Eleutherococcus Senticosus: Studies and Effects*

Total Page:16

File Type:pdf, Size:1020Kb

Eleutherococcus Senticosus: Studies and Effects* Vol.5, No.9, 1509-1515 (2013) Health http://dx.doi.org/10.4236/health.2013.59205 Eleutherococcus senticosus: Studies and effects* Aline Arouca, Dora Maria Grassi-Kassisse# Department of Structural and Functional Biology, Laboratory of Stress Study, Institute of Biology, University of Campinas, Campinas, Brazil; #Corresponding Author: [email protected], [email protected] Received 13 June 2013; revised 14 July 2013; accepted 19 August 2013 Copyright © 2013 Aline Arouca, Dora Maria Grassi-Kassisse. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT ture. Ginseng is one of the most popular herbal sup- Keywords: Eleutherococcus senticosus; Ginseng; plements in the world. It is a plant widely used in Eleutherosides; Ciwujianosides folk and traditional medicines for cardiovascular, immune, nervous and endocrine systems, and according to the researchers, it has the ability to 1. INTRODUCTION increase the non-specific resistance state, which Eleutherococcus senticosus, world widely known as characterizes it as an adaptogenic substance. Acanthopanax senticosus (Rupr. et Maxim), belongs to There are different species of ginseng, such as the Araliaceae plant family, as well as other types of gin- the American, Chinese, Korean and Japanese seng (Latin name), a generic term given to all species of ginseng; the Korean species (Panax ginseng) is Panax [1]. It is also known as Siberian or Russian ginseng, being used for thousands of years as a tonic, ciwujia, eleuthero, eleuthero ginseng, touch-me-not and prophylactic and “restorative” agent, with power- devil’s shrub [2,3]. ful antioxidant properties. For a long time, its Ginseng is one of the most popular herbal supplements use was empirical, because people used to beli- in the world [2]. It is a widely used plant in folk and tra- eve that it was a panacea that promoted longe- ditional medicines for the cardiovascular, immune, ner- vity, with beneficial effects for the treatment of vous, and endocrine systems, and according to the resear- physical fatigues. Nowadays, the active compo- chers Brekhman & Dardymov (1969) [4], it has the ability nents of Eleutherococcus senticosus are well to increase the non-specific resistance state, which charac- described, however, there are no data on the terizes it as an adaptogenic substance. quantity of a certain class of these secondary There are other species of ginseng, such as the Ame- compounds produced in each species. Although rican, Chinese, Korean and Japanese ginseng [5]; the Ko- the Eleutherococcus senticosus extract may con- rean species (Panax ginseng) is being used for thousands tain several substances, including vitamins, mi- of years as a tonic, prophylactic and “restorative” agent nerals, cellulose, and ethanol, the substances (3), with powerful antioxidant properties [6]. For a long responsible for inducing various physiological time, its use was empirical, because people used to believe responses are the eleutherosides (in the root) it was a panacea that promoted longevity, with beneficial and ciwujianosides (in the leaf). As Eleutheroco- effects for the treatment of physical fatigue [7]. ccus senticosus receives great attention by show- The use of Panax as a source of raw materials for phar- ing that its active components can provide protec- maceuticals was very expensive for many years [2,5]. tion against oxidative stress, among other bene- Therefore, a group of Russian researchers looked for al- fits, contributing to health and the prevention ternatives, and after the discovery, many years later, at the and treatment of diseases, such as diabetes, can- end of 1950, Eleutherococcus senticosus (ES) was recog- cer, cardiovascular disease and inflammation. nized as a new medicinal plant [2,3]. Despite having been The purpose of this article is to describe the main, described only in 1950, Eleutherococcus senticosus is a adverse and toxicological effects of Eleuthero- plant used by the Chinese for over 2000 years. Some re- coccus senticosus recently