Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin water Article Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin Warit Charoenlerkthawin 1,2, Matharit Namsai 1,3, Komkrit Bidorn 2, Chaipant Rukvichai 1, Balamurugan Panneerselvam 4 and Butsawan Bidorn 1,2,* 1 Department of Water Resources Engineering, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] (W.C.); [email protected] (M.N.); [email protected] (C.R.) 2 WISE Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] 3 The Royal Irrigation Department, Bangkok 10300, Thailand 4 Department of Civil Engineering, M. Kumarasamy College of Engineering, Karur, Tamilnadu 639113, India; [email protected] * Correspondence: [email protected] Abstract: The Wang River is one of the major tributaries of the Chao Phraya River (CPR) system in Thailand as the key riverine sediment source supplying the Chao Phraya Delta that has experienced severe shoreline retreat in the past six decades. Historical and observed river flow and sediment data measured during 1929–2019 were used to assess the variation in total sediment load along the Wang River and evaluate the effects of three major dam constructions on sediment supplied from the Wang River to the CPR. Results indicated that sediment loads increased toward downstream. Variation in long-term total sediment load (TSL) along the river suggested that construction of the Citation: Charoenlerkthawin, W.; Kiew Lom Dam in 1972 did not cause a reduction in sediment yield in the Wang River Basin because Namsai, M.; Bidorn, K.; Rukvichai, C.; it impounded less than 20% of the average annual runoff, while the Mae Chang and Kiew Koh Ma Panneerselvam, B.; Bidorn, B. Effects Dams caused downstream sediment reduction. These three dams are located in the upper and middle of Dam Construction in the Wang river basins, and their effects on sediment load in the Wang River are ameliorated by additional River on Sediment Regimes in the sediment supplied from the lower basin. Results confirmed that construction of these three major Chao Phraya River Basin. Water 2021, 13, 2146. https://doi.org/10.3390/w dams in the Wang River did not greatly impact sediment supply from the Wang River to the CPR 13162146 system. The dam site and sediment load variation along the river are the primary factors controlling the impact of the dam construction. Academic Editor: Bommanna Krishnappan Keywords: riverine sediment processes; sediment load; bedload; suspended sediment load; hu- man activity Received: 28 June 2021 Accepted: 2 August 2021 Published: 4 August 2021 1. Introduction Publisher’s Note: MDPI stays neutral During the past several decades, changes in riverine sediment flux have been re- with regard to jurisdictional claims in ported due to human activities such as deforestation, damming, water diversion, and sand published maps and institutional affil- mining [1–5]. Modification of riverine transport patterns directly affects sediment load iations. carried to coastal oceans. Dams are one of the common structures widely used in water management systems worldwide. Dam construction disturbs river flow regimes, resulting in a change in sediment transport processes [6–32]. Different degrees in sediment reduction due to damming were observed in many major rivers around the world. For example, Copyright: © 2021 by the authors. construction of the Three Gorges Dam in the Yangtze River [11–18], the High Aswan Dam Licensee MDPI, Basel, Switzerland. in the Nile River [19–21], the Hoa Binh Dam in the Red River [22–25], and many dams This article is an open access article in the Mekong River such as the Manwan Dam [26–32] has caused sediment reduction distributed under the terms and of 60%, 98%, 61–70%, and 40–96%, respectively. Dams impound sediment behind the conditions of the Creative Commons structure and alter river flow and sediment loads downstream; differences in geological Attribution (CC BY) license (https:// setting and hydrological conditions, including dam location, may cause different impacts creativecommons.org/licenses/by/ 4.0/). on sediment load in a river. Regarding the adverse effects of damming on sediment supply Water 2021, 13, 2146. https://doi.org/10.3390/w13162146 https://www.mdpi.com/journal/water Water 2021, 13, 2146 2 of 20 Water 2021, 13, 2146 2 of 20 different impacts on sediment load in a river. Regarding the adverse effects of damming on sediment supply to coastal environments, it has been questioned whether a dam is still to coastal environments, it has been questioned whether a dam is still a proper tool for a proper tool for serving sustainable water management. Therefore, understanding serving sustainable water management. Therefore, understanding changes in sediment changes in sediment transport regimes responding to damming is crucial to develop sus- transport regimes responding to damming is crucial to develop sustainable water and tainable water and coastal management [33–43]. coastal management [33–43]. The Chao Phraya River Basin (Figure 1), the largest in Thailand, has delivered fluvial The Chao Phraya River Basin (Figure1), the largest in Thailand, has delivered fluvial sediments into the Gulf of Thailand forming the Chao Phraya Delta at a progradation rate sediments into the Gulf of Thailand forming the Chao Phraya Delta at a progradation rate of of 1.5 km2/y during the past 2000 years [33]. However, the Chao Phraya Delta has under- 1.5 km2/y during the past 2000 years [33]. However, the Chao Phraya Delta has undergone gone severe shoreline retreat, with an average recession rate of over 7 m/y during the last severe shoreline retreat, with an average recession rate of over 7 m/y during the last six six decades [41]. Many studies have suggested that construction of major dams in the CPR decades [41]. Many studies have suggested that construction of major dams in the CPR tributaries (thetributaries Bhumibol (theand BhumibolSirikit Dams and in Sirikit the Ping Dams and in Nan the PingRivers, and respectively) Nan Rivers, has respectively) has caused a 75–85%caused reduction a 75–85% in sediment reduction yield in sediment to the Chao yield Phraya to the D Chaoelta and Phraya is responsible Delta and is responsible for delta shorelinefor deltarecession shoreline [44–47]. recession Recently, [44 –Namsai47]. Recently, et al. [5] Namsai reported et al.that [5 ]construction reported that construction of the Bhumibolof theDam Bhumibol caused only Dam about caused a only5% reduction about a 5% in reduction sediment in supplied sediment from supplied the from the Ping Ping tributary tributaryto the CPR. to The the CPR.Wang The River Wang is one River of fou is oner major of four CPR major tributaries CPR tributaries that sup- that supplies plies water andwater sediment and sedimentto the Chao to thePhraya Chao Delta. Phraya Construction Delta. Construction of three large of three dams large as dams as the the Kiew Lom KiewDam in Lom 1972, Dam Mae in Chang 1972, Mae Dam Chang in 1979 Dam, and in Kiew 1979, Koh and Ma Kiew Dam Koh in Ma 2008 Dam on in 2008 on the the Wang RiverWang deviated River sediment deviated loads sediment to the loads CPR to by the some CPR degree. by some degree. Figure 1. MapFigure of the 1. Map Chao of Phraya the Chao River Phraya Basin, River Thailand: Basin, Thailand: (a) Wang River(a) Wang Basin River and Basin location and of location dams in of the dams Chao Phraya River system;in (theb) locationsChao Phraya of hydrological River system; stations (b) locations operated of by hydrological the Royal Irrigation stations Department operated by (RID) the Royal and observation Irri- sites in this study.gation Department (RID) and observation sites in this study. Rivers are complicatedRivers are nonlinear complicated dynamic nonlinear systems dynamic [48] systems and changes [48] and in changesgeological in geological and and hydrologicalhydrological features along features each along river eachbasin river influence basin sediment influence sedimentcharacteristics. characteristics. River River sedi- sediment data mentare vital data for are water vital resources for water resourcesmanagement management and environmental and environmental impact eval- impact evaluation. uation. In Thailand,In Thailand, sediment sediment data collected data collected in most in mostrivers rivers are insufficient are insufficient for forwater water re- resources plan- sources planningning and and assessment assessment of of the anthropologicanthropologic impact, impact, especially especially the the effects effects of damof construction dam constructionon fluvialon fluvial sediment sediment loads. loads. Moreover, Moreover, sediment sediment characteristics characteristics along along the the Wang River have Wang River havenot beennot been studied studied and documented. and documented. Therefore, Therefore, the objectives the objectives of this study of this were to (1) exam- study were to (ine1) examine sediment sediment characteristics characteristics of the Wang of the River Wang based River on river based observations, on river ob- (2) evaluate the servations, (2) temporalevaluate the variation temporal of sediment variation loads of sediment along the loads Wang along River, the and Wang (3) systematicallyRiver, assess and (3) systematicallythe impacts assess of threethe impacts major dams of three (Kiew major Lom, dams Mae (Kiew Chang, Lom, and KiewMae Chang Koh Ma), on sediment and Kiew Koh supplyMa) on fromsediment the Wang supply River from to the the Wang CPR system. River to the CPR system. Water 2021, 13, 2146 3 of 20 Water 2021, 13, 2146 3 of 20 2. Materials and Methods 2. Materials and Methods 2.1. Study Area 2.1. Study Area The Wang River Basin is one of the four river basins forming the Chao Phraya River systemThe (Figure Wang 1) River with Basin a drainage is one area of the of fourapproximately river basins 10,800 forming km2 the. The Chao Wang Phraya River Riverorig- system (Figure1) with a drainage area of approximately 10,800 km 2.
