Hypercomplex Numbers and Early Vector Systems: a History

Total Page:16

File Type:pdf, Size:1020Kb

Hypercomplex Numbers and Early Vector Systems: a History Hypercomplex Numbers and Early Vector Systems: A History A Thesis Presented in Partial Fulllment of the Requirements for the Degree Master of Mathematical Sciences in the Graduate School of The Ohio State University By Nathan Bushman, B.S. Graduate Program in Mathematical Sciences The Ohio State University 2020 Master’s Examination Committee: James Cogdell, Advisor Herb (Charles) Clemens © Copyright by Nathan Bushman 2020 Abstract If one were to study mathematics without ever studying its history, they may be left with a rather skewed perception of how the discipline has developed. Vector algebra is a particu- larly good example of this. Students may be introduced to vectors as early as pre-calculus, and will certainly have become closely acquainted with them by integral and multivariable calcu- lus. They are an essential means of representing and working with certain quantities – veloc- ity, force, etc. And so one may be led to believe that vectorial ideas must have been incorpo- rated into mathematics long, long ago. However, the reality is quite dierent; it was actually not until the end of the nineteenth century that a vector system (or vector algebra or calcu- lus) closely resembling our modern one was found, and not until the twentieth that it became widely used. The object of this thesis is to explore the interesting history behind this fact. We trace the widening of the idea of ‘quantity’ from its conception in classical geometry and algebra to one that admits a vector. We explore early mathematical systems that dealt with vectorial ideas, especially W.R. Hamilton’s quaternions. We explain how our modern vector system developed from this. The matters of how new ideas arise in mathematics and science, how such innova- tions are received, and how they evolve, are discussed both implicitly and explicitly. ii This thesis is dedicated to my parents, Brad Bushman and Tam Staord, to my siblings, Becca and Bran Bushman, and to my closest friends, Danny Vincenz, Julia Kerst, and Sana Mirza, all of whom continually oer me unconditional love and support. iii Acknowledgments First and foremost I would like to thank Jim Cogdell, who advised me throughout the course of this project. His guidance and kindness were invaluable in the completion of these pages. I would also thank Herb Clemens, who not only served on my committee but also encouraged me to pursue mathematics beyond the undergraduate level in the rst place. Lastly, my grati- tude goes out to the mathematics department here at OSU, and in particular to the following instructors who helped me mature mathematically or supported me during this program: Elliot Paquette, Joseph Vandehey, and Jenny Sheldon. iv Vita May 2014 . Olentangy High School August 2017 to December 2017 . Student Teaching Associate, The Ohio State University May 2018 . B.S. Mathematics, The Ohio State University August 2018 to present . Graduate Teaching Associate, The Ohio State University. Fields of Study Major Field: Mathematical Sciences v Table of Contents Page Abstract . ii Dedication . iii Acknowledgments . iv Vita .................................................v 1. New Numbers . .1 2. Hamilton’s Search for Triplets . 14 3. Hurwitz’s Result and the Law of Moduli . 29 4. The Development of the Quaternions . 42 5. Grassmann and His Theory of Extensions . 56 6. The Emergence of Vector Analysis . 76 7. Summary of Study . 95 Bibliography . 100 vi Chapter 1: New Numbers “Mathematicians are perfectly accepting of new ideas, provided they are a century old.” - Unknown Although both negative and so-called ‘imaginary’ numbers are an indispensable part of modern mathematics, they are, historically speaking, exceedingly controversial objects; de- bates about their use in the mathematical community1 raged on until well into the 19th cen- tury [25]. But why is this? To understand the answer to this question, we must rst discuss in some length the nature of mathematics as a eld of study. It has been said that the rst ‘true’ mathematicians were the ancient Greeks. This is almost entirely due to the emphasis they placed on the theoretical foundations of their work. Sev- eral pre-Greek civilizations showed an aptitude in solving mathematical problems comparable to that of the Greeks,2 but none of these peoples concerned themselves with the concept of mathematical proof (the importance of which is dicult to overstate) as the Greeks did. Consider, for contrast, the mathematics of the ancient Mesopotamians, more specically the 1 Most of the references to ‘mathematics’ (and ‘mathematicians,’ etc.) in this thesis will actually be references specically to Western mathematics (and etc.). The author wishes to make clear to the reader that this focus is due only to the nationalities of the key persons involved in this study, and that the general omission of ‘Western’ is present only for the sake of brevity; neither is intended in any way to write o the rich history of mathematics in other areas of world, such as China and India. 