related in the litera- ports describe its use as a medicinal remedy for the treat- ment of infections, resistance to fatigue and for immuno- *This study was supported by CAPES. logical improvement [8]. Copyright © 2013 SciRes. OPEN ACCESS 1510 A. Arouca, D. M. Grassi-Kassisse / Health 5 (2013) 1509-1515 In 1982, Baranov [9] concluded that the chronic admi- niferaldehyde. These precursors have shown a significant nistration of Eleutherococcus senticosus was more advan- antioxidant activity [15]. tageous when compared to Panax, because it does not Although the Eleutherococcus senticosus extract may cause arousal in patients. It has a more intense protective contain several substances, including vitamins, minerals, effect on the immune system; in addition, it does not lead cellulose and ethanol [14], the substances responsible for to the development of a similar stress syndrome. The inducing various physiological responses are the eleuthe- seasonality influences the effects of these two types of rosides (in the root) and ciwujianosides (in the leaf) [1]. ginseng, but there is not much variation in Eleutheroco- ccus senticosus (ES) [3]. 3. MAIN EFFECTS OF ES was recently included in the European Pharmaco- ELEUTHEROCOCCUS SENTICOSUS poeia as a medicine derived from plants and it is, therefore, Eleutherococcus senticosus, as well as Panax ginseng, suitable for use in traditional herbal medicines and asso- seems to have a stimulating effect on the metabolism of ciations [10]. substrates, as it significantly alters the mobilization and The 1994 DSHEA (Dietary Supplement Health and utilization of carbohydrates and fatty acids. Since the Education Act) regulation allows a direct commercializa- metabolism of substrates is essential, different types of tion of ES as a supplement for consumption in the United ginseng can have ergogenic effect [5]. Table 1 shows se- States without the regulation of the FDA (Food and Drug veral studies performed in humans, using a supplemen- Administration) [11]. tation made from ES, among other types of ginseng. Ac- 2. ACTIVE COMPONENTS OF cording to the studies, we may observe that the acute ELEUTHEROCOCCUS SENTICOSUS supplementation has no effect on physical performance, whereas chronic supplementation can provide significant The active components of Eleutherococcus senticosus, changes in various biochemical parameters. the eleutherosides, were initially coded from A to F [12], Some studies, using the supplementation of Eleuthero- and years later, Hikino et al. (1986) [13] studied seven coccus senticosus, report an improvement in heart rate eleutherosides coded as A, B, C, D, E, F and G, and recovery after physical exercise, improvement of the lac- through acid hydrolysis of these components, obtained the tate removal ability, greater ability to obtain energy from formation of glycosides, such as rhamnose, arabinose, xy- aerobic metabolism (by increasing the oxygen consump- lose, mannose, galactose and glucose. tion and utilization of fatty acids as a source of energy) Based on several studies by Wagner et al. (1994) [14], and, therefore, an improvement of the performance [3,8, the ES components were rated as phenylpropanes, com- 18-20]. These authors believe that these improvements pounds, lignans, coumarins, polysaccharides and other are due to the action of eleutherosides, responsible for in- compounds, such as oleanolic acid, aromatic oils and ducing various physiological responses, which are pre- sugar [8]. In an attempt to bring order to these chemicals sent in the root of Eleutherococcus senticosus [1]. compounds, ES was divided into two classes: 1. Triterpe- The extracts from different parts of ES have been con- noid saponins, which are glycosides of oleanolic acid (re- sidered good for health [21]. The ES antioxidant effect is ferred to as eleutherosides I, K, L and M), and 2. Phenyl- related to improvements in the treatment of diabetes, propane derivatives (eleutherosides B, B1, D and E), which cancer and inflammatory state, in addition to their immu- are mostly glycosylated [15]. noregulatory and immunomodulatory property, and anti- The ES