soil, water, and organisms that may harbor large numbers of understudied fungi, estimated to outnumber plants by at least 6 to 1. More recent estimates based on high-throughput sequencing methods suggest that as many as 5.1 million fungal species exist. • Methods: Technological advances make it possible to apply molecular methods to develop a stable classifi cation and to dis- cover and identify fungal taxa. • Key results: Molecular methods have dramatically increased our knowledge of Fungi in less than 20 years, revealing a mono- phyletic kingdom and increased diversity among early-diverging lineages. Mycologists are making signifi cant advances in species discovery, but many fungi remain to be discovered. • Conclusions: Fungi are essential to the survival of many groups of organisms with which they form associations. They also attract attention as predators of invertebrate animals, pathogens of potatoes and rice and humans and bats, killers of frogs and crayfi sh, producers of secondary metabolites to lower cholesterol, and subjects of prize-winning research. -
Claviceps Purpurea and Its Host Secale Cereale
Oeser et al. BMC Genomics (2017) 18:273 DOI 10.1186/s12864-017-3619-4 RESEARCH ARTICLE Open Access Cross-talk of the biotrophic pathogen Claviceps purpurea and its host Secale cereale Birgitt Oeser1†, Sabine Kind1†, Selma Schurack1, Thomas Schmutzer2, Paul Tudzynski1 and Janine Hinsch1* Abstract Background: The economically important Ergot fungus Claviceps purpurea is an interesting biotrophic model system because of its strict organ specificity (grass ovaries) and the lack of any detectable plant defense reactions. Though several virulence factors were identified, the exact infection mechanisms are unknown, e.g. how the fungus masks its attack and if the host detects the infection at all. Results: We present a first dual transcriptome analysis using an RNA-Seq approach. We studied both, fungal and plant gene expression in young ovaries infected by the wild-type and two virulence-attenuated mutants. We can show that the plant recognizes the fungus, since defense related genes are upregulated, especially several phytohormone genes. We present a survey of in planta expressed fungal genes, among them several confirmed virulence genes. Interestingly, the set of most highly expressed genes includes a high proportion of genes encoding putative effectors, small secreted proteins which might be involved in masking the fungal attack or interfering with host defense reactions. As known from several other phytopathogens, the C. purpurea genome contains more than 400 of such genes, many of them clustered and probably highly redundant. Since the lack of effective defense reactions in spite of recognition of the fungus could very well be achieved by effectors, we started a functional analysis of some of the most highly expressed candidates. -
47 Section 3 Maize (Zea Mays Subsp. Mays)
SECTION 3 MAIZE (ZEA MAYS SUBSP. MAYS) 1. General Information Maize, or corn, is a member of the Maydeae tribe of the grass family, Poaceae. It is a robust monoecious annual plant, which requires the help of man to disperse its seeds for propagation and survival. Corn is the most efficient plant for capturing the energy of the sun and converting it into food, it has a great plasticity adapting to extreme and different conditions of humidity, sunlight, altitude, and temperature. It can only be crossed experimentally with the genus Tripsacum, however member species of its own genus (teosinte) easily hybridise with it under natural conditions. This document describes the particular condition of maize and its wild relatives, and the interactions between open-pollinated varieties and teosinte. It refers to the importance of preservation of native germplasm and it focuses on the singular conditions in its centre of origin and diversity. Several biological and socio-economic factors are considered important in the cultivation of maize and its diversity; therefore these are described as well. A. Use as a crop plant In industrialised countries maize is used for two purposes: 1) to feed animals, directly in the form of grain and forage or sold to the feed industry; and 2) as raw material for extractive industries. "In most industrialised countries, maize has little significance as human food" (Morris, 1998; Galinat, 1988; Shaw, 1988). In the European Union (EU) maize is used as feed as well as raw material for industrial products (Tsaftaris, 1995). Thus, maize breeders in the United States and the EU focus on agronomic traits for its use in the animal feed industry, and on a number of industrial traits such as: high fructose corn syrup, fuel alcohol, starch, glucose, and dextrose (Tsaftaris, 1995). -
THE PATTERN of GRAIN GROWTH WITHIN the EAR of WHEAT By