2 In fact, it seems that Greek mathematicians borrowed heavily from the Babylonians (discussed later in the paragraph of the note) in several areas, most notably astronomy – see [7]. 1 Babylonians. The Babylonians apparently knew how to solve quadratic equations and related problems [23]. Additionally, plentiful records exist of extensive tables of squares of numbers, products of large numbers, and ‘Pythagorean triples’ developed by Babylonian scribes [13]. Yet for all these impressive results, no piece of Babylonian mathematics places direct emphasis on either the generalization or justication of results. As one mathematical historian wrote: “the Mesopotamians . addressed only the question of ‘how’ while avoiding the much more signicant issue of ‘why’ ” ([13], pg. 5). Some have argued that the vast number of solutions Babylonian ‘algebraists’ accumulated to similar types of problems points toward them having some rationale for their procedures, but this can only be treated as an implication of the his- torical record, and it remains that Babylonian mathematics was of a very prescriptive nature and hardly emphasized the notion of providing logical support for one’s methods [23]. Now it is well-known that early Greek mathematicians accomplished much beyond intro- ducing the idea of proof. The works of Euclid, Archimedes, and others yielded a bounty of in- tellectual fruit that is still admired today, as has been described by many authors across many writings in romantic detail. However, the object of the current study is not to add to this ample literature; the relevance of Greek mathematics to the story of negative and imaginary numbers is, perhaps unfortunately, relegated to the contribution of the tradition to their very belated acceptance. It is apparent that these prominent Greek authors thought of their mathematics as em- pirical. Though it is true that they dealt with abstract ideas of geometry such as “breadth- less lengths” and objects “with no part” [14], these notions were only used to create an ide- alized reection of their reality, and ultimately their axioms were derived from what they could clearly see with their own eyes. Hence, to the Greeks, mathematics was not, as we may think of 2 it today, a eld of study oering (among other things) support for the natural sciences: rather, it was one of these sciences. We can be condent in this both because a great many ancient Greek writings paint mathematics as a means of unearthing truths about the physical world [13] and also because Greek authors did not generally speak of purely abstract mathemati- cal ideas. To the latter point, we note that Greek authors did not speak of numbers in isola- tion, but rather quantities – lengths, areas, and volumes – the implication being that numbers on their own, not representing something anything concrete, merited no consideration.3 In this same vein, equations in the works of these authors were always homogeneous, that is all terms within were of the same degree – representing the view that one cannot add quantities of dierent ‘types,’ such as say one length and another volume, together [23]. This empirical perspective on mathematics was strongly inherited by the wider European traditions that succeeded the Greeks’. In fact, the core beliefs entailed by it came to be held much more consciously and rmly by the mathematicians of said successive traditions, likely due to the admiration many of them held for Greek mathematics; by the beginning of the early modern period, mathematics had come to be predominantly viewed as the science of quantity. And this brings us back to the subject at hand, for it is this point of view, more specically the exclusion of purely abstract mathematical ideas that it necessitates, that kept ‘new numbers’ from being accepted by mathematicians for so long [25]. Why this is the case quickly becomes clear when one adopts, for the sake of argument, the philosophy in question. Indeed, consider negative numbers from this point of view (note, this 3 Strictly speaking, this is only true starting around the time of Euclid. Pythagoras, who lived around two- and-a-half centuries earlier, had a philosophy heavily dependent on the abstract idea of numbers and also of harmony. He is said to have professed that “all things are number” [5]. Views such as this, though, were even- tually supplanted by the empirical idea of geometry that the ancient Greeks had [5, 13], and it is the ultimate mathematical philosophy of the Greeks (which would be inherited by further Western traditions) that we are con- cerned with here. 3 ought to be sucient, for if negative numbers are regarded almost as anathema to mathe- matics, what can be said of their supposed square roots?). We understand that negative num- bers have concrete meaning only in specic contexts: there are many problems in which they are nonsensical; “..