Recommended publications
  • Integrated Water Resources Management of Maetang Sub
    lobal f G Ec o o Sucharidtham et al., J Glob Econ 2015, 3:3 l n a o n m DOI: 10.4172/2375-4389.1000150 r u i c o s J $ Journal of Global Economics ISSN: 2375-4389 Research Article OpenOpen Access Access Integrated Water Resources Management of Maetang Sub Watershed, Chiang Mai Province Thunyawadee Sucharidtham1*, Thanes Sriwichailamphan2 and Wichulada Matanboon3 1Department of Applied Economics, National Chung Hsing University, Taiwan 2School of Economics, Chiang Mai University, Thailand 3Social Research Institute, Chiang Mai University, Thailand Abstract Thailand has been managing water in order to solve the water problem in the country for a long time. In 2011, however, Thailand suffered a severe flood, and that means the country’s water management was not successful. Maetaeng watershed is another area that has been receiving a lot of funding to develop and solve the problem of water resources in the area continuously. Still, it was also found that the projects and budgets spent still cannot fix the problems of water resources in the area. This study aims to analyze the events, problems, and factors that can lead to the process development of integrated water resources management in Mae Taeng watershed area, Chiang Mai province. This qualitative study workshop was conducted by collecting basic information, setting a discussion panel for water users, and a workshop to brainstorm for the ideas of water management. The findings showed important factors positively affect the strength of the community, cooperation in water management of the community, and the sacrifices of strong community leaders. The negative impacts include the deforestation of certain ethnic groups, cultural diversity, a lack of awareness in the role of community leaders, as well as insufficient funding.
    [Show full text]
  • Ix Nan River Basin
    IX NAN RIVER BASIN 174 N.1 Nan River at Forestry Office, Nan 348 175 N.2B Nan River at Nai Mueang, Uttaradit 350 176 N.5A Nan River at Mueang, Phitsanulok 352 177 N.7A Nan River at Ban Rat Chang Khwan, Phichit 354 178 N.8A Nan River at Ban Hor Krai, Phichit 356 179 N.10A Nan River at Ban Taphan Hin, Phichit 358 180 N.12A Nan River at Ban Hat Phai, Uttaradit 360 181 N.13A Nan River at Ban Bun Nak, Nan 362 182 N.14A Nan River at Wat Luang Pho Kaeo, Nakhon Sawan 364 183 N.22A Khwae Noi River at Ban Tha Ngam, Phitsanulok 366 184 N.24A Khek River at Ban Wang Nok Aen, Phitsanulok 368 185 N.27A Nan River at Ban Nong Kham, Phitsanulok 370 186 N.28A Khlong Tron at Ban Na Klam, Uttaradit 372 187 N.36 Nam Khwae Noi at Ban Nong Krathao, Phitsanulok 374 188 N.37 Nan River at Ban Thap Krit, Nakhon Sawan 376 189 N.43A Khlong Chom Phu at Ban Chom Phu, Phitsanulok 378 190 N.49 Nam Yao at Ban Nam Yao, Nan 380 191 N54N.54 KhlongKhlong WWangang PPongong aatt BBanan WWangang PPongong, PhPhetchabunetchabun 382 192 N.55 Nam Phak at Ban Tha Sakae, Phitsanulok 384 193 N.58 Nam Fua at Ban Nam Fua, Phitsanulok 386 194 N.59 Lam Nam Khan at Ban Na Pho Na Chan, Phitsanulok 388 195 N.60 Nan River at Ban Hat Song Khwae, Uttaradit 390 196 N.62 Huai Nam Khlung at Ban Huai Tha Nua, Phitsanulok 392 197 N.64 Nan River at Ban Pha Khwang, Nan 394 198 N.65 Nam Yao at Ban Pang Sa, Nan 396 199 N.66 Huai Om Sing at Ban Noen Phoem, Phitsanulok 398 200 N.67 Nan River at Ban Koei Chai, Nakhon Sawan 400 201 N.68 Nan River at Ban Tha Takhian, Phitsunulok 402 202 N.72 Khlong Tron at Ban Wang Pla Kod, Uttaradit 404 203 N.73 Khek River at Ban Tan Tawan, Phetchabun 406 204 N.74 Nan River at Bang Krathum, Phitsanulok 408 205 N.75 Nam Wa at Tha Li Bridge, Nan 410 206 N.81 Nam Khwae Noi at Ban Kaeng Bua Kham , Phitsanulok 412.
