TCP and UDP Protocols

Total Page:16

File Type:pdf, Size:1020Kb

TCP and UDP Protocols TCP and UDP Protocols Table of Contents TCP / UDP ........................................................................................................................................ 2 TCP .................................................................................................................................................. 4 UDP ................................................................................................................................................. 5 Ports and Service Identifiers ........................................................................................................... 6 Protocols -1 ..................................................................................................................................... 8 Protocols -2 ................................................................................................................................... 10 Protocols -3 ................................................................................................................................... 12 ARP ................................................................................................................................................ 14 DHCP and BOOTP .......................................................................................................................... 16 DHCP Example ............................................................................................................................... 17 DHCP, BOOTP, and RARP Security Issues ...................................................................................... 19 ICMP Security Issues ..................................................................................................................... 21 Notices .......................................................................................................................................... 24 Page 1 of 24 TCP / UDP TCP / UDP Transport Control Protocol (TCP) • Connection-oriented protocol • Guaranteed information delivery; error recovery • Sequencing and acknowledgements • Good for: file transfer, email, web page requests User Datagram Protocol (UDP) • Connection-less oriented protocol • No guarantee of delivery; “best effort” • Speed advantages over TCP • Good for: audio / video streaming 135 **135 Let's take that next step and talk about the protocols of TCP and UDP. In TCP what we have is a connection oriented protocol. We want to send lots of data. It could be out of sequence. So, therefore what we'll do is we'll create sequence numbers on that. And you can acknowledge those sequence numbers as we go along. It's good for things like file transfer, email, and web page requests. What happens if we have something that's not nearly as sensitive and not as time sensitive, and we just want to hope that it gets there? Well, then we can use UDP. This is a Page 2 of 24 connectionless oriented protocol that is like-- they call it best effort. It's what I call send and pray. When you talk to a DNS server and say resolve this for me, and it responds back to you, well if it doesn't make it because it's such a little tiny request, if it doesn't make it, you'll configure your host so that you have a secondary DNS server that you can go to it. Now, it can be used for audio and video streaming if the upper layer application protocols that you're using all have error correction built into them because UDP does not do error correction. But the nice thing about streaming video is if you miss just a couple of packets, all you're going to get is one of those jerks in there. And that's going to be the only thing that actually happens in that whole thing. Now, if you're losing a lot of packets, and you don't have good error correction on this, then you actually are going to lose your stream. And you're going to have to re-associate. But that little piece of video that you missed when I was here to the one where I was here, and you missed that intervening time, really didn't mess up the conversation for you. Page 3 of 24 TCP TCP Transport Control Protocol (TCP) Open Communication Open Ack Data Data Ack Close Communication Close Ack Three-way handshake (TCP Flags) SYN SYN-ACK ACK 136 **136 So, let's look at TCP for a second. When we talk about TCP, we communicate back and forth. And we start this conversation where I say, "I'd like to speak with you." And you acknowledge that I'd like to speak with you. You'd like to speak with me and I acknowledge that you'd like to speak with me. We set up a connection between us and then we do transfer back and forth using the flags of TCP, which are SYN and ACK. The reason why we call it a three- way handshake is because we condense that down to