root extract is standardized in 0.6% to 0.8% of microbial and antiviral activity [11]. eleutherosides, depending on the extraction method of so- Six secondary compounds found in Eleutherococcus lids [16,17]. senticosus have demonstrated antioxidant effects (such as Unfortunately, there are no data on the quantity of a siringina, caffeic acid, ethyl aldehyde, coniferyl alde- certain class of these secondary compounds produced in hyde), four had antioxidant effects in cancer (sesamin, β- each species. These compounds include, but are not limit- sitosterol, isofraxidine), and three had hypocholesterole- ed to, phenylpropanoids (siringina, caffeic acid, sinapyl mic activities (sesamin, β-sitosterol and β-sitosterol 3-D- alcohol, and coniferyl aldehyde), lignans (sesamin, syrin- glucoside) [15]. garesinol and its glycoside), saponins (daucosterol, β-sito- Sesamin and siringina demonstrated immunostimula- sterol, and hederasaponine-B), coumarins (isofraxidine and tory activity, while isofraxidine showed choleretic activ- its glycoside) and vitamins (vitamin E and beta-carotene) ity. Siringina demonstrated radioprotective property, and [15]. antibacterial activity of caffeic acid [15]. Eleutherococcus not only synthesizes lignans, but also The hypocholesterolemic
Recommended publications
  • Clinical Effects of Korean Ginseng, Korean Red Ginseng, Chinese
    2006. Vol. 27. No. 4. 198-208 Korean Journal of Oriental Medicine Original Article Clinical Effects of Korean Ginseng, Korean Red Ginseng, Chinese Ginseng, and American Ginseng on Blood Pressure in Mild Hypertensive Subjects Dong-Jun Choi, Ki-Ho Cho 1) , Woo-Sang Jung 1) , Seong-Uk Park 2) Chang-Ho Han, Won-Chul Lee Department of Oriental Internal Medicine, International Hospital Dong-Guk University Goyang-city, Gyeonggi-do, Korea Department of Cardiovascular and Neurologic Diseases (Stroke Center) College of Oriental Medicine, Kyung-Hee University, Seoul, Korea 1) Stroke & Neurological Disorders Center, East-West Neo Medical Center Kyung-Hee University, Seoul, Korea 2) Background : Ginseng has traditionally been used in oriental countries to recover vital energy from Qi deficiency, and has shown various biomedical effects in the scientific literature. Recent reports suggest that ginseng could regulate blood pressure (BP), but much controversy still remains. Therefore, we intended to assess the anti-hypertensive effect of several ginseng types frequently used in clinics. We also investigated the anti-hypertensive effect on Koreans and Chinese, and by the body type according to Sasang Constitution Medicine (SCM). Methods : The study subjects were recruited from mildly hypertensive patients who exhibited pre-hypertension (120/80 to 139/89 mmHg) and stage I hypertension (140/90 to 159/99 mmHg) in Korea and China. After assigning the subjects into a Korean, a Chinese, a red, and an American ginseng group by randomization, we prescribed ginseng at a dose of 4.5 g per day for 4 weeks. To assess the anti-hypertensive effect, we compared the mean of systolic and diastolic BP between before and after ginseng medication using a 24-hour ambulatory blood pressure monitor (24 hr ABPM).
    [Show full text]
  • Chemical Investigation of Devil's Club
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1939 Chemical investigation of devil's club Hubert William Murphy The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Murphy, Hubert William, "Chemical investigation of devil's club" (1939). Graduate Student Theses, Dissertations, & Professional Papers. 6264. https://scholarworks.umt.edu/etd/6264 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. A CHBMIOAL IMTESTIGATiaS Of D E W S CLDB by Hubert WlXlleoot Murphy B«8.# State UniTerslty of Montana, 1937 Presented In partial fulfillment of the re­ quirement for the d agree of Master of Selenee State Hhiversity of Montana 1939 Approved: 71 chairman of Boarct' of Examiners# Chairman of Coomittee on Graduate Study Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP37065 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI DiMtMUtior) PubliaNng UMI EP37065 Published by ProQuest LLC (2013).