    [Show full text]
  • Japan International Cooperation Agency (Jica)
    Project for the Comprehensive Flood Management Plan Main Report for the Chao Phraya River Basin in the Kingdom of Thailand Chapter 9 Strategy of Master Plan Formulation CHAPTER 9 STRATEGY OF MASTER PLAN FORMULATION 9.1 Basic Approach to the Master Plan 9.1.1 Concept of Master Plan The Chao Phraya River Basin is composed of three (3) areas; namely, the Highlands, the Upper Central Plain and the Lower Central Plain. The characteristics of each area and its required measures have been examined to formulate the Master Plan of Flood Disaster Management for the Chao Phraya River Basin. The study area is outlined from flood disaster management aspects as follows: 1) The Highlands are the watersheds of the major tributaries of the Chao Phraya River Basin, which are the Ping, Wang, Yom and Nan rivers. The areas are covered by forest, but the forest area has been devastated and the degraded forest areas have been identified by the Royal Forest Department. For flood disaster management, restoration of the degraded forest areas and the improvement of forest management are required. 2) The Upper Central Plain is located at the Upper Nakhon Sawan and composed of the river basins of the Ping, Wang, Yom, Nan and Chao Phraya. During the 2011 flood in the Upper Central Plain the inundation started along the Yom River in late July and at Nakhon Sawan in early September. The areas are flat and have wide low-lying areas along the rivers, which have a functional role in natural flood retarding basin and partly habitual inundation areas in rainy season, but partly used as agricultural lands in dry season.
    [Show full text]
  • Draft Environmental Report on Thailand
    DRAFT ENVIRONMENTAL REPORT ON THAILAND PREPARED BY THE SCIENCE AND TECHNOLOGY DIVISION, LIBRARY OF CONGRESS WASHINGTON, D.C. AID/DS/ST CONTRACT NO, SA/TOA 1-77 WITH U.S. MAN AND THE BIOSPHERE SECRETARIAT DEPARTMENT OF STATE WASHINGTON, D.C. OCTOBER 1979 DRAFT ENVIRONMENTAL PROFILE OF THAILAND Table of Contents Section page Introduction and Summary ii 1.0 Populat i h,ht'<eristics 1.1 Get i I p ition statistics .................................. 1 1.2 Sp i 1 ibution ........................................... 2 1.3 Ethr .."d religion ......................................... 6 1.4 Education ............ ......................................... 7 1.5 Health ........................................................ 8 1.6 Birth control and population policy.............................9 2.0 The Economy 2.1 General economic statistics .................................... 11 2.2 Economic structure and growth .................................. 13 3.0 Resources and Environmental Problems 3.1 Topography and climate ......................................... 17 3.2 Freshwater ..................................................... 21 3.3 Soils .......................................................... 26 3.4 Minerals ....................................................... 28 3.5 Forests ........................................................ 30 3.6 Coastal zone ................................................... 35 3.7 Wildlife ....................................................... 38 3.8 Fisheries .....................................................
    [Show full text]
  • Chiang Mai Lampang Lamphun Mae Hong Son Contents Chiang Mai 8 Lampang 26 Lamphun 34 Mae Hong Son 40
    Chiang Mai Lampang Lamphun Mae Hong Son Contents Chiang Mai 8 Lampang 26 Lamphun 34 Mae Hong Son 40 View Point in Mae Hong Son Located some 00 km. from Bangkok, Chiang Mai is the principal city of northern Thailand and capital of the province of the same name. Popularly known as “The Rose of the North” and with an en- chanting location on the banks of the Ping River, the city and its surroundings are blessed with stunning natural beauty and a uniquely indigenous cultural identity. Founded in 12 by King Mengrai as the capital of the Lanna Kingdom, Chiang Mai has had a long and mostly independent history, which has to a large extent preserved a most distinctive culture. This is witnessed both in the daily lives of the people, who maintain their own dialect, customs and cuisine, and in a host of ancient temples, fascinating for their northern Thai architectural Styles and rich decorative details. Chiang Mai also continues its renowned tradition as a handicraft centre, producing items in silk, wood, silver, ceramics and more, which make the city the country’s top shopping destination for arts and crafts. Beyond the city, Chiang Mai province spreads over an area of 20,000 sq. km. offering some of the most picturesque scenery in the whole Kingdom. The fertile Ping River Valley, a patchwork of paddy fields, is surrounded by rolling hills and the province as a whole is one of forested mountains (including Thailand’s highest peak, Doi Inthanon), jungles and rivers. Here is the ideal terrain for adventure travel by trekking on elephant back, river rafting or four-wheel drive safaris in a natural wonderland.