the first as synchronized, SYN. And the response back is SYN and ACK together. That's the only time that we actually put Page 4 of 24 two flags in a single packet. Any other time that we put more than-- two or more flags into a single packet, it is abuse of the protocol. It is not programmed for that. UDP UDP User Datagram Protocol (UDP) Send Data Receive Data 137 **137 UDP is send and receive. I send this out. I receive the data back. I don't even try. If I fail, I go on to another server. That's how and why we configure two DNS servers in case one is really busy. Page 5 of 24 Ports and Service Identifiers Ports and Service Identifiers TCP and UDP use “ports” aka “service identifiers” Managed by the Internet Assigned Numbers Authority (IANA) Ports are numbered 1 through 65535 • 0 – 1023 – “Well-known” ports, assigned to specific services (e.g., DNS = 53, SSH = 22, SMTP = 25) • 1024 – 49151 – “Registered” ports, unassigned, but can be registered through IANA by developers • 49152 – 65535 – “Dynamic” ports, unassigned and open for anyone to use Ephemeral Ports – port used for the source port when establishing a connection • Linux kernels use 32768-61000 • Windows uses 1025-5000 138 **138 The services are going to listen on particular ports. The most important ports we call the well- known ports, sometimes called the service ports, are from zero to ten twenty-three. And there is a port zero, we just don't use it that often. Now, that's well-known ports. Up above that from ten twenty-four to four nine five-- four nine one five one, we have what are called the registered ports, which are unassigned but people use them by convention for a whole bunch of different items out there, some for a gaming server, some for synchronous Page 6 of 24 communication. But they're also restricted use. The last set, what I call the dynamic ports, are above one forty-nine, one fifty-two all the way up to the top. Those are used most of the time for client communications. So, when I, as an end user-- remember my two end users back here for Google? When they came to me and said, "Hey, I want to talk to Google." What I said is, "Well, what's your port?" And they said, "Well, it's twenty thousand." Well, I know that that's probably some upper level ephemeral port. They can use anything that they want. That's fine. I'm going to map the conversation back to them. They should be using four nine one five two and above. So, I get that communication, and I go out and I say, "Okay, here's that communication." What you know as a server on your side Google is that when you come back to me, you know that this firewall is going to hold up in that connection and allow you to pass it through because you came back on the port. You answered back on the port that was requested. And it will map it back to that host. And then that host will go ahead and map that to the application that they are actually using at that moment in time. So, four nine one five two is where you see most of the communication from end user's workstations coming from, up and above there. Now you could call this the ephemeral ports. It's a little bit different. These are Page 7 of 24 used for source ports when establishing some sort of connection. Linux users thirty-two thousand. On Windows uses above ten twenty-five. I think it's for them all to be using above forty-nine one fifty-two. Protocols -1 Protocols -1 ARP Address resolution protocol OSI Layer 2, IP address to MAC address translation RARP Reverse address resolution protocol OSI Layer 2, MAC address to IP address translation PPP Point-to-point protocol OSI Layer 2, encapsulating protocol for sending data ICMP Internet control message protocol OSI Layer 3, diagnostic information and control messages IGMP Internet group management protocol OSI Layer 3, multicast transmissions and control DHCP Dynamic host configuration protocol OSI Layer 3, provides network settings to hosts 139 **139 Let's look at some of the protocols here that we've been talking about. But I wanted to roll them all up and say what they're good for. If you're a good WireShark player in the game-- remember I talked about using WireShark? If you're a good player in the game when it comes to WireShark, you will look for these protocols in the stack Page 8 of 24 and actually see. You can actually see. You can actually download-- there's a bunch of packet capture libraries that are out there that you can actually look at these protocols. And they'll give you each one of them. So, when we talk about these protocols, sometimes they're also called services. It depends on how you're looking at it. Like for instance ARP is the protocol. It's the address resolution protocol. But all the way at the bottom, DHCP is the dynamic host configuration protocol. But usually what we call it is the IP addressing service.