    [Show full text]
  • Chemical Authentication of Botanical Ingredients: a Review of Commercial Herbal Products
    MINI REVIEW published: 15 April 2021 doi: 10.3389/fphar.2021.666850 Chemical Authentication of Botanical Ingredients: A Review of Commercial Herbal Products Mihael Cristin Ichim 1* and Anthony Booker 2,3* 1“Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania, 2Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom, 3Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom Chemical methods are the most important and widely used traditional plant identification techniques recommended by national and international pharmacopoeias. We have reviewed the successful use of different chemical methods for the botanical authentication of 2,386 commercial herbal products, sold in 37 countries spread over six continents. The majority of the analyzed products were reported to be authentic (73%) but more than a quarter proved to be adulterated (27%). At a national level, the number of products and the adulteration proportions varied very widely. Yet, the adulteration reported for the four countries, from which more than 100 commercial products were purchased Edited by: and their botanical ingredients chemically authenticated, was 37% (United Kingdom), 31% Marcello Locatelli, University of Studies G. d’Annunzio (Italy), 27% (United States), and 21% (China). Simple or hyphenated chemical analytical Chieti and Pescara, Italy techniques have identified the total absence of labeled botanical ingredients, substitution Reviewed by: with closely related or unrelated species, the use of biological filler material, and the hidden Santhosh Kumar J. Urumarudappa, Chulalongkorn University, Thailand presence of regulated, forbidden or allergenic species.
    [Show full text]
  • Panax Ginseng
    Last updated on December 22, 2020 Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. Panax Ginseng Evidence Summary Some studies have shown that ginseng improves cognitive functions and decreases mortality and cancer risk in humans; safe when taken alone, but some drug interactions are known. Neuroprotective Benefit: Numerous studies have reported cognitive benefit with ginseng in healthy people as well as in dementia patients, but the evidence remains inconclusive due to the lack of large, long-term well-designed trials. Aging and related health concerns: Ginseng intake is associated with lower risks for mortality and cancers; also, some benefits seen in Asian people with ischemic heart disease, diabetes, hypertension, hypercholesteremia, and fatigue. Safety: Numerous meta-analyses have reported that ginseng is generally safe when taken alone; however, ginseng interacts with several medications, and high doses may be associated with insomnia, tachyarrhythmias, hypertension, nervousness, and others. 1 Last updated on December 22, 2020 Availability: OTC. In clinical Dose: 200-400 mg/day Chemical formula: e.g., C42H72O14 trials, a standardized ginseng have been tested for (Ginsenoside Rg1); C54H92O23 extract called G115 is often cognitive benefit; higher (Ginsenoside Rb1) used.
    [Show full text]
  • Panax Ginseng) from Different Regions
    molecules Article Analysis of Ginsenoside Content (Panax ginseng) from Different Regions Wei Chen 1,2,3 , Prabhu Balan 2,3 and David G Popovich 1,* 1 School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand; [email protected] 2 Riddet Institute, Massey University, Palmerston North 4442, New Zealand; [email protected] 3 Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand * Correspondence: [email protected]; Tel.: +64-63569099 Academic Editor: Vincenzo De Feo Received: 3 September 2019; Accepted: 25 September 2019; Published: 26 September 2019 Abstract: Recently Panax ginseng has been grown as a secondary crop under a pine tree canopy in New Zealand (NZ). The aim of the study is to compare the average content of ginsenosides from NZ-grown ginseng and its original native locations (China and Korea) grown ginseng. Ten batches of NZ-grown ginseng were extracted using 70% methanol and analyzed using LC-MS/MS. The average content of ginsenosides from China and Korea grown ginseng were obtained by collecting data from 30 and 17 publications featuring China and Korea grown ginseng, respectively. The average content of total ginsenosides in NZ-grown ginseng was 40.06 3.21 mg/g (n = 14), which showed significantly ± (p < 0.05) higher concentration than that of China grown ginseng (16.48 1.24 mg/g, n = 113) and ± Korea grown ginseng (21.05 1.57 mg/g, n = 106). For the individual ginsenosides, except for the ± ginsenosides Rb2, Rc, and Rd, ginsenosides Rb1, Re, Rf, and Rg1 from NZ-grown ginseng were 2.22, 2.91, 1.65, and 1.27 times higher than that of ginseng grown in China, respectively.