    [Show full text]
  • Assessment of Tourist Site Potential and Application of Environmental
    $4.60 ASSESSMENT OF TOURIST SITE POTENTIAL AND APPLICATION OF ENVIRONMENTAL MANAGEMENT SYSTEM FOR ECOTOURISM DEVELOPMENT IN SRI NAN NATIONAL PARK. NAN PROVINCE Miss Tatsanawalai Utarasakul A Dissertation submitted in Partial Futfillment of the Requirements for the Degree of Doctorof Philosophy program in Environmentalscience (l nterdisciplinary Program) Graduate School Chulalongkom Univeaity Academic Year 2007 Copyright of Chutatongkom University I I Ts8T0g BpwrornBlusu lurttL]o3gt u3g 0992 truEstuE B-u rBraEL nBps u suurL BpmrEU g?ulr (ulguruunu) Bopuonlgu ury rBrrgrsEr3ru u grug[nUsu Eru r BrrErfu fu gnru SupnnwunuBsru ]gr]pnncpnErpgnrEmr g ulrusureU Bpcmr1tcrt ]m nqru!n*, nqql, Er3lpnnunuunlu orss gl oBpl lolrsLuLnrulBru opl Bopu cnlgsru U1^ruu nn:cy uh:c Juru: un cBpt $qrlpnnlonrwnugn$:sFsru Thesis Title ASSESSMENT OF TOURIST SITE POTENTIAL AND APPLICATION OF ENVIRONMENTAL MANAGEMENT SYSTEM FOR ECOTOURISM DEVELOPMENT IN SRINAN NATIONAL PARK. NAN PROVINCE By Miss Tatsanawalai Utarasakul Field of Study Environmental Science Thesis Advisor Associate Professor Kumthorn Thirakhupt, Ph.D. Thesis Co-advisor Assistant Professor Art-ong Pradatsundarasar, Ph.D. Accepted by the Graduate School, Chulalongkorn Universig in Partial Fulfillment of the Requirements for the Doctoral Degree htTfi: Dean of the Graduate School (A.ssistant Professor M.R. Kalaya Tingsabadh.Ph.D.) THESIS COMMITTEE e. 1,6 ;. ;.h.r4p. :l.|- .... ... chairman (Assistant Professor Chamwit Kositanont. Ph.D.) Thesis Advisor (Associate Professor Kumthom Thirakhupt. Ph.D. ) ?d"b Thesis Co-advisor (Assistant Professor Art-ong Pradatsundarasar. Ph.D.) it* ExternalMember Member (Associate Professor Thavivongse Sriburi, Ph.D.) It.. i-' ....(?....:.. LEs t i rt09 r'*u bt ssgognt u s ;'a,li; i! ;;,;; tif 91 Ellst tnugsuup ......St-.:"g.....::gnp*tbr,sspeEBuu""""""""""""ossz" U n*Upi,6n6p}u BuJuBnE....
    [Show full text]
  • Thailand Flood 2011, One Year Retrospective
    Thailand Flood 2011 One Year Retrospective October 2012 Table of cOnTenTs ExEcutivE Summary 1 SuScEptibility of chao phraya baSin to floods 2 thailand monSoonS and cyclones 3 corrElation bEtween EnSo (El niño-SouthErn Oscillation) and thailand monSoonal rainfall 4 incrEased riSk of thailand typhoon activity and rainfall during la niña 5 incrEased numbEr of typhoonS and rainfall amount impacting thailand in 2011 6 rolE of thE dams 7 2011 flood EvEnt 9 concEntration of inSurEd valuE in induStrial parks 10 propErty and RelatEd Supply chain LOSSES with induStrial parks 11 thrEat to bangkok 14 Summary of inSurEd losses 15 why arE thE damages So Significant? 16 guy carpEntEr thailand flood modEl 16 currEnt StatuS of RecovEry Efforts 17 RecovEry progress by induStrial park 18 Japanese firmS rEcovEring 18 execuTive summary in 2011, thailand experienced its worst flooding in years, leaving more than 800 people dead and causing severe damage across northern and central regions of the country. the floods, lasting a few months, severely damaged and disrupted manufacturing operations in thailand. flooding also forced seven huge industrial estates in central regions to close, causing damage to the industrial sector in the billions of u.S. dollars. it is interesting to note that prior to 2011, none of the industrial parks in thailand had been flooded over the past 40 years. during the last major flood in 1995, the dykes in the industrial parks kept floodwaters out. in last year’s flooding, however, heavy machinery was reportedly not brought in to raise the height of dykes for fear of damaging them and instead sandbags were used, which ultimately gave way to the floodwaters.