Recommended publications
  • Characterizations of Several Split Regular Functions on Split Quaternion in Clifford Analysis
    East Asian Math. J. Vol. 33 (2017), No. 3, pp. 309{315 http://dx.doi.org/10.7858/eamj.2017.023 CHARACTERIZATIONS OF SEVERAL SPLIT REGULAR FUNCTIONS ON SPLIT QUATERNION IN CLIFFORD ANALYSIS Han Ul Kang, Jeong Young Cho, and Kwang Ho Shon* Abstract. In this paper, we investigate the regularities of the hyper- complex valued functions of the split quaternion variables. We define several differential operators for the split qunaternionic function. We re- search several left split regular functions for each differential operators. We also investigate split harmonic functions. And we find the correspond- ing Cauchy-Riemann system and the corresponding Cauchy theorem for each regular functions on the split quaternion field. 1. Introduction The non-commutative four dimensional real field of the hypercomplex num- bers with some properties is called a split quaternion (skew) field S. Naser [12] described the notation and the properties of regular functions by using the differential operator D in the hypercomplex number system. And Naser [12] investigated conjugate harmonic functions of quaternion variables. In 2011, Koriyama et al. [9] researched properties of regular functions in quater- nion field. In 2013, Jung et al. [1] have studied the hyperholomorphic functions of dual quaternion variables. And Jung and Shon [2] have shown hyperholo- morphy of hypercomplex functions on dual ternary number system. Kim et al. [8] have investigated regularities of ternary number valued functions in Clif- ford analysis. Kang and Shon [3] have developed several differential operators for quaternionic functions. And Kang et al. [4] researched some properties of quaternionic regular functions. Kim and Shon [5, 6] obtained properties of hyperholomorphic functions and hypermeromorphic functions in each hyper- compelx number system.
    [Show full text]
  • Quaternions and Cli Ord Geometric Algebras
    Quaternions and Cliord Geometric Algebras Robert Benjamin Easter First Draft Edition (v1) (c) copyright 2015, Robert Benjamin Easter, all rights reserved. Preface As a rst rough draft that has been put together very quickly, this book is likely to contain errata and disorganization. The references list and inline citations are very incompete, so the reader should search around for more references. I do not claim to be the inventor of any of the mathematics found here. However, some parts of this book may be considered new in some sense and were in small parts my own original research. Much of the contents was originally written by me as contributions to a web encyclopedia project just for fun, but for various reasons was inappropriate in an encyclopedic volume. I did not originally intend to write this book. This is not a dissertation, nor did its development receive any funding or proper peer review. I oer this free book to the public, such as it is, in the hope it could be helpful to an interested reader. June 19, 2015 - Robert B. Easter. (v1) [email protected] 3 Table of contents Preface . 3 List of gures . 9 1 Quaternion Algebra . 11 1.1 The Quaternion Formula . 11 1.2 The Scalar and Vector Parts . 15 1.3 The Quaternion Product . 16 1.4 The Dot Product . 16 1.5 The Cross Product . 17 1.6 Conjugates . 18 1.7 Tensor or Magnitude . 20 1.8 Versors . 20 1.9 Biradials . 22 1.10 Quaternion Identities . 23 1.11 The Biradial b/a .
