6 Determinants

Total Page:16

File Type:pdf, Size:1020Kb

6 Determinants 6 Determinants One person’s constant is another person’s variable. Susan Gerhart While the previous chapters had their focus on the exploration of the logic and structural properties of projective planes this chapter will focus on the question: “what is the easiest way to calculate with geometry?”. Many textbooks on geometry introduce coordinates (or homogeneous coordinates) and base all analytic computations on calculations on this level. An analytic proof of a geometric theorem is carried out in the parameter space. For a different parameterization of the theorem the proof may look entirely different. In this chapter we will see, that this way of thinking is very often not the most economic one. The reason for this is that the coordinates of a geometric object are in a way a basis dependent artifact and carry not only information on the geometric object but also on the relation of this object with respect to the basis of the coordinate system. For instance if a point is represented by its homogeneous coordinates (x, y, z) we have encoded its relative position to a frame of reference. From the perspective of projective geometry the perhaps most important fact that one can say about the point is simply the fact that it is a point. All other properties are not projectively invariant. Similarly if we consider three points p1 =(x1,y1,z1), p2 =(x2,y2,z2), p3 =(x3,y3,z3), the statement that these points are collinear reads: x y z + x y z + x y z x y z + x y z + x y z =0, 1 2 3 2 3 1 3 1 2 − 1 3 2 2 1 3 3 2 1 a3 3 determinant. Again from a structural point of view this expression is by far× too complicated. It would be much better to encode the collinearity directly into a short algebraic expression and deal with this. The simplest way to do this is to change the role of primary and derived algebraic objects. 100 6 Determinants If we consider the determinants themselves as “first class citizens” the state- ment of collinearity simply reads det(p1,p2,p3) = 0 where the determinant is considered as an unbreakable unit rather than just a shorthand for the above expanded formula. In this chapter we will explore the roles determinants play within projective geometry. 6.1 A “determinantal” point of view Before we start with the treatment of determinants on a more general level we will review and emphasize the role of determinants in topics we have treated so far. One of our first encounters of determinants was when we expressed the collinearity of points in homogeneous coordinates. Three points p1,p2,p3 are 2 collinear in RP if and only if det(p1,p2,p3) = 0. One can interpret this fact either geometrically (if p1,p2,p3 are collinear, then the corresponding vectors of homogenous coordinates are coplanar) or algebraically (if p1,p2,p3 are collinear, then the system of linear equations p1,l = p2,l = p3,l =0 has a non-trivial solution l = (0, 0, 0)). Dually we can# say$ that# the$ determinant# $ % of three lines l1,l2,l3 vanishes if and only if these lines have a point in common (this point may be at infinity). A second instance where determinants played a less obvious role occurred when we calculated the join of two points p and q by the cross-product p q. We will give an algebraic interpretation of this. If (x, y, z) is any point on× the line p q then it satisfies ∨ p1 p2 p3 det q1 q2 q3 =0. x y z If we develop the determinant by the last row, we can rewrite this as p p p p p p det 2 3 x det 1 3 y + det 1 2 z =0. q2 q3 · − q1 q3 · q1 q2 · % & % & % & Or expressed as a scalar product p p p p p p (det 2 3 , det 1 3 , det 1 2 ), (x, y, z) =0. q2 q3 − q1 q3 q1 q2 ' % & % & % & ( We can geometrically reinterpret this equation by saying that p p p p p p (det 2 3 , det 1 3 , det 1 2 ). q2 q3 − q1 q3 q1 q2 % & % & % & must be the homogeneous coordinates of the line l through p and q since every vector (x, y, z) on this line satisfies l, (x, y, z) = 0. This vector is nothing else than the cross-product p q. # $ × 6.2 A few useful formulas 101 A third situation in which determinants played a fundamental role was in the definition of cross ratios. Cross ratios were defined as the product of two determinants divided by the product of two other determinants. We will later on see that all three circumstances described here will have nice and interesting generalizations: In projective d-space coplanarity will be expressed as the vanishing of a • (d + 1) (d + 1) determinant. In projective× d-space joins and meets will be nicely expressed as vectors • of sub-determinants. Projective invariants can be expressed as certain rational functions of de- • terminants. 