    [Show full text]
  • Planning and Managing Water Resources Development in Thailand Page 1 of 8
    Water Budgets and Water Regions: Planning and Managing Water Resources Development in Thailand Page 1 of 8 Published in TDRI Quarterly Review Vol. 9 No. 4 December 1994, pp. 14-23 Editor: Linda M. Pfotenhauer Water Budgets and Water Regions: Planning and Managing Water Resources Development in Thailand Donald Alford* addresses some long-held notions about water supply and water use, gives hydrological analyses of the Chao Phraya river system, and provides recommendations for improved water planning and management in Thailand "It is important to distinguish between what 'everybody knows' and what is empirically established. 'Everybody knows' that ... population pressure has been increasing rapidly; that people need fuel and animals need fodder; that too many trees have been felled and that, as a result, runoff rates have accelerated, silt loads have increased, downstream canals and rivers have been clogged, flooding has had greater destructive effect, and the topsoil of the mountains has been washed into the seas...... In a few places, no doubt, all of this is true. Yet much of what 'everybody knows' is not scientifically documented, and some of it is probably not true" (Cool, 1983). Water, together with soil, is a life support resource. As long as both are protected and conserved, a country retains options for future development. When either, or both, are degraded by misuse, a country loses these options. Water enters into all aspects of human life—social, cultural, economic, legal, and technical, and is thus perceived by various segments of society in very different ways, depending upon the primary interest of the various user groups.
    [Show full text]
  • Floodplain Sediment from a 30-Year-Recurrence Flood in 2005 of the Ping River in Northern Thailand S
    Floodplain sediment from a 30-year-recurrence flood in 2005 of the Ping River in northern Thailand S. H. Wood, A. D. Ziegler To cite this version: S. H. Wood, A. D. Ziegler. Floodplain sediment from a 30-year-recurrence flood in 2005 of the Ping River in northern Thailand. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 2007, 4 (5), pp.3839-3868. hal-00298904 HAL Id: hal-00298904 https://hal.archives-ouvertes.fr/hal-00298904 Submitted on 18 Oct 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hydrol. Earth Syst. Sci. Discuss., 4, 3839–3868, 2007 Hydrology and www.hydrol-earth-syst-sci-discuss.net/4/3839/2007/ Earth System HESSD © Author(s) 2007. This work is licensed Sciences 4, 3839–3868, 2007 under a Creative Commons License. Discussions Papers published in Hydrology and Earth System Sciences Discussions are under Floodplain sediment, open-access review for the journal Hydrology and Earth System Sciences 30-year flood, Ping River, Thailand S. H. Wood and A. D. Ziegler Floodplain sediment from a Title Page 30-year-recurrence flood in 2005 of the Abstract Introduction Ping River in northern Thailand Conclusions References Tables Figures S.
    [Show full text]
  • Small Hydropower Development and Legal Limitations in Thailand
    Small Hydropower Development and Legal Limitations in Thailand Thanaporn Supriyasilp 1,*, Kobkiat Pongput 2, Challenge Robkob3 1 Department of Civil Engineering, Faculty of Engineering, Chiang Mai University. Thailand. 50200. Science and Technology Research Institute, Chiang Mai University. Thailand. 50200. 2 Water Resources Engineering Department of Kasetsart University, Bangkhen, Bangkok, Thailand. 10900. 3 Biodiversity-based Economy Development Office (Public Organization), Laksi, Bangkok, Thailand. 10210. * Corresponding author. Tel: +66 53942461, Fax: +66 53942478, E-mail: [email protected], [email protected] Abstract: The northern region of Thailand which consists of the Ping, Wang, Yom, and Nan river basins has potential for small hydropower development. The Ping and Wang River Basins are used as case studies. Apart from technical aspects such as electricity generation, engineering and economic aspects, the socio-economics, environment, law and regulation, and stakeholder involvement aspects are also taking into consideration. There are 64 potential projects in the Ping River Basin. The overall electricity potential is about 211 MW with annual power generation of about 720 GWh. For the Wang River Basin, there are 19 potential projects with about 6 MW and an annual power generation of about 30 GWh. However, most of these potential projects are located in forested areas with legal limitations. The various types of forests can result in different levels of legal obstacles. Therefore, the procedure required for permission is varied and is dependent on both the desired development and the forest in question. The laws and regulations related to project development in forested areas are reviewed and are summarized on a case by case basis in a way that is easily understood and accessible for others to use as a reference for other areas.