    [Show full text]
  • Marc De Graef, CMU
    Rotations, rotations, and more rotations … Marc De Graef, CMU AN OVERVIEW OF ROTATION REPRESENTATIONS AND THE RELATIONS BETWEEN THEM AFOSR MURI FA9550-12-1-0458 CMU, 7/8/15 1 Outline 2D rotations 3D rotations 7 rotation representations Conventions (places where you can go wrong…) Motivation 2 Outline 2D rotations 3D rotations 7 rotation representations Conventions (places where you can go wrong…) Motivation PREPRINT: “Tutorial: Consistent Representations of and Conversions between 3D Rotations,” D. Rowenhorst, A.D. Rollett, G.S. Rohrer, M. Groeber, M. Jackson, P.J. Konijnenberg, M. De Graef, MSMSE, under review (2015). 2 2D Rotations 3 2D Rotations y x 3 2D Rotations y0 y ✓ x0 x 3 2D Rotations y0 y ✓ x0 x ex0 cos ✓ sin ✓ ex p = ei0 = Rijej e0 sin ✓ cos ✓ ey ! ✓ y ◆ ✓ − ◆✓ ◆ 3 2D Rotations y0 y ✓ p x R = e0 e 0 ij i · j x ex0 cos ✓ sin ✓ ex p = ei0 = Rijej e0 sin ✓ cos ✓ ey ! ✓ y ◆ ✓ − ◆✓ ◆ 3 2D Rotations y0 y ✓ p x R = e0 e 0 ij i · j x ex0 cos ✓ sin ✓ ex p = ei0 = Rijej e0 sin ✓ cos ✓ ey ! ✓ y ◆ ✓ − ◆✓ ◆ Rotating the reference frame while keeping the object constant is known as a passive rotation. 3 2D Rotations y0 y Assumptions: Cartesian reference frame, right-handed; positive ✓ rotation is counter-clockwise p x R = e0 e 0 ij i · j x ex0 cos ✓ sin ✓ ex p = ei0 = Rijej e0 sin ✓ cos ✓ ey ! ✓ y ◆ ✓ − ◆✓ ◆ Rotating the reference frame while keeping the object constant is known as a passive rotation. 3 2D Rotations 4 2D Rotations y0 y ✓ x0 x 4 2D Rotations y0 y ✓ x0 x 4 2D Rotations y0 y ✓ r = ri0ei0 = rjej x0 x 4 2D Rotations y0 y ✓ r = ri0ei0 = rjej p = ri0Rijej x0 p T =(R )jiri0ej x 4 2D Rotations y0 y ✓ r = ri0ei0 = rjej p = ri0Rijej x0 p T =(R )jiri0ej x p T r =(R ) r0 ! j ji i 4 2D Rotations y0 y ✓ r = ri0ei0 = rjej p = ri0Rijej x0 p T =(R )jiri0ej x p T r =(R ) r0 ! j ji i p r0 = R r ! i ij j 4 2D Rotations y0 y ✓ r = ri0ei0 = rjej p = ri0Rijej x0 p T =(R )jiri0ej x p T r =(R ) r0 ! j ji i p r0 = R r ! i ij j The passive matrix converts the old coordinates into the new coordinates by left-multiplication.
    [Show full text]
  • Arxiv:1001.0240V1 [Math.RA]
    Fundamental representations and algebraic properties of biquaternions or complexified quaternions Stephen J. Sangwine∗ School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom. Email: [email protected] Todd A. Ell† 5620 Oak View Court, Savage, MN 55378-4695, USA. Email: [email protected] Nicolas Le Bihan GIPSA-Lab D´epartement Images et Signal 961 Rue de la Houille Blanche, Domaine Universitaire BP 46, 38402 Saint Martin d’H`eres cedex, France. Email: [email protected] October 22, 2018 Abstract The fundamental properties of biquaternions (complexified quaternions) are presented including several different representations, some of them new, and definitions of fundamental operations such as the scalar and vector parts, conjugates, semi-norms, polar forms, and inner and outer products. The notation is consistent throughout, even between representations, providing a clear account of the many ways in which the component parts of a biquaternion may be manipulated algebraically. 1 Introduction It is typical of quaternion formulae that, though they be difficult to find, once found they are immediately verifiable. J. L. Synge (1972) [43, p34] arXiv:1001.0240v1 [math.RA] 1 Jan 2010 The quaternions are relatively well-known but the quaternions with complex components (complexified quaternions, or biquaternions1) are less so. This paper aims to set out the fundamental definitions of biquaternions and some elementary results, which, although elementary, are often not trivial. The emphasis in this paper is on the biquaternions as an applied algebra – that is, a tool for the manipulation ∗This paper was started in 2005 at the Laboratoire des Images et des Signaux (now part of the GIPSA-Lab), Grenoble, France with financial support from the Royal Academy of Engineering of the United Kingdom and the Centre National de la Recherche Scientifique (CNRS).