6.2 A few useful formulas We will now see how we can translate geometric constructions into expressions that only involve determinants and base points of the construction. Since from now on we will have to deal with many determinants at the same time we first introduce a useful abbreviation. For three points p, q, r RP2 we set: ∈ p1 p2 p3 [p, q, r] := det q q q . 1 2 3 r1 r2 r3 Similarly, we set for two points in RP1 p p [p, q] := det 1 2 . q q % 1 2& We call an expression of the form [...]abracket. Here are a few fundamental and useful properties of 3 3 determinants: × Alternating sign-changes: [p, q, r] = [q, r, p] = [r, p, q]= [p, r, q]= [r, q, p]= [q, p, r]. − − − Linearity (in every row and column): [λ p + µ p , q, r]=λ [p , q, r]+µ [p , q, r]. · 1 · 2 · 1 · 2 Pl¨uckers Formula: [p, q, r]= p, q r . # × $ The last formula can be considered as a shorthand for our developments on cross products, scalar products and determinants in the previous section. 102 6 Determinants c2 c1 l1 q l2 q Fig. 6.1. Two applications of Pl¨uckers µ. 6.3 Pl¨ucker’s µ We now introduce a very useful trick with which one can derive formulas for geometric objects that should simultaneously satisfy several constraints. The trick was frequently used by Pl¨ucker and is sometimes called Pl¨ucker’s µ. Imagine you have an equation f: Rd R whose zero-set describes a geo- metric object. For instance, think of a line→ equation (x, y, z) a x+b y +c z or a circle equation in the plane (x, y) (x a)2 +(y b))→2 r·2. Often· one· is interested in objects that share intersection)→ − points wit− h a− given reference object and in addition pass trough a third object. If the linear combination λ f(p)+µ g(p) again describes an object of the same type then one can apply· Pl¨uckers· µ. All objects described by p λ f(p)+µ g(p) )→ · · will pass through the common zeros of f and g. This is obvious since whenever f(p) = 0 and g(p) = 0 any linear combination is also 0. If one in addition wants to have the object pass through a specific point q then the linear combination p g(q) f(p) f(q) g(p) )→ · − · is the desired equation. To see this simply plugin the point q into the equation. Then one gets g(q) f(q) f(q) g(q) = 0. With this trick· we can− very· easily describe the homogeneous of a line " that passes through the intersection of two other lines l1 and l2 and through a third point q by l ,q l l ,q l . # 2 $ 1 −#1 $ 1 Testing whether this line passes through q yields: l ,q l l ,q l ,q = l ,q l ,q l ,q l ,q =0 ## 2 $ 1 −#1 $ 1 $ # 2 $# 1 $ − # 1 $# 2 $ which is obviously true. Later on we will make frequent use of this trick whenever we need a fast and elegant way to calculate a specific geometric 6.3 Pl¨ucker’s µ 103 [a, b, d] c [a, b, c] b [c, d, b][e, f, a] [c, d, a][e, f, b] = 0 · − · − b d b e d c c a a f Fig. 6.2. Conditions for lines meeting in a point. object. We will now use Pl¨uckers µ to calculate intersections of lines spanned by points. What is the intersection the two lines spanned by the point pairs (a, b) and (c, d). On the one hand the point has to be on the line a b thus it must be of the form λ a + µ b it has also to be on c d hence it∨ must be of the form ψ c + φ d.· Identifying· these two expressions∨ and resolving for λ, µ, ψ and φ would· be· one possibility to solve the problem. But we can directly read of the right parameters by using (a dual version of) Pl¨uckers µ. The property that encodes that a point p is on the line c d is simply [c, d, p] = 0. Thus we immediately obtain that the point: ∨ [c, d, b] a [c, d, a] b · − · must be the desired intersection.