Recommended publications
  • Recent Results in Network Mapping: Implications on Cybersecurity
    Recent Results in Network Mapping: Implications on Cybersecurity Robert Beverly, Justin Rohrer, Geoffrey Xie Naval Postgraduate School Center for Measurement and Analysis of Network Data (CMAND) July 27, 2015 DHS S&T Cyber Seminar R. Beverly, J. Rohrer, G. Xie (NPS) Advances in Network Mapping DHS S&T Cyber Seminar 1 / 50 Intro Outline 1 Intro 2 Background 3 Project 4 Recent Advances 5 Future R. Beverly, J. Rohrer, G. Xie (NPS) Advances in Network Mapping DHS S&T Cyber Seminar 2 / 50 Intro CMAND Lab CMAND Lab @ NPS Naval Postgraduate School Navy’s Research University Located in Monterey, CA '1500 students, military officers, foreign military, DoD civilians Center for Measurement and Analysis of Network Data 3 NPS professors, 2 NPS staff 1 PhD student, rotating cast of ∼ 5-8 Master’s students Collaborators: CAIDA, ICSI, MIT, Akamai, Cisco, Verisign, ::: Focus: Large-scale network measurement and data mining Network architecture and security R. Beverly, J. Rohrer, G. Xie (NPS) Advances in Network Mapping DHS S&T Cyber Seminar 3 / 50 Intro Output Select Recent Publications (bold DHS-supported): 1 Luckie, Beverly, Wu, Allman, Claffy, “Resilience of Deployed TCP to Blind Off-Path Attacks,” in ACM IMC 2015 2 Huz, Bauer, Claffy, Beverly, “Experience in using Mechanical Turk for Network Measurement,” in ACM C2BID 2015 3 Beverly, Luckie, Mosley, Claffy, “Measuring and Characterizing IPv6 Router Availability,” in PAM 2015 4 Beverly, Berger, “Server Siblings: Identifying Shared IPv4/IPv6 Infrastructure,” in PAM 2015 5 Alt, Beverly, Dainotti, “Uncovering Network Tarpits with Degreaser,” in ACSAC 2014 6 Craven, Beverly, Allman, “A Middlebox-Cooperative TCP for a non End-to-End Internet,” in ACM SIGCOMM 2014 7 Baltra, Beverly, Xie, “Ingress Point Spreading: A New Primitive for Adaptive Active Network Mapping,” in PAM 2014 R.
    [Show full text]
  • A Disjunctive Internet Cartographer∗
    DisCarte: A Disjunctive Internet Cartographer∗ Rob Sherwood Adam Bender Neil Spring University of Maryland University of Maryland University of Maryland [email protected] [email protected] [email protected] ABSTRACT 1. INTRODUCTION Internet topology discovery consists of inferring the inter-router Knowledge of the global topology of the Internet allows network connectivity (“links”) and the mapping from IP addresses to routers operators and researchers to determine where losses, bottlenecks, (“alias resolution”). Current topology discovery techniques use failures, and other undesirable and anomalous events occur. Yet TTL-limited “traceroute” probes to discover links and use direct this topology remains largely unknown: individual operators may router probing to resolve aliases. The often-ignored record route know their own networks, but neighboring networks are amorphous (RR) IP option provides a source of disparate topology data that clouds. The lack of precise global topology information hinders could augment existing techniques, but it is difficult to properly network diagnostics [42, 24, 15, 17], inflates IP path lengths [10, align with traceroute-based topologies because router RR imple- 39, 36, 43], reduces the accuracy of Internet models [46, 25, 16], mentations are under-standardized. Correctly aligned RR and trace- and encourages overlay networks to ignore the underlay [2, 27]. route topologies have fewer false links, include anonymous and Because network operators rarely publish their topologies, and hidden routers, and discover aliases for routers that do not respond the IP protocols have little explicit support for exposing the In- to direct probing. More accurate and feature-rich topologies ben- ternet’s underlying structure, researchers must infer the topology efit overlay construction and network diagnostics, modeling, and from measurement and observation.