THE PATTERN OF GRAIN GROWTH WITHIN THE EAR OF WHEAT By H. M. RAWSON* and L. T. EVANS* [ManuScript received February 20, 1970] Summary In main ears of Triple Dirk wheat plants grown at a temperature of 21/16°C under natural daylight, grains in the second florets of the central spikelets maintained the highest growth rates (1· 66 mg/grain/day), those in the first florets of the basal spikelets the lowest rates. Sterilization of the basal one or two florets of the central spikelets before anthesis led to compensating increases in both grain weight and the numbers of grains set in other parts of the ear, in the two varieties examined. In one variety, Triple Dirk, under high light intensities, sterilization of the first or second florets of the central spikelets led to significant increases of up to 20%, in grain yield per ear, compensating grains being set in distal florets of the central spikelets and additional and heavier grains being formed at the top and bottom of the ear. Eighty-eight percent of the 14C assimilated by ears 15 days after anthesis was found in the grains at maturity, and was fairly uniformly distributed between spikelets. 14C assimilated by flag leaves, on the other hand, was distributed preferentially to the lower central spikelets, and to the second grains, and partial sterilization of the central spikelets greatly increased the proportion of 14C in the apical and basal spikelets. We conclude that the setting of grains in upper florets, and grain yield per ear, may be reduced by rapid development of grains from the first flowers to reach anthesis. -
Corn, Is It a Fruit, Vegetable Or Grain? by Anne-Marie Walker
Corn, Is it a Fruit, Vegetable or Grain? By Anne-Marie Walker Corn, Zea mays, belongs to the Poaceae family, and while eaten sometimes as a vegetable and sometimes as a grain, it is actually classified by botanists as a fruit, as are tomatoes, green peppers, cucumbers, zucchini and other squashes. Sweet corn is a variant in which the sugar in the fruit kernels turns from sugar to starch less slowly after harvest. When selecting a variety to plant in Marin, home gardeners need to remember that corn germinates best with soil temperatures of at least 60 -70°F. Accordingly, it is classified as a warm season crop that works best in full sun. Before planting, amend the soil with a blended all natural fertilizer (5-5-5) and direct seed covering with about 1 inch of soil. Because corn is wind pollinated, planting four short rows of plants (each about eight feet long) works well. Seeds can be planted every four inches and after three to four leaves appear, thinned to eight inches. When the plants are 12 inches tall, side dress with fertilizer or water with fish emulsion and seaweed product (4-1- 1). Each stalk has been bred to produce two ears, maybe three with optimal conditions. It is unnecessary to remove suckers and if you plant more than one variety, you need to isolate the varieties from each other to ensure maintaining the desirable characteristics; remember it is wind pollinated! A distance of 400 yards is recommended between varieties. Corn is ready to pick when the silk browns, the husk is still green and the kernels are full sized to the tip of the ear. -
Ergoline Alkaloids in Convolvulaceous Host Plants Originate from Epibiotic Clavicipitaceous Fungi of the Genus Periglandula
fungal ecology xxx (2011) 1e6 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Mini-review Ergoline alkaloids in convolvulaceous host plants originate from epibiotic clavicipitaceous fungi of the genus Periglandula Ulrike STEINERa, Eckhard LEISTNERb,* aInstitut fur€ Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Rheinische Friedrich Wilhelms-Universitat€ Bonn, Nussallee 9, 53115 Bonn, Germany bInstitut fur€ Pharmazeutische Biologie, Rheinische Friedrich Wilhelms-Universitat€ Bonn, Nussallee 6, 53115 Bonn, Germany article info abstract Article history: Ergoline (i.e., ergot) alkaloids are a group of physiologically active natural products Received 20 November 2010 occurring in the taxonomically unrelated fungal and plant taxa, Clavicipitaceae and Con- Revision received 7 April 2011 volvulaceae, respectively. The disjointed occurrence of ergoline alkaloids seems to Accepted 11 April 2011 contradict the frequent observation that identical or at least structurally related natural Available online - products occur in organisms with a common evolutionary history. This problem has now Corresponding editor: Fernando Vega been solved by the finding that not only graminaceous but also some dicotyledonous plants belonging to the family Convolvulaceae, such as Ipomoea asarifolia and Turbina corymbosa, Keywords: form close associations with ergoline alkaloid producing fungi, Periglandula ipomoeae and Clavicipitaceae Periglandula turbinae. These species belong to the newly established genus Periglandula Convolvulaceae within the Clavicipitaceae. The funguseplant associations are likely to be mutualistic Ergoline alkaloids symbioses. Ergot alkaloids ª 2011 Elsevier Ltd and The British Mycological Society. All rights reserved. Ipomoea asarifolia Periglandula Turbina corymbosa Introduction completely unrelated organisms such as bacteria and higher plants of the family Celastraceae (Pullen et al. 2003; Cassady Chemotaxonomy is a field at the interface between natural et al. -
Gibberella and Fusarium Ear Rots of Maize in Hawai'i