    [Show full text]
  • Janko's Sporadic Simple Groups
    Janko’s Sporadic Simple Groups: a bit of history Algebra, Geometry and Computation CARMA, Workshop on Mathematics and Computation Terry Gagen and Don Taylor The University of Sydney 20 June 2015 Fifty years ago: the discovery In January 1965, a surprising announcement was communicated to the international mathematical community. Zvonimir Janko, working as a Research Fellow at the Institute of Advanced Study within the Australian National University had constructed a new sporadic simple group. Before 1965 only five sporadic simple groups were known. They had been discovered almost exactly one hundred years prior (1861 and 1873) by Émile Mathieu but the proof of their simplicity was only obtained in 1900 by G. A. Miller. Finite simple groups: earliest examples É The cyclic groups Zp of prime order and the alternating groups Alt(n) of even permutations of n 5 items were the earliest simple groups to be studied (Gauss,≥ Euler, Abel, etc.) É Evariste Galois knew about PSL(2,p) and wrote about them in his letter to Chevalier in 1832 on the night before the duel. É Camille Jordan (Traité des substitutions et des équations algébriques,1870) wrote about linear groups defined over finite fields of prime order and determined their composition factors. The ‘groupes abéliens’ of Jordan are now called symplectic groups and his ‘groupes hypoabéliens’ are orthogonal groups in characteristic 2. É Émile Mathieu introduced the five groups M11, M12, M22, M23 and M24 in 1861 and 1873. The classical groups, G2 and E6 É In his PhD thesis Leonard Eugene Dickson extended Jordan’s work to linear groups over all finite fields and included the unitary groups.
    [Show full text]
  • On Hypercomplex Number Systems*
    ON HYPERCOMPLEX NUMBER SYSTEMS* (FIRST PAPER) BY HENRY TABER Introduction. The method invented by Benjamin Peirce t for treating the problem to determine all hypereomplex number systems (or algebras) in a given number of units depends chiefly, first, upon the classification of hypereomplex number sys- tems into idempotent number systems, containing one or more idempotent num- bers, \ and non-idempotent number systems containing no idempotent number ; and, second, upon the regularizaron of idempotent number systems, that is, the classification of each of the units of such a system with respect to one of the idempotent numbers of the system. For the purpose of such classification and regularizaron the following theorems are required : Theorem I.§ In any given hypereomplex number system there is an idem- potent number (that is, a number I + 0 such that I2 = I), or every number of the system is nilpotent. || Theorem H.*rj In any hypereomplex number system containing an idem- potent number I, the units ex, e2, ■■ -, en can be so selected that, with reference ♦Presented to the Society February 27, 1904. Received for publication February 27, 1904, and September 6, 1904. t American Journal of Mathematics, vol. 4 (1881), p. 97. This work, entitled Linear Associative Algebra, was published in lithograph in 1870. For an estimate of Peirce's work and for its relation to the work of Study, Scheffers, and others, see articles by H. E. Hawkes in the American Journal of Mathematics, vol. 24 (1902), p. 87, and these Transactions, vol. 3 (1902), p. 312. The latter paper is referred to below when reference is made to Hawkes' work.
    [Show full text]
  • Hypercomplex Numbers
    Hypercomplex numbers Johanna R¨am¨o Queen Mary, University of London [email protected] We have gradually expanded the set of numbers we use: first from finger counting to the whole set of positive integers, then to positive rationals, ir- rational reals, negatives and finally to complex numbers. It has not always been easy to accept new numbers. Negative numbers were rejected for cen- turies, and complex numbers, the square roots of negative numbers, were considered impossible. Complex numbers behave like ordinary numbers. You can add, subtract, multiply and divide them, and on top of that, do some nice things which you cannot do with real numbers. Complex numbers are now accepted, and have many important applications in mathematics and physics. Scientists could not live without complex numbers. What if we take the next step? What comes after the complex numbers? Is there a bigger set of numbers that has the same nice properties as the real numbers and the complex numbers? The answer is yes. In fact, there are two (and only two) bigger number systems that resemble real and complex numbers, and their discovery has been almost as dramatic as the discovery of complex numbers was. 1 Complex numbers Complex numbers where discovered in the 15th century when Italian math- ematicians tried to find a general solution to the cubic equation x3 + ax2 + bx + c = 0: At that time, mathematicians did not publish their results but kept them secret. They made their living by challenging each other to public contests of 1 problem solving in which the winner got money and fame.