    [Show full text]
  • Araliaceae) Roderick J
    Essential Oils from the Leaves of Three New Zealand Species of Pseudopanax (Araliaceae) Roderick J. Weston Industrial Research Ltd., P.O. Box 31-310, Lower Hutt, New Zealand. Fax: +64-4-9313-055. E-mail: [email protected] Z. Naturforsch. 59c, 39Ð42 (2004); received July 22, 2003 Essential oils from three of the eleven endemic New Zealand species of Pseudopanax, P. arboreus, P. discolor and P. lessonii, were found to have a fairly uniform composition which was different from that of the oils of Raukaua species that were formerly classified in the Pseudopanax genus. Oils of the three Pseudopanax species all contained significant propor- tions of viridiflorol and a closely related unidentified hydroazulene alcohol in common. In addition, the oil of P. arboreus contained bicyclogermacrene, linalool and long chain hy- drocarbons. The oil of P. discolor contained nerolidol in abundance (36.3%) together with linalool and epi-α-muurolol. The oil of P. lessonii contained a complex mixture of sesquiter- pene alcohols including epi-α-muurolol and a mixture of long chain hydrocarbons. Nerolidol and linalool provided the oil of P. discolor with a pleasant floral aroma, but the yield of oil was very low (0.01%). Key words: Pseudopanax arboreus, discolor and lessonii, Araliaceae, Essential Oil Introduction species studied in this paper, P. lessonii and P. dis- color, belong to this group and were selected be- The Araliaceae is a family of 65 genera and ap- cause their leaves, when crushed, emit a weak fra- proximately 800 species, which occur mainly in grance. The third group is characterized by its tropical regions, but some genera are found in shorter wider fleshier leaves and includes P.
    [Show full text]
  • Araliaceae – Ginseng Family
    ARALIACEAE – GINSENG FAMILY Plant: some herbs (perennial), woody vines, shrubs and trees Stem: usually pithy Root: sometimes with rhizomes Leaves: simple or palmately compound but rarely 2’s or 3’s, often thickened and large, mostly alternate (rarely opposite or whorled); usually with stipules that forms a stem sheath; often with star-shaped hairs Flowers: mostly perfect or unisexual (monoecious or dioecious), regular (actinomorphic); flowers very small, mostly in umbels; sepals 5, often forming small teeth or none, mostly 5(-10) petals; mostly 5(-10) stamens; ovary inferior, 2-5 (10) fused carpels Fruit: berry or drupe, oily Other: mostly tropical and subtropical, a few oranamentals; similar to Apiaceae; Dicotyledons Group Genera: 70+ genera; locally Aralia (spikenard), Hedera (English Ivy), Oplopanax, Panax (ginseng) WARNING – family descriptions are only a layman’s guide and should not be used as definitive Araliaceae (Ginseng Family) – 5 (mostly) sepals and petals (often 5-lobed), often in umbels or compound umbels; leaves simple or more often compound; fruit a berry or drupe Examples of common genera Devil's Walkingstick [Hercules’ Club] Wild Sarsaparilla Aralia spinosa L. Aralia nudicaulis L. Devil's Club [Devil’s Walking Stick; Alaskan Ginseng] Oplopanax horridus (Sm.) Miq. English Ivy Hedera helix L. (Introduced) Dwarf Ginseng Panax trifolius L. ARALIACEAE – GINSENG FAMILY Wild Sarsaparilla; Aralia nudicaulis L. Devil's Walkingstick [Hercules’ Club]; Aralia spinosa L. English Ivy; Hedera helix L. (Introduced) Devil's Club [Devil’s
    [Show full text]
  • Araliaceae.Pdf
    ARALIACEAE 五加科 wu jia ke Xiang Qibai (向其柏 Shang Chih-bei)1; Porter P. Lowry II2 Trees or shrubs, sometimes woody vines with aerial roots, rarely perennial herbs, hermaphroditic, andromonoecious or dioecious, often with stellate indumentum or more rarely simple trichomes or bristles, with or without prickles, secretory canals pres- ent in most parts. Leaves alternate, rarely opposite (never in Chinese taxa), simple and often palmately lobed, palmately compound, or 1–3-pinnately compound, usually crowded toward apices of branches, base of petiole often broad and sheathing stem, stipules absent or forming a ligule or membranous border of petiole. Inflorescence terminal or pseudo-lateral (by delayed