Plant Disease August 2014 PD-102 Gibberella and Fusarium Ear Rots of Maize in Hawai‘i Mark Dragich and Scot Nelson Department of Plant and Environmental Protection Sciences wo distinct ear rot diseases of By 2006 the value of the corn maize (corn, Zea mays L.) in industry in Hawai‘i had increased by Hawai‘iT are caused by similar plant over 13,000% compared with 40 years pathogens. The fungus Gibberella previous, and it has almost doubled zeae or its asexual stage, Fusarium again since then (Hawaii Annual Stat. graminearum, causes Gibberella Bull., Proctor et al. 2010). In 2012 ear rot of maize. Fusarium ear the total value of corn production in rot of maize, however, is caused Hawai‘i was nearly 250 million dollars by Fusarium verticillioides. This (Hawaii Annual Stat. Bull.). Under fungal pathogen is also known as certain weather conditions, however, F. moniliforme, F. proliferatum, large losses from ear rots can occur. and F. subglutinans as well as In this paper we discuss the patho- their sexual stages, which are dif- gens, symptoms they produce, and ferent mating types of Gibberella integrated management practices for fujikuroi. These diseases have a these diseases. worldwide distribution and are present in all climates where corn Pathogens is grown. They are of sporadic Gibberella ear rot Gibberella zeae is the sexual stage importance in Hawai‘i. However, (teleomorph) of the pathogen causing these ear rots are the most impor- Gibberella ear rot of corn. It is an as- tant problem facing the production and development of comycete fungus, which means it produces ascospores in new sweet and waxy corns in the tropics (J. -
Diversity Within the Entomopathogenic Fungal Species Metarhizium Flavoviride Associated with Agricultural Crops in Denmark Chad A
Keyser et al. BMC Microbiology (2015) 15:249 DOI 10.1186/s12866-015-0589-z RESEARCH ARTICLE Open Access Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark Chad A. Keyser, Henrik H. De Fine Licht, Bernhardt M. Steinwender and Nicolai V. Meyling* Abstract Background: Knowledge of the natural occurrence and community structure of entomopathogenic fungi is important to understand their ecological role. Species of the genus Metarhizium are widespread in soils and have recently been reported to associate with plant roots, but the species M. flavoviride has so far received little attention and intra-specific diversity among isolate collections has never been assessed. In the present study M. flavoviride was found to be abundant among Metarhizium spp. isolates obtained from roots and root-associated soil of winter wheat, winter oilseed rape and neighboring uncultivated pastures at three geographically separated locations in Denmark. The objective was therefore to evaluate molecular diversity and resolve the potential population structure of M. flavoviride. Results: Of the 132 Metarhizium isolates obtained, morphological data and DNA sequencing revealed that 118 belonged to M. flavoviride,13toM. brunneum and one to M. majus. Further characterization of intraspecific variability within M. flavoviride was done by using amplified fragment length polymorphisms (AFLP) to evaluate diversity and potential crop and/or locality associations. A high level of diversity among the M. flavoviride isolates was observed, indicating that the isolates were not of the same clonal origin, and that certain haplotypes were shared with M. flavoviride isolates from other countries. However, no population structure in the form of significant haplotype groupings or habitat associations could be determined among the 118 analyzed M. -
Diversification of Ergot Alkaloids in Natural and Modified Fungi
Toxins 2015, 7, 201-218; doi:10.3390/toxins7010201 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Diversification of Ergot Alkaloids in Natural and Modified Fungi Sarah L. Robinson and Daniel G. Panaccione * Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-304-293-8819; Fax: +1-304-293-2960. Academic Editor: Christopher L. Schardl Received: 21 November 2014 / Accepted: 14 January 2015 / Published: 20 January 2015 Abstract: Several fungi in two different families––the Clavicipitaceae and the Trichocomaceae––produce different profiles of ergot alkaloids, many of which are important in agriculture and medicine. All ergot alkaloid producers share early steps before their pathways diverge to produce different end products. EasA, an oxidoreductase of the old yellow enzyme class, has alternate activities in different fungi resulting in branching of the pathway. Enzymes beyond the branch point differ among lineages. In the Clavicipitaceae, diversity is generated by the presence or absence and activities of lysergyl peptide synthetases, which interact to make lysergic acid amides and ergopeptines. The range of ergopeptines in a fungus may be controlled by the presence of multiple peptide synthetases as well as by the specificity of individual peptide synthetase domains. In the Trichocomaceae, diversity is generated by the presence or absence of the prenyl transferase encoded by easL (also called fgaPT1). Moreover, relaxed specificity of EasL appears to contribute to ergot alkaloid diversification. The profile of ergot alkaloids observed within a fungus also is affected by a delayed flux of intermediates through the pathway, which results in an accumulation of intermediates or early pathway byproducts to concentrations comparable to that of the pathway end product.