    [Show full text]
  • Edge-Aware Inter-Domain Routing for Realizing Next-Generation Mobility Services∗
    Edge-Aware Inter-Domain Routing for Realizing Next-Generation Mobility Services∗ Shreyasee Mukherjee, Shravan Sriram, Dipankar Raychaudhuri WINLAB, Rutgers University, North Brunswick, NJ 08902, USA Email: fshreya, sshravan, [email protected] Abstract—This work describes a clean-slate inter-domain rout- Emerging Internet requirements have motivated several ing protocol designed to meet the needs of the future mobile clean-slate Internet design projects such as Named Data Net- Internet. In particular, we describe the edge-aware inter-domain work (NDN) [4], XIA [5] and MobilityFirst [6]. Previously routing (EIR) protocol which provides new abstractions of aggregated-nodes (aNodes) and virtual-links (vLinks) for express- published works on these architectures have addressed mobil- ing network topologies and edge network properties necessary ity requirements at the intra-domain level [7], [8], but support to address next-generation mobility related routing scenarios for end-to-end mobility services across multiple networks which are inadequately supported by the border gateway protocol remains an important open problem. In this paper, we first (BGP) in use today. Specific use-cases addressed by EIR include motivate the need for clean-slate approaches to inter-domain, emerging mobility service scenarios such as multi-homing across WiFi and cellular, multipath routing over several access networks, and then describe the key features of a specific new design and anycast access from mobile devices to replicated cloud called EIR (edge-aware inter-domain routing) intended to services. Simulation results for protocol overhead are presented meet emerging requirements. The proposed protocol provides for a global-scale Caida topology, leading to an identification new abstractions for expressing network topology and edge of parameters necessary to obtain a good balance between network properties necessary to support a full range of mo- overhead and routing table convergence time.
    [Show full text]
  • A Technique for Network Topology Deception
    A Technique for Network Topology Deception Samuel T. Trassare Robert Beverly David Alderson Naval Postgraduate School Naval Postgraduate School Naval Postgraduate School Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Civilian and military networks are continually topological deception may provide the perception of a network probed for vulnerabilities. Cyber criminals, and autonomous that resembles, or completely disguises, the underlying true botnets under their control, regularly scan networks in search network by varying attributes such as nodes, node count or of vulnerable systems to co-opt. Military and more sophisticated the redundancy and diversity of links between nodes. adversaries may also scan and map networks as part of re- connaissance and intelligence gathering. This paper focuses on For instance, the outward topology presented to an attacker adversaries attempting to map a network’s infrastructure, i.e., may be chosen to protect high-value nodes or links within the the critical routers and links supporting a network. We develop network. Thus we may cause the adversary to take specific a novel methodology, rooted in principles of military deception, actions, such as attacking highly fault-tolerant nodes that for deceiving a malicious traceroute probe and influencing the appear weak, or avoiding weak nodes that appear highly structure of the network as inferred by a mapping adversary. Our Linux-based implementation runs as a kernel module at fault-tolerant. The methodology accommodates any true input a border router to present a deceptive external topology. We topology, while the deceptive topology can be modified easily construct a proof-of-concept test network to show that a remote and frequently to further confound the adversarys efforts to adversary using traceroute to map a defended network can be identify vulnerabilities in the network infrastructure.
    [Show full text]
  • Benchmarking Virtual Network Mapping Algorithms Jin Zhu University of Massachusetts Amherst
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarWorks@UMass Amherst University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2012 Benchmarking Virtual Network Mapping Algorithms Jin Zhu University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Systems and Communications Commons Zhu, Jin, "Benchmarking Virtual Network Mapping Algorithms" (2012). Masters Theses 1911 - February 2014. 970. Retrieved from https://scholarworks.umass.edu/theses/970 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. VNMBENCH: A BENCHMARK FOR VIRTUAL NETWORK MAPPING ALGORITHMS A Thesis Presented by JIN ZHU Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING September 2012 Electrical and Computer Engineering VNMBENCH: A BENCHMARK FOR VIRTUAL NETWORK MAPPING ALGORITHMS A Thesis Presented by JIN ZHU Approved as to style and content by: Tilman Wolf, Chair Weibo Gong, Member Aura Ganz, Member C.V.Hollot, Department Head Electrical and Computer Engineering ABSTRACT VNMBENCH: A BENCHMARK FOR VIRTUAL NETWORK MAPPING ALGORITHMS September 2012 Jin Zhu B.E, NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS M.S, UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Tilman Wolf The network architecture of the current Internet cannot accommodate the deployment of novel network-layer protocols. To address this fundamental problem, network virtualization has been proposed, where a single physical infrastructure is shared among different virtual network slices.
