Control of Foodborne Pathogens by Bacteriocin-Like Substances from Lactobacillus Spp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Taxonomic Note on the Genus Lactobacillus
Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept. -
International Journal of Food Microbiology 291 (2019) 189–196
International Journal of Food Microbiology 291 (2019) 189–196 Contents lists available at ScienceDirect International Journal of Food Microbiology journal homepage: www.elsevier.com/locate/ijfoodmicro Biopreservation potential of antimicrobial protein producing Pediococcus spp. towards selected food samples in comparison with chemical T preservatives ⁎ Sinosh Skariyachan , Sanjana Govindarajan R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore-560 078, Karnataka, India ARTICLE INFO ABSTRACT Keywords: The present study elucidates biopreservation potential of an antimicrobial protein; bacteriocin, producing Pediococcus spp. Pediococcus spp. isolated from dairy sample and enhancement of their shelf life in comparison with two chemical Biopreservation preservatives. The antimicrobial protein producing Pediococcus spp. was isolated from selected diary samples Chemical preservative and characterised by standard microbiology and molecular biology protocols. The cell free supernatant of Microbiological quality Pediococcus spp. was applied on the selected food samples and monitored on daily basis. Antimicrobial potential Enhanced shelf life of the partially purified protein from this bacterium was tested against clinical isolates by well diffusion assay. Antimicrobial potential The preservation efficiency of bacteriocin producing isolate at various concentrations was tested against selected food samples and compared with two chemical preservatives such as sodium sulphite and sodium benzoate. The bacteriocin was partially purified and the microbiological qualities of the biopreservative treated food samples were assessed. The present study suggested that 100 μg/l of bacteriocin extract demonstrated antimicrobial potential against E. coli and Shigella spp. The treatment with the Pediococcus spp. showed enhanced preservation at 15 mL/kg of selected samples for a period of 15 days in comparison with sodium sulphite and sodium benzoate. -
PDF Download
Curr. Top. Lactic Acid Bac. Probio. Vol. 2, No. 1, pp. 34~37(2014) Diversity of Lactic Acid Bacteria in the Korean Traditional Fermented Beverage Shindari, Determined Using a Culture-dependent Method In-Tae Cha1†, Hae-Won Lee1,2†, Hye Seon Song1, Kyung June Yim1, Kil-Nam Kim1, Daekyung Kim1, Seong Woon Roh1,3*, and Young-Do Nam3,4* 1Jeju Center, Korea Basic Science Institute, Jeju 690-756, Korea 2World Institute of Kimchi, Gwangju 503-360, Korea 3University of Science and Technology, Daejeon 305-350, Korea 4Fermentation and Functionality Research Group, Korea Food Research Institute, Sungnam 463-746, Korea Abstract: The fermented food Shindari is a low-alcohol drink that is indigenous to Jeju island, South Korea. In this study, the diversity of lactic acid bacteria (LAB) in Shindari was determined using a culture-dependent method. LAB were culti- vated from Shindari samples using two different LAB culture media. Twenty-seven strains were randomly selected and iden- tified by 16S rRNA gene sequence analysis. The identified LAB strains comprised 6 species within the Enterococcus, Lactobacillus and Pediococcus genera. Five of the species, namely Enterococcus faecium, Lactobacillus fermentum, L. plan- tarum, Pediococcus pentosaceus and P. acidilactici were isolated from MRS medium, while 1 species, L. pentosus, was iso- lated from Rogosa medium. Most of the isolated strains were identified as members of the genus Lactobacillus (78%). This study provides basic microbiological information on the diversity of LAB and provides insight into the ecological roles of LAB in Shindari. Keywords: lactic acid bacteria, indigenous fermented food, Shindari, culture-dependent method The lactic acid bacteria (LAB) are acid-tolerant, low- tural profile of a food item. -
A Pediococcus Strain to Rescue Honeybees by Decreasing Nosema
A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects Elodie Peghaire, Anne Mone, Frédéric Delbac, Didier Debroas, Frédérique Chaucheyras-Durand, Hicham El Alaoui To cite this version: Elodie Peghaire, Anne Mone, Frédéric Delbac, Didier Debroas, Frédérique Chaucheyras-Durand, et al.. A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects. Biology, MDPI 2020, 163, pp.138-146. 10.1016/j.pestbp.2019.11.006. hal-02935692 HAL Id: hal-02935692 https://hal.inrae.fr/hal-02935692 Submitted on 10 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pesticide Biochemistry and Physiology 163 (2020) 138–146 Contents lists available at ScienceDirect Pesticide Biochemistry and Physiology journal homepage: www.elsevier.com/locate/pest A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects T Elodie Peghairea, Anne Monéa, Frédéric Delbaca, Didier Debroasa, ⁎ ⁎ Frédérique Chaucheyras-Durandb, , Hicham El Alaouia, a Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000S Clermont-ferrand, France b R&D Animal Nutrition, Lallemand, Blagnac, France ARTICLE INFO ABSTRACT Keywords: Honeybees ensure a key ecosystemic service by pollinating many agricultural crops and wild plants. -
Profile of Microflora “Jambal Roti” (Traditional Fermented Fish) with Pediococcus Sp (Pediococcus Acidilactici F11 and Pe
Profile of Microflora “Jambal Roti” (Traditional Fermented Fish) with Pediococcus sp (Pediococcus acidilactici F11 and Pediococcus halophillus FNCC-0032) Aplication and 25% NaCl Merkuria Karyantina1,2,, Sri Anggrahini3, Tyas Utami34 and Endang S Rahayu34 1 Faculty of Technology and Food Industry, Slamet Riyadi University, Sumpah Pemuda Street No 18, Joglo, Kadipiro, Surakarta 2 Doctoral Program in Agricultural Technology, Gadjah Mada University, Flora Street No 1, Bulaksumur, Caturtunggal, Yogyakarta 3Faculty of Agricultural Technology, Gadjah Mada University, Flora Street No 1, Bulaksumur, Caturtunggal, Yogyakarta 4Center for Food and Nutrition Studies, Gadjah Mada University, Yogyakarta, Indonesia 2Corresponding author: [email protected] and [email protected] ABSTRACT “Jambal roti” is a fermented fish product from manyung fish, which is quite famous in Java. The term “jambal roti” refers to the salting and drying of fish. Manyung fishes (Arius thalassinus) are easily damaged so that they need to be preserved by salting. Traditional production uses 30% salt, so the product is too salty. Decreased use of salt, allows the development of pathogenic bacteria. This study examined the effect of NaCl concentration (25%) on microflora profile during making of “jambal roti”. The results showed that the total lactic acid bacteria in de Mann Rogosa and Sharpe medium had an increase (2 log cycles) in all aplication. Total bacteria in Plate Count Agar medium and Total enterobacteriaceae (in VRBA medium) tends to be stable. Total Salmonella- Shigella pathogen in SSA media tends decrease (3 log cycles). The data shows that Pediococcus sp is able to grow up to 25% salinity and suppressed the growth of Salmonella-Shigella. -
Evaluation of Probiotic Properties of Pediococcus Acidilactici M76 Producing Functional Exopolysaccharides and Its Lactic Acid Fermentation of Black Raspberry Extract
microorganisms Article Evaluation of Probiotic Properties of Pediococcus acidilactici M76 Producing Functional Exopolysaccharides and Its Lactic Acid Fermentation of Black Raspberry Extract Young-Ran Song, Chan-Mi Lee, Seon-Hye Lee and Sang