    [Show full text]
  • Split Quaternions and Spacelike Constant Slope Surfaces in Minkowski 3- Space
    Split Quaternions and Spacelike Constant Slope Surfaces in Minkowski 3- Space Murat Babaarslan and Yusuf Yayli Abstract. A spacelike surface in the Minkowski 3-space is called a constant slope surface if its position vector makes a constant angle with the normal at each point on the surface. These surfaces completely classified in [J. Math. Anal. Appl. 385 (1) (2012) 208-220]. In this study, we give some relations between split quaternions and spacelike constant slope surfaces in Minkowski 3-space. We show that spacelike constant slope surfaces can be reparametrized by using rotation matrices corresponding to unit timelike quaternions with the spacelike vector parts and homothetic motions. Subsequently we give some examples to illustrate our main results. Mathematics Subject Classification (2010). Primary 53A05; Secondary 53A17, 53A35. Key words: Spacelike constant slope surface, split quaternion, homothetic motion. 1. Introduction Quaternions were discovered by Sir William Rowan Hamilton as an extension to the complex number in 1843. The most important property of quaternions is that every unit quaternion represents a rotation and this plays a special role in the study of rotations in three- dimensional spaces. Also quaternions are an efficient way understanding many aspects of physics and kinematics. Many physical laws in classical, relativistic and quantum mechanics can be written nicely using them. Today they are used especially in the area of computer vision, computer graphics, animations, aerospace applications, flight simulators, navigation systems and to solve optimization problems involving the estimation of rigid body transformations. Ozdemir and Ergin [9] showed that a unit timelike quaternion represents a rotation in Minkowski 3-space.
    [Show full text]
  • Josiah Willard Gibbs
    GENERAL ARTICLE Josiah Willard Gibbs V Kumaran The foundations of classical thermodynamics, as taught in V Kumaran is a professor textbooks today, were laid down in nearly complete form by of chemical engineering at the Indian Institute of Josiah Willard Gibbs more than a century ago. This article Science, Bangalore. His presentsaportraitofGibbs,aquietandmodestmanwhowas research interests include responsible for some of the most important advances in the statistical mechanics and history of science. fluid mechanics. Thermodynamics, the science of the interconversion of heat and work, originated from the necessity of designing efficient engines in the late 18th and early 19th centuries. Engines are machines that convert heat energy obtained by combustion of coal, wood or other types of fuel into useful work for running trains, ships, etc. The efficiency of an engine is determined by the amount of useful work obtained for a given amount of heat input. There are two laws related to the efficiency of an engine. The first law of thermodynamics states that heat and work are inter-convertible, and it is not possible to obtain more work than the amount of heat input into the machine. The formulation of this law can be traced back to the work of Leibniz, Dalton, Joule, Clausius, and a host of other scientists in the late 17th and early 18th century. The more subtle second law of thermodynamics states that it is not possible to convert all heat into work; all engines have to ‘waste’ some of the heat input by transferring it to a heat sink. The second law also established the minimum amount of heat that has to be wasted based on the absolute temperatures of the heat source and the heat sink.
    [Show full text]
  • History of Algebra and Its Implications for Teaching
    Maggio: History of Algebra and its Implications for Teaching History of Algebra and its Implications for Teaching Jaime Maggio Fall 2020 MA 398 Senior Seminar Mentor: Dr.Loth Published by DigitalCommons@SHU, 2021 1 Academic Festival, Event 31 [2021] Abstract Algebra can be described as a branch of mathematics concerned with finding the values of unknown quantities (letters and other general sym- bols) defined by the equations that they satisfy. Algebraic problems have survived in mathematical writings of the Egyptians and Babylonians. The ancient Greeks also contributed to the development of algebraic concepts. In this paper, we will discuss historically famous mathematicians from all over the world along with their key mathematical contributions. Mathe- matical proofs of ancient and modern discoveries will be presented. We will then consider the impacts of incorporating history into the teaching of mathematics courses as an educational technique. 1 https://digitalcommons.sacredheart.edu/acadfest/2021/all/31 2 Maggio: History of Algebra and its Implications for Teaching 1 Introduction In order to understand the way algebra is the way it is today, it is important to understand how it came about starting with its ancient origins. In a mod- ern sense, algebra can be described as a branch of mathematics concerned with finding the values of unknown quantities defined by the equations that they sat- isfy. Algebraic problems have survived in mathematical writings of the Egyp- tians and Babylonians. The ancient Greeks also contributed to the development of algebraic concepts, but these concepts had a heavier focus on geometry [1]. The combination of all of the discoveries of these great mathematicians shaped the way algebra is taught today.