    [Show full text]
  • Service Dependency Analysis Via TCP/UDP Port Tracing
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2015-06-01 Service Dependency Analysis via TCP/UDP Port Tracing John K. Clawson Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Industrial Technology Commons BYU ScholarsArchive Citation Clawson, John K., "Service Dependency Analysis via TCP/UDP Port Tracing" (2015). Theses and Dissertations. 5479. https://scholarsarchive.byu.edu/etd/5479 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Service Dependency Analysis via TCP/UDP Port Tracing John K. Clawson A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Joseph J. Ekstrom, Chair Derek L. Hansen Kevin B. Tew School of Technology Brigham Young University June 2015 Copyright © 2015 John K. Clawson All Rights Reserved ABSTRACT Service Dependency Analysis via TCP/UDP Port Tracing John K. Clawson School of Technology, BYU Master of Science Enterprise networks are traditionally mapped via layers two or three, providing a view of what devices are connected to different parts of the network infrastructure. A method was developed to map connections at layer four, providing a view of interconnected systems and services instead of network infrastructure. This data was graphed and displayed in a web application. The information proved beneficial in identifying connections between systems or imbalanced clusters when troubleshooting problems with enterprise applications.
    [Show full text]
  • The ISO OSI Reference Model
    TheThe ISOISO OSIOSI ReferenceReference ModelModel Overview: OSI services Physical layer Data link layer Network layer Transport layer Session layer Presentation layer Application layer 3-1 Copyright © 2001 Trevor R. Grove OverviewOverview • Formal framework for computer-to- computer communications • Standardized by ISO • Layered organization: – services: what the layers do – interfaces: how to access (use) the services – protocols: private peer-to-peer messages • References: – Tanenbaum: Ch 1.3, 1.4, 1.6, 2.2, 2.4, 2.5, 3.1, 3.6, 5.1, 5.2, 5.4, 6.1, 6.2 – Kurose & Ross: Ch 5.1, 5.8, 5.9.2, 5.9, 5.10, 4.1, 4.2, 4.6, 5.6, 8.5, 3.1.1, 2.1.1, 2.1.2 3-2 Copyright © 2001 Trevor R. Grove TheThe bigbig picturepicture (Tanenbaum, pg 29) 3-3 Copyright © 2001 Trevor R. Grove ServicesServices •A service: – is a set of functions provided by a layer to its above layer – defines the operations a layer can perform on behalf of its users – service definition does not say how these operations are implemented • A protocol: – is a set of rules governing the format and meaning of the frames, packets or messages exchanged by the peer entities within a layer – implements a service •So: – any protocol that implements a given service can be used where required • network products & systems can change protocols at will provided the service definitions do not change 3-4 Copyright © 2001 Trevor R. Grove continued... • Functional aspects of OSI services: – connection-oriented (CO) vs. connectionless (CL) • two varieties of CO services: message stream and byte stream – reliable vs.
    [Show full text]
  • Technical Report CL-TR-MAP-V01-160630
    CableLabs® Technical Reports Mapping of Address and Port (MAP) Technical Report CL-TR-MAP-V01-160630 RELEASED Notice This CableLabs technical report is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. You may download, copy, distribute, and reference the documents herein only for the purpose of developing products or services in accordance with such documents, and educational use. Except as granted by CableLabs in a separate written license agreement, no license is granted to modify the documents herein (except via the Engineering Change process), or to use, copy, modify or distribute the documents for any other purpose. This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. To the extent this document contains or refers to documents of third parties, you agree to abide by the terms of any licenses associated with such third-party documents, including open source licenses, if any. Cable Television Laboratories, Inc. 2016 CL-TR-MAP-V01-160630 CableLabs® DISCLAIMER This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein. Any use or reliance on the information or opinion in this document is at the risk of the user, and CableLabs and its members shall not be liable for any damage or injury incurred by any person arising out of the completeness, accuracy, or utility of any information or opinion contained in the document.