Recommended publications
  • 2D and 3D Transformations, Homogeneous Coordinates Lecture 03
    2D and 3D Transformations, Homogeneous Coordinates Lecture 03 Patrick Karlsson [email protected] Centre for Image Analysis Uppsala University Computer Graphics November 6 2006 Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 1 / 23 Reading Instructions Chapters 4.1–4.9. Edward Angel. “Interactive Computer Graphics: A Top-down Approach with OpenGL”, Fourth Edition, Addison-Wesley, 2004. Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 2 / 23 Todays lecture ... in the pipeline Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 3 / 23 Scalars, points, and vectors Scalars α, β Real (or complex) numbers. Points P, Q Locations in space (but no size or shape). Vectors u, v Directions in space (magnitude but no position). Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 4 / 23 Mathematical spaces Scalar field A set of scalars obeying certain properties. New scalars can be formed through addition and multiplication. (Linear) Vector space Made up of scalars and vectors. New vectors can be created through scalar-vector multiplication, and vector-vector addition. Affine space An extended vector space that include points. This gives us additional operators, such as vector-point addition, and point-point subtraction. Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 5 / 23 Data types Polygon based objects Objects are described using polygons. A polygon is defined by its vertices (i.e., points). Transformations manipulate the vertices, thus manipulates the objects. Some examples in 2D Scalar α 1 float. Point P(x, y) 2 floats. Vector v(x, y) 2 floats. Matrix M 4 floats.
    [Show full text]
  • 2-D Drawing Geometry Homogeneous Coordinates
    2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane.
    [Show full text]
  • Projective Geometry Lecture Notes
    Projective Geometry Lecture Notes Thomas Baird March 26, 2014 Contents 1 Introduction 2 2 Vector Spaces and Projective Spaces 4 2.1 Vector spaces and their duals . 4 2.1.1 Fields . 4 2.1.2 Vector spaces and subspaces . 5 2.1.3 Matrices . 7 2.1.4 Dual vector spaces . 7 2.2 Projective spaces and homogeneous coordinates . 8 2.2.1 Visualizing projective space . 8 2.2.2 Homogeneous coordinates . 13 2.3 Linear subspaces . 13 2.3.1 Two points determine a line . 14 2.3.2 Two planar lines intersect at a point . 14 2.4 Projective transformations and the Erlangen Program . 15 2.4.1 Erlangen Program . 16 2.4.2 Projective versus linear . 17 2.4.3 Examples of projective transformations . 18 2.4.4 Direct sums . 19 2.4.5 General position . 20 2.4.6 The Cross-Ratio . 22 2.5 Classical Theorems . 23 2.5.1 Desargues' Theorem . 23 2.5.2 Pappus' Theorem . 24 2.6 Duality . 26 3 Quadrics and Conics 28 3.1 Affine algebraic sets . 28 3.2 Projective algebraic sets . 30 3.3 Bilinear and quadratic forms . 31 3.3.1 Quadratic forms . 33 3.3.2 Change of basis . 33 1 3.3.3 Digression on the Hessian . 36 3.4 Quadrics and conics . 37 3.5 Parametrization of the conic . 40 3.5.1 Rational parametrization of the circle . 42 3.6 Polars . 44 3.7 Linear subspaces of quadrics and ruled surfaces . 46 3.8 Pencils of quadrics and degeneration . 47 4 Exterior Algebras 52 4.1 Multilinear algebra .