    [Show full text]
  • The Devil of Rotations Is Afoot! (James Watt in 1781)
    The Devil of Rotations is Afoot! (James Watt in 1781) Leo Dorst Informatics Institute, University of Amsterdam XVII summer school, Santander, 2016 0 1 The ratio of vectors is an operator in 2D Given a and b, find a vector x that is to c what b is to a? So, solve x from: x : c = b : a: The answer is, by geometric product: x = (b=a) c kbk = cos(φ) − I sin(φ) c kak = ρ e−Iφ c; an operator on c! Here I is the unit-2-blade of the plane `from a to b' (so I2 = −1), ρ is the ratio of their norms, and φ is the angle between them. (Actually, it is better to think of Iφ as the angle.) Result not fully dependent on a and b, so better parametrize by ρ and Iφ. GAViewer: a = e1, label(a), b = e1+e2, label(b), c = -e1+2 e2, dynamicfx = (b/a) c,g 1 2 Another idea: rotation as multiple reflection Reflection in an origin plane with unit normal a x 7! x − 2(x · a) a=kak2 (classic LA): Now consider the dot product as the symmetric part of a more fundamental geometric product: 1 x · a = 2(x a + a x): Then rewrite (with linearity, associativity): x 7! x − (x a + a x) a=kak2 (GA product) = −a x a−1 with the geometric inverse of a vector: −1 2 FIG(7,1) a = a=kak . 2 3 Orthogonal Transformations as Products of Unit Vectors A reflection in two successive origin planes a and b: x 7! −b (−a x a−1) b−1 = (b a) x (b a)−1 So a rotation is represented by the geometric product of two vectors b a, also an element of the algebra.
    [Show full text]
  • Arithmetical Proofs in Arabic Algebra Jeffery A
    This article is published in: Ezzaim Laabid, ed., Actes du 12è Colloque Maghrébin sur l'Histoire des Mathématiques Arabes: Marrakech, 26-27-28 mai 2016. Marrakech: École Normale Supérieure 2018, pp 215-238. Arithmetical proofs in Arabic algebra Jeffery A. Oaks1 1. Introduction Much attention has been paid by historians of Arabic mathematics to the proofs by geometry of the rules for solving quadratic equations. The earliest Arabic books on algebra give geometric proofs, and many later algebraists introduced innovations and variations on them. The most cited authors in this story are al-Khwārizmī, Ibn Turk, Abū Kāmil, Thābit ibn Qurra, al-Karajī, al- Samawʾal, al-Khayyām, and Sharaf al-Dīn al-Ṭūsī.2 What we lack in the literature are discussions, or even an acknowledgement, of the shift in some authors beginning in the eleventh century to give these rules some kind of foundation in arithmetic. Al-Karajī is the earliest known algebraist to move away from geometric proof, and later we see arithmetical arguments justifying the rules for solving equations in Ibn al-Yāsamīn, Ibn al-Bannāʾ, Ibn al-Hāʾim, and al-Fārisī. In this article I review the arithmetical proofs of these five authors. There were certainly other algebraists who took a numerical approach to proving the rules of algebra, and hopefully this article will motivate others to add to the discussion. To remind readers, the powers of the unknown in Arabic algebra were given individual names. The first degree unknown, akin to our �, was called a shayʾ (thing) or jidhr (root), the second degree unknown (like our �") was called a māl (sum of money),3 and the third degree unknown (like our �#) was named a kaʿb (cube).
    [Show full text]