    [Show full text]
  • Intrusion Detection Using Network Mapping Tool
    INTRUSION DETECTION USING NETWORK MAPPING TOOL Ms. Priya P. Ravale Ms.Shrutali V. Narkar Lecturer Lecturer I.T.Dept I.T Dept W.I.T.Solapur. Solapur University W.I.T.Solapur Solapur University [email protected] [email protected] Abstract -This paper introduces a prototype particular, managing network security is almost network mapping tool that can be used along with impossible without knowledge of network topology. intrusion detection systems to provide, in real-time, a Deploying network sensors and defensive tools, such comprehensive picture of network topology. This as firewalls, cannot be done effectively without software tool can generate descriptions for both knowing where these components must be positioned. physical and logical connectivity of network Furthermore, existing Intrusion Detection components. It also provides positive identification of Systems (IDSs) can detect a number of attacks, but the operating systems running on the networked they also generate false positives. It would be therefore machines, as well as state and configuration helpful to provide additional information that can information about the hosts and their connectivity. assist an analyst in correctly determining the nature of We present the network mapping technique which is an attack (or concluding that no such attack is in suitable for mapping a large network & also for progress) hacking. This scheme allows system administrators to For example, in indicating the likelihood that an attack scan large networks to see which hosts are up and is genuine or possibly the result of a what services are running. Network mapping usually misconfiguration.One of the problems with current outputs a list of interesting ports with each ports IDSs is that they do not provide sufficient information number and protocol.
    [Show full text]
  • Network Drive Mapping, Sharing,Testing and an Implementation by Writing a Program to Retrieve the Data File from a Network Drive of Another Computer
    NETWORK DRIVE MAPPING, SHARING,TESTING AND AN IMPLEMENTATION BY WRITING A PROGRAM TO RETRIEVE THE DATA FILE FROM A NETWORK DRIVE OF ANOTHER COMPUTER. BY SAKIL AHMED ID: 102­33­205 This Report Presented in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Electrical and Electronics Engineering. Supervised By DR. M. SHAMSUL ALAM Professor and Dean Faculty of Engineering Daffodil International University Co­ Supervised By M. AKHTER UZ ZAMAN Assistant Professor Department of EEE Daffodil International University DAFFODIL INTERNATIONAL UNIVERSITY DHAKA, BANGLADESH SEPTEMBER 2014 ©Daffodil International University APPROVAL This Project Report entitled “NETWORK DRIVE MAPPING, SHARING,TESTING AND AN IMPLEMENTATION BY WRITING A PROGRAM TO RETRIEVE THE DATA FILE FROM A NETWORK DRIVE OF ANOTHER COMPUTER.” By Sakil Ahmed has been submitted to the department of Electrical and Electronics Engineering of Daffodil International University in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronics Engineering. Board of Examiners DR. M. SHAMSUL ALAM Dean & Chairman Professor and Dean Faculty of Engineering Daffodil International University Prof. DR. MD. FAYZUR RAHMAN Internal Professor and Head Department of Electrical and Electronics Engineering Daffodil International University i ©Daffodil International University DECLARATION I hereby declare that, this project has been done by me under the supervision of, Professor Dr. M. Shamsul Alam, Dean, Faculty of Engineering, Daffodil International University & co­ supervision of M. Akhter Uz Zaman, Assistant Professor, Department of Electrical and Electronics Engineering, Daffodil International University. I also declare that neither this project nor any part of this project has been submitted elsewhere for award of any degree or diploma.