    [Show full text]
  • Did the Construction of the Bhumibol Dam Cause a Dramatic Reduction in Sediment Supply to the Chao Phraya River?
    water Article Did the Construction of the Bhumibol Dam Cause a Dramatic Reduction in Sediment Supply to the Chao Phraya River? Matharit Namsai 1,2, Warit Charoenlerkthawin 1,3, Supakorn Sirapojanakul 4, William C. Burnett 5 and Butsawan Bidorn 1,3,* 1 Department of Water Resources Engineering, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] (M.N.); [email protected] (W.C.) 2 The Royal Irrigation Department, Bangkok 10300, Thailand 3 WISE Research Unit, Chulalongkorn University, Bangkok 10330, Thailand 4 Department of Civil Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand; [email protected] 5 Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA; [email protected] * Correspondence: [email protected]; Tel.: +66-2218-6455 Abstract: The Bhumibol Dam on Ping River, Thailand, was constructed in 1964 to provide water for irrigation, hydroelectric power generation, flood mitigation, fisheries, and saltwater intrusion control to the Great Chao Phraya River basin. Many studies, carried out near the basin outlet, have suggested that the dam impounds significant sediment, resulting in shoreline retreat of the Chao Phraya Delta. In this study, the impact of damming on the sediment regime is analyzed through the sediment variation along the Ping River. The results show that the Ping River drains a mountainous Citation: Namsai, M.; region, with sediment mainly transported in suspension in the upper and middle reaches. By contrast, Charoenlerkthawin, W.; sediment is mostly transported as bedload in the lower basin. Variation of long-term total sediment Sirapojanakul, S.; Burnett, W.C.; flux data suggests that, while the Bhumibol Dam does effectively trap sediment, there was only a Bidorn, B.
    [Show full text]
  • Food Source for Hydropsychid Larvae During an Algae Bloom in Nan River, Nan Province, Thailand (Trichoptera: Hydropsychidae)
    Zoosymposia 18: 009–016 (2020) ISSN 1178-9905 (print edition) https://www.mapress.com/j/zs ZOOSYMPOSIA Copyright © 2020 · Magnolia Press ISSN 1178-9913 (online edition) https://doi.org/10.11646/zoosymposia.18.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:D579A2B4-0C6F-419C-AF36-4A815ED0FF8F Food Source for Hydropsychid Larvae during an Algae Bloom in Nan River, Nan Province, Thailand (Trichoptera: Hydropsychidae) PORNPIMON BUNTHA1,2, SIRIPEN TRAICHAIYAPORN1,3 & DECHA THAPANYA1,4,* 1Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 �[email protected]; https://orcid.org/0000-0003-0014-4437 3 �[email protected]; https://orcid.org/0000-0002-0882-9505 4 �[email protected]; https://orcid.org/0000-0002-5996-6323 *Corresponding author: �[email protected] Abstract During November–March, blooms of Kai algae genera are commonly seen on rocks and cobblestones in the Nan River, providing habitat for hydropsychid larvae. This study attempted to determine a dietary relationship between the caddisflies and Kai algae by comparing gut contents of hydropsychid larvae between areas with and without Kai algae (Kai-blooming and Control sites). Fourteen specimens of Hydropsyche and Potamyia larvae were collected in the Kai-blooming and Control sites, respectively. Food items in the foreguts were classified as Kai algae (KA), other filamentous algae (OFA), diatoms (DT) and other items (OI). Although the main food type of larvae in both sites was Kai algae, the proportion of KA in larval foreguts from Kai-blooming sites was significantly higher than in those from Control sites (p < 0.05). In addition, larvae in the Kai-blooming area had a significantly lower proportion of OI than in the Control area (p < 0.05).
    [Show full text]