    [Show full text]
  • Chapter 12 the Cross Ratio
    Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have been led to these ideas by various problems at hand, but let us step back and take a look at one important point of view of the big picture. 12.1 Klein's Erlanger program In 1872, Felix Klein, one of the leading mathematicians and geometers of his day, in the city of Erlanger, took the following point of view as to what the role of geometry was in mathematics. This is from his \Recent trends in geometric research." Let there be given a manifold and in it a group of transforma- tions; it is our task to investigate those properties of a figure belonging to the manifold that are not changed by the transfor- mation of the group. So our purpose is clear. Choose the group of transformations that you are interested in, and then hunt for the \invariants" that are relevant. This search for invariants has proved very fruitful and useful since the time of Klein for many areas of mathematics, not just classical geometry. In some case the invariants have turned out to be simple polynomials or rational functions, such as the case with the cross ratio. In other cases the invariants were groups themselves, such as homology groups in the case of algebraic topology. 12.2 The projective line In Chapter 11 we saw that the collineations of a projective plane come in two \species," projectivities and field automorphisms.
    [Show full text]
  • Homogeneous Representations of Points, Lines and Planes
    Chapter 5 Homogeneous Representations of Points, Lines and Planes 5.1 Homogeneous Vectors and Matrices ................................. 195 5.2 Homogeneous Representations of Points and Lines in 2D ............... 205 n 5.3 Homogeneous Representations in IP ................................ 209 5.4 Homogeneous Representations of 3D Lines ........................... 216 5.5 On Plücker Coordinates for Points, Lines and Planes .................. 221 5.6 The Principle of Duality ........................................... 229 5.7 Conics and Quadrics .............................................. 236 5.8 Normalizations of Homogeneous Vectors ............................. 241 5.9 Canonical Elements of Coordinate Systems ........................... 242 5.10 Exercises ........................................................ 245 This chapter motivates and introduces homogeneous coordinates for representing geo- metric entities. Their name is derived from the homogeneity of the equations they induce. Homogeneous coordinates represent geometric elements in a projective space, as inhomoge- neous coordinates represent geometric entities in Euclidean space. Throughout this book, we will use Cartesian coordinates: inhomogeneous in Euclidean spaces and homogeneous in projective spaces. A short course in the plane demonstrates the usefulness of homogeneous coordinates for constructions, transformations, estimation, and variance propagation. A characteristic feature of projective geometry is the symmetry of relationships between points and lines, called
    [Show full text]
  • 2 Lie Groups
    2 Lie Groups Contents 2.1 Algebraic Properties 25 2.2 Topological Properties 27 2.3 Unification of Algebra and Topology 29 2.4 Unexpected Simplification 31 2.5 Conclusion 31 2.6 Problems 32 Lie groups are beautiful, important, and useful because they have one foot in each of the two great divisions of mathematics — algebra and geometry. Their algebraic properties derive from the group axioms. Their geometric properties derive from the identification of group operations with points in a topological space. The rigidity of their structure comes from the continuity requirements of the group composition and inversion maps. In this chapter we present the axioms that define a Lie group. 2.1 Algebraic Properties The algebraic properties of a Lie group originate in the axioms for a group. Definition: A set gi,gj,gk,... (called group elements or group oper- ations) together with a combinatorial operation (called group multi- ◦ plication) form a group G if the following axioms are satisfied: (i) Closure: If g G, g G, then g g G. i ∈ j ∈ i ◦ j ∈ (ii) Associativity: g G, g G, g G, then i ∈ j ∈ k ∈ (g g ) g = g (g g ) i ◦ j ◦ k i ◦ j ◦ k 25 26 Lie Groups (iii) Identity: There is an operator e (the identity operation) with the property that for every group operation g G i ∈ g e = g = e g i ◦ i ◦ i −1 (iv) Inverse: Every group operation gi has an inverse (called gi ) with the property g g−1 = e = g−1 g i ◦ i i ◦ i Example: We consider the set of real 2 2 matrices SL(2; R): × α β A = det(A)= αδ βγ = +1 (2.1) γ δ − where α,β,γ,δ are real numbers.