    [Show full text]
  • Mapping and Identifying Misplaced Devices on a Network by Use
    DEGREE PROJECT FOR MASTER OF SCIENCE IN ENGINEERING: COMPUTER SECURITY Mapping and identifying misplaced devices on a network by use of metadata Edward Fenn | Eric Fornling Blekinge Institute of Technology, Karlskrona, Sweden 2017 Supervisor: Abbas Cheddad, Department of Computer Science and Engineering, BTH Abstract Context. Network placement of devices is an issue of operational security for most companies today. Since a misplaced device can compromise an entire network and in extension, a company, it is essential to keep track of what is placed where. Knowledge is the key to success, and knowing your network is required to make it secure. Large networks however may be hard to keep track of, since employees can connect or unplug devices and make it hard for the administrators to keep updated on the network at all times. Objectives. This analysis focuses on the creation of an analysis method for network mapping based on metadata. This analysis method is to be implemented in a tool that automatically maps a network based on specific metadata attributes. The motivation and goal for this study is to create a method that will improve network mapping with regard to identifying misplaced devices, and to achieve a better understanding of the impact misplaced systems can have on a network. Method. The method for analyzing the metadata was manually checking the network metadata that was gathered by Outpost24 AB’s proprietary vulnerability scanner. By analyzing this metadata, certain attributes were singled out as necessary for the identification. These attributes were then implemented in a probability function that based on the information determines the device type.
    [Show full text]
  • Clumps, Hoops, and Bubbles How Akamai Maps the Net Compressed
    The National Security Agency’s Review of Emerging Technologies 6 £n Î U Óä£ä Clumps, Hoops, and Bubbles How Akamai Maps the Net Compressed Sensing and Network Monitoring Revealing Social Networks of Spammers Challenges in Internet Geolocation NSA’s Review of Emerging Technologies The Letter from the Editor Next Wave 7KLV LVVXH RI 7KH 1H[W :DYH LV ODUJHO\ GHULYHG IURP WDONV JLYHQ DW WKH DQG 1HWZRUN 0DSSLQJ DQG 0HDVXUHPHQW &RQIHUHQFHV 100&V KHOG DW WKH /DERUDWRU\ IRU 7HOHFRPPXQLFDWLRQV 6FLHQFHV /76 LQ &ROOHJH 3DUN 0DU\ODQG 7KHVH FRQIHUHQFHV HYROYHG IURP WKH 1HW7RPR ZRUNVKRSV ,,9 ZKLFK JUHZ RXW RI UHVHDUFK RQ QHWZRUN WRPRJUDSK\ VSRQVRUHG E\ WKH ,QIRUPDWLRQ 7HFKQRORJ\ ,QGXVWU\ &RXQFLO ,7,& %\ LW EHFDPH REYLRXV WKDW D EURDGHU VFRSH ZDV QHHGHG WKDQ VWULFWO\ QHWZRUN WRPRJUDSK\ DQG WKH QDPH FKDQJH ZDV LQVWLWXWHG LQ 1HWZRUN WRPRJUDSK\ DQG PDSSLQJ DUH FORVHO\ UHODWHG ÀHOGV 7R H[SODLQ WKH GLIIHUHQFH EHWZHHQ WRPRJUDSK\ DQG PDSSLQJ KHUH DUH WZR VLPSOH GHÀQLWLRQV 1HWZRUN WRPRJUDSK\ LV WKH VWXG\ RI D QHWZRUN·V LQWHUQDO FKDUDFWHULVWLFV XVLQJ LQIRUPDWLRQ GHULYHG IURP HQGSRLQW GDWD 1HWZRUN PDSSLQJ LV WKH VWXG\ RI WKH SK\VLFDO FRQQHFWLYLW\ RI WKH ,QWHUQHW GHWHUPLQLQJ ZKDW VHUYHUV DQG RSHUDWLQJ V\VWHPV DUH UXQQLQJ DQG ZKHUH $ GHHSHU H[SODQDWLRQ RI WRPRJUDSK\ IROORZV )RU D ORQJHU GLVFXVVLRQ RI PDSSLQJ SOHDVH VHH WKH DUWLFOH ´0DSSLQJ 2XW )DVWHU 6DIHU 1HWZRUNVµ 1HWZRUN WRPRJUDSK\ LV JHQHUDOO\ RI WZR W\SHV³ERWK RI WKHP PDVVLYH LQYHUVH SUREOHPV 7KH ÀUVW W\SH XVHV HQGWRHQG GDWD WR HVWLPDWH OLQNOHYHO FKDUDFWHULVWLFV 7KLV IRUP RI WRPRJUDSK\ RIWHQ LV DFWLYH
    [Show full text]