development), um- bellate, compound-umbellate, racemose, racemose-umbellate, or racemose-paniculate, ultimate units usually umbels or heads, occa- sionally racemes or spikes, flowers rarely solitary; bracts usually present, often caducous, rarely foliaceous. Flowers bisexual or unisexual, actinomorphic. Pedicels often jointed below ovary and forming an articulation. Calyx absent or forming a low rim, some- times undulate or with short teeth. Corolla of (3–)5(–20) petals, free or rarely united, mostly valvate, sometimes imbricate. Stamens usually as many as and alternate with petals, sometimes numerous, distinct, inserted at edge of disk; anthers versatile, introrse, 2- celled (or 4-celled in some non-Chinese taxa), longitudinally dehiscent. Disk epigynous, often fleshy, slightly depressed to rounded or conic, sometimes confluent with styles. Ovary inferior (rarely secondarily superior in some non-Chinese taxa), (1 or)2–10(to many)-carpellate; carpels united, with as many locules; ovules pendulous, 2 per locule, 1 abortive; styles as many as carpels, free or partially united, erect or recurved, or fully united to form a column; stigmas terminal or decurrent on inner face of styles, or sessile on disk, circular to elliptic and radiating.
    [Show full text]
  • Panax Ginseng
    Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. Panax ginseng Evidence Summary Some studies have shown that ginseng improves cognitive functions and decreases mortality and cancer risk in humans; safe when taken alone, but some drug interactions are known. Neuroprotective Benefit: Numerous studies have reported cognitive benefit with ginseng in healthy people as well as in dementia patients, but the evidence remains inconclusive due to the lack of large, long-term well-designed trials. Aging and related health concerns: Ginseng intake is associated with lower risks for mortality and cancers; also, some benefits seen in Asian people with ischemic heart disease, diabetes, hypertension, hypercholesteremia, and fatigue. Safety: Numerous meta-analyses have reported that ginseng is generally safe when taken alone; however, ginseng interacts with several medications. 1 Availability: OTC. No Dose: 200-400 mg/day Chemical formula: e.g., C42H72O14 pharmaceutical
    [Show full text]
  • Pseudopanax Laetus
    Pseudopanax laetus SYNONYMS Panax arboreus var. laetus Kirk, Nothopanax laetus (Kirk) Cheeseman, Neopanax laetus (Kirk) Philipson FAMILY Araliaceae AUTHORITY Pseudopanax laetus (Kirk) Allan FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS Yes Close up, Pseudopanax laetus mature foliage, ENDEMIC FAMILY Upper Kaueranga Valley. Photographer: John No Smith-Dodsworth STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE PSELAE CHROMOSOME NUMBER 2n = 48 CURRENT CONSERVATION STATUS 2018 | At Risk – Declining PREVIOUS CONSERVATION STATUSES 2012 | Not Threatened 2009 | Not Threatened | Qualifiers: RF 2004 | Gradual Decline BRIEF DESCRIPTION bushy shrub with large hand-shaped leaves on red stalks Pseudopanax laetus close up of inflorescence DISTRIBUTION with flowers during male phase, Ex Cult. Puhoi. Photographer: Peter de Lange Endemic to the northern part of the North Island from Coromandel to inland Gisborne and Taranaki. HABITAT Montane forest. FEATURES Small multi-branched tree to 5 m tall, branchlets brittle. Leaves alternate, leaflets 5-7, palmate, on short petiolules. Petiole to 25 cm long, sheathing branchlet at base, stipules present, purplish red. Petiolules stout, purplish red or leaflets subsessile. Leaflets obovate- to cuneate-oblong, thick and coriaceous, green above, paler below, margin coarsely dentate-serrate in distal half, acute or acuminate to subacute; midveins and main lateral veins obvious above and below; teminal lamina 12-25 x 5-10 cm or more, lateral leaflets smaller. Inflorescence a terminal, compound umbel, flowers sometimes subracemose on secondary rays; primary rays (branchlets) 10-15; 15-20 secondary rays. Calyx truncate or obscurely 5-toothed; petals ovate-oblong, acute. Ovary 2-loculed, each containing 1 ovules; style branches 2, spreading. Fruit fleshy, purple, c.