    [Show full text]
  • Euclidean Versus Projective Geometry
    Projective Geometry Projective Geometry Euclidean versus Projective Geometry n Euclidean geometry describes shapes “as they are” – Properties of objects that are unchanged by rigid motions » Lengths » Angles » Parallelism n Projective geometry describes objects “as they appear” – Lengths, angles, parallelism become “distorted” when we look at objects – Mathematical model for how images of the 3D world are formed. Projective Geometry Overview n Tools of algebraic geometry n Informal description of projective geometry in a plane n Descriptions of lines and points n Points at infinity and line at infinity n Projective transformations, projectivity matrix n Example of application n Special projectivities: affine transforms, similarities, Euclidean transforms n Cross-ratio invariance for points, lines, planes Projective Geometry Tools of Algebraic Geometry 1 n Plane passing through origin and perpendicular to vector n = (a,b,c) is locus of points x = ( x 1 , x 2 , x 3 ) such that n · x = 0 => a x1 + b x2 + c x3 = 0 n Plane through origin is completely defined by (a,b,c) x3 x = (x1, x2 , x3 ) x2 O x1 n = (a,b,c) Projective Geometry Tools of Algebraic Geometry 2 n A vector parallel to intersection of 2 planes ( a , b , c ) and (a',b',c') is obtained by cross-product (a'',b'',c'') = (a,b,c)´(a',b',c') (a'',b'',c'') O (a,b,c) (a',b',c') Projective Geometry Tools of Algebraic Geometry 3 n Plane passing through two points x and x’ is defined by (a,b,c) = x´ x' x = (x1, x2 , x3 ) x'= (x1 ', x2 ', x3 ') O (a,b,c) Projective Geometry Projective Geometry
    [Show full text]
  • 1 Homogeneous Coordinates and Vanishing Points
    CSE 152: Solutions to Assignment 1 Spring 2006 1 Homogeneous Coordinates and Vanishing Points In class, we discussed the concept of homogeneous coordinates. In this example, we will confine ourselves to the real 2D plane. A point (x, y)> on the real 2D plane can be represented in homo- geneous coordinates by a 3-vector (wx, wy, w)>, where w 6= 0 is any real number. All values of w 6= 0 represent the same 2D point. Dividing out the third coordinate of a homogeneous point x y > (x, y, z) converts it back to its 2D equivalent: , . z z Consider a line in the 2D plane, whose equation is given by ax + by + c = 0. This can equiv- alently be written as l>x = 0, where l = (a, b, c)> and x = (x, y, 1)>. Noticing that x is a ho- mogeneous representation of (x, y)>, we define l as a homogeneous representation of the line ax + by + c = 0. Note that the line (ka)x + (kb)y + (kc) = 0 for k 6= 0 is the same as the line ax + by + c = 0, so the homogeneous representation of the line ax + by + c = 0 can be equivalently given by (a, b, c)> or (ka, kb, kc)> for any k 6= 0. All points (x, y) that lie on the line ax + by + c = 0 satisfy the equation l>x = 0, thus, we can say that a condition for a homogeneous point x to lie on the homogeneous line l is that their dot product is zero, that is, l>x = 0.
    [Show full text]
  • Homogeneous Coordinates
    Homogeneous Coordinates Jules Bloomenthal and Jon Rokne Department of Computer Science The University of Calgary Introduction Homogeneous coordinates have a natural application to Computer Graphics; they form a basis for the projective geometry used extensively to project a three-dimensional scene onto a two- dimensional image plane. They also unify the treatment of common graphical transformations and operations. The graphical use of homogeneous coordinates is due to [Roberts, 1965], and an early review is presented by [Ahuja, 1968]. Today, homogeneous coordinates are presented in numerous computer graphics texts (such as [Foley, Newman, Rogers, Qiulin and Davies]); [Newman], in particular, provides an appendix of homogeneous techniques. [Riesenfeld] provides an excellent introduction to homogeneous coordinates and their algebraic, geometric and topological significance to Computer Graphics. [Bez] further discusses their algebraic and topological properties, and [Blinn77, Blinn78] develop additional applications for Computer Graphics. Homogeneous coordinates are also used in the related areas of CAD/CAM [Zeid], robotics [McKerrow], surface modeling [Farin], and computational projective geometry [Kanatani]. They can also extend the number range for fixed point arithmetic [Rogers]. Our aim here is to provide an intuitive yet theoretically based discussion that assembles the key features of homogeneous coordinates and their applications to Computer Graphics. These applications include affine transformations, perspective projection, line intersections, clipping, and rational curves and surfaces. For the sake of clarity in accompanying illustrations, we confine our 1 2 development to two dimensions and then use the intuition gained to present the application of homogeneous coordinates to three dimensions. None of the material presented here is new; rather, we have tried to collect in one place diverse but related methods.
    [Show full text]
  • Introduction to Homogeneous Coordinates
    COMP 558 lecture 3 Sept. 8, 2009 Last class we considered smooth translations and rotations of the camera coordinate system and the resulting motions of points in the image projection plane. These two transformations were expressed mathematically in a slightly different way. A translation was expressed by a vector subtraction, and a rotation was expressed by a matrix multiplication. Introduction to Homogeneous coordinates Today we will learn about an alternative way to represent translations and rotations which allows them both to be expressed as a matrix multiplication. This has certain computational and notational conveniences, and eventually leads us to a wider and interesting class of transformations. Suppose we wish to translate all points (X,Y,Z) by adding some constant vector (tx, ty, tz) to all coordinates. So how do we do it? The trick is to write out scene points (X,Y,Z) as points in ℜ4, and we do so by tacking on a fourth coordinate with value 1. We can then translate by performing a matrix multiplication: X + tx 1 0 0 tx X Y + ty 0 1 0 ty Y = . Z + t 0 0 1 t Z z z 1 000 1 1 We can perform rotations using a 4× 4 matrix as well. Rotations matrices go into the upper-left 3 × 3 corner of the 4 × 4 matrix: ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 0001 i.e. nothing interesting happens in the fourth row or column. Last lecture we looked at rotations about the X,Y,Z axes only. We will discuss other rotation matrices later today. Notice that we can also scale the three coordinates: σX X σX 0 0 0 X σY Y 0 σY 0 0 Y = .
    [Show full text]
  • Homogeneous Coordinates
    Homogeneous Coordinates Jules Bloomenthal and Jon Rokne Department of Computer Science The University of Calgary Introduction Homogeneous coordinates have a natural application to Computer Graphics; they form a basis for the projective geometry used extensively to project a three-dimensional scene onto a two- dimensional image plane. They also unify the treatment of common graphical transformations and operations. The graphical use of homogeneous coordinates is due to [Roberts, 1965], and an early review is presented by [Ahuja, 1968]. Today, homogeneous coordinates are presented in numerous computer graphics texts (such as [Foley, Newman, Rogers, Qiulin and Davies]); [Newman], in particular, provides an appendix of homogeneous techniques. [Riesenfeld] provides an excellent introduction to homogeneous coordinates and their algebraic, geometric and topological significance to Computer Graphics. [Bez] further discusses their algebraic and topological properties, and [Blinn77, Blinn78] develop additional applications for Computer Graphics. Homogeneous coordinates are also used in the related areas of CAD/CAM [Zeid], robotics [McKerrow], surface modeling [Farin], and computational projective geometry [Kanatani]. They can also extend the number range for fixed point arithmetic [Rogers]. Our aim here is to provide an intuitive yet theoretically based discussion that assembles the key features of homogeneous coordinates and their applications to Computer Graphics. These applications include affine transformations, perspective projection, line intersections, clipping, and rational curves and surfaces. For the sake of clarity in accompanying illustrations, we confine our 1 2 development to two dimensions and then use the intuition gained to present the application of homogeneous coordinates to three dimensions. None of the material presented here is new; rather, we have tried to collect in one place diverse but related methods.