    [Show full text]
  • Philipp Simon Massimo Iorizzo Dariusz Grzebelus Rafal Baranski Editors the Carrot Genome Compendium of Plant Genomes
    Compendium of Plant Genomes Philipp Simon Massimo Iorizzo Dariusz Grzebelus Rafal Baranski Editors The Carrot Genome Compendium of Plant Genomes Series Editor Chittaranjan Kole, ICAR-National Research Center on Plant Biotechnology, Pusa, Raja Ramanna Fellow, Government of India, New Delhi, India [email protected] Philipp Simon • Massimo Iorizzo • Dariusz Grzebelus • Rafal Baranski Editors The Carrot Genome 123 [email protected] Editors Philipp Simon Massimo Iorizzo Vegetable Crops Research Unit Plants for Human Health Institute USDA-ARS North Carolina State University Madison, WI, USA Kannapolis, NC, USA Dariusz Grzebelus Rafal Baranski University of Agriculture in Krakow Faculty of Biotechnology and Kraków, Poland Horticulture University of Agriculture in Krakow Kraków, Poland ISSN 2199-4781 ISSN 2199-479X (electronic) Compendium of Plant Genomes ISBN 978-3-030-03388-0 ISBN 978-3-030-03389-7 (eBook) https://doi.org/10.1007/978-3-030-03389-7 Library of Congress Control Number: 2019934354 © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Global Ginseng Research
    인삼문화 Journal of Ginseng Culture 2 (2020) 1-8 Research Article Global ginseng research Phuoc Long Nguyen*, Hoang Anh Nguyen**, Jeong Hill Park*** 초 록 지금까지 Web of Science의 core collection에 나타난 인삼 관련 연구논문의 수를 분석하 였다. 인삼논문이 처음 나타난 1905년부터 2019년까지 전세계에서 총 8,090편의 SCI(E) 논 문이 출판된 것으로 나타났다. 그중 최근 24년, 즉, 1996년부터 2019년까지의 논문이 7,385 편이었다. 1980년 18편에 불과했던 인삼 논문이 1990년에는 53편, 2000년에는 97편, 2010 년에는 369편, 2019년에는 678편으로 비약적으로 증가하였다. Web of Science의 core col- lection에 수재된 전체 학술논문에서 인삼 논문이 차지하는 비중도 1970년 0.0008%, 1980 년 0.0044%, 1990년 0.101%, 2000년 0.0141%에서 2019년에는 0.0422%로 비약적으로 증가 하였다. 지난 24년간 출판된 인삼 연구논문 중 원보(노트 포함)는 7,099편, 리뷰는 286편이었다. 총 78개국 3,286개 기관에서 연구가 이루어졌으며, 1,274개 학술잡지에 논문이 수재되었다. 전체 논문 중 중국에서 연구된 논문이 40.3%로 가장 높았고, 대한민국에서 연구된 논문 이 34.7%로 한국과 중국의 연구가 전체의 75%를 차지하였다. 그 다음은 미국(6.0%), 일본 (4.1%), 캐나다(2.9%) 순이었다. 2013년까지는 한국에서 연구된 논문이 가장 많았으나 2014 년부터 중국에서 연구된 논문의 수가 더 많아졌다. 지난 24년간 인삼은 전세계에서 가장 많이 연구된 약용식물로 인삼 다음으로는 차(6,499편), 마늘(3,641편), 은행(2,590편), 생강 (1,945편) 순이었다. 주제어: 인삼, 연구논문의 수, web of science Abstract We conducted a comprehensive analysis of research papers on ginseng to provide an overview of global ginseng research. The qualitative and quantitative interpretation was carried out using collected data of Panax species and six other herbal plants from the Web of ScienceTM Core Collection.
    [Show full text]