    [Show full text]
  • 15-462: Computer Graphics
    !"#$%&'()*+,-./0(102,3456 72.3(8*0()*+,-./0(102,3456 ! #$%&'()*$+)#$,-. / 01'2$+( / 345-2&$6()*$+)'5+71()-6,)(5+*-'1( 8 9:%;&'&2)145-2&$6( 8 <-+-:12+&')145-2&$6( / =-+.'162+&')>$$+,&6-21( !" #$%&'(')*+,-.)'/01 2 !"#$%&%'()*+,'%-./ .3+*.*4.5*)/*6+7'0+* (-38+1*.06*1-37.(+19 2 #0*!:;*.*(-38+*(.0*<+*6+7'0+6*<5 0=1;2>*?*" 7/3*1/$+*1(.&.3*7-0()'/0*0 /7*1 .06*29 2 #0*@:;*.*1-37.(+*(.0*<+*6+7'0+6*<5 0=1;234>*?*" 7/3*1/$+*1(.&.3*7-0()'/0*0 /7*1;*2;*.06*49 !" #$%&'(')*+,-.)'/01 2 34+*5-0()'/0*! +6.&-.)+1*)/*7*.)*+6+89*%/'0)* /0*)4+*(-86+*/8*1-85.(+:*.0;*')*+6.&-.)+1*)/* .*0/0<=+8/*8+.&*0-$>+8*.)*.&&*/)4+8*%/'0)1? 2 @-&)'%&9'0A*! >9*.*0/0<=+8/*(/+55'('+0)* %8+1+86+1*)4'1*%8/%+8)9:*1/*B+*(.0*8+B8')+ !C":#D*E*7 .1*$!C":#D*E*7 5/8*.09*0/0<=+8/*$? 2 34+*'$%&'+;*(-86+*'1*-0.55+()+;? !" f(x,y) + - "#$%&'&()*+,-(&./0 !"#$%&'#()*+,#-.$+/0 1 2-.$3435*67*43(4$+ 1 2-.$3435*67*$38+ 1 2-.$3435*97*.$#8+ !! #$%&'(')*+,-.)'/01 2 3+*(.&&*)4+1+*+,-.)'/01*5'$%&'(')6 7+(.-1+* .&)4/-84*)4+9*'$%&9*.*(-:;+*/:*1-:<.(+=* )4+9*(.00/)*+>%&'(')&9*8+0+:.)+*)4+*%/'0)1* )4.)*(/$%:'1+*')? 2 #0*/:@+:*)/*8+0+:.)+*%/'0)1=*A+*0++@* .0/)4+:*</:$B !" #$%$&'(%)*+',-$()./0 1 !"#"$%&#'()%*+"&',-. .22'%+(3'+*$4$5)6)(7+(.+ 8'/'%$('+*./()/-.-0+*-%9'0+$/:+0-%2$*'0; 1 <.%+*-%9'0=+4$%$&'(%)*+',-$()./0+($>'+(3'+ 2.%& / ?+0@&A 1)2) 3@&A 4 ?+5@&A 1 <.%+BC+0-%2$*'0=+D'+3$9' / ?+0@.=&A 1)2)3@.=&A 4 ?+5@.=&A !" #$%$&'(%)*+',-$()./0 1 23'+!"#"$%&%#' 4.%+(3'0'+',-$()./0+$%'+ 0*$5$%0+(3$(+%$/6'+.7'%+$+*./()/-.-0+ 89.00):5;+)/4)/)('<+)/('%7$5= 1 >$%;)/6+(3'+9$%$&'('%0+.7'%+(3')%+'/()%'+ )/('%7$50+0&..(35;+6'/'%$('0+'7'%;+9.)/(+ ./+(3'+*-%7'+.%+0-%4$*'= !" #$%&'(')*+,-.)'/01 !"#$%&'#()*+,#-.$+/0 1 2#(#-+3(45*67*$48+ 1 2#(#-+3(45*/."+(+ !" #$%&'()*$+)#$,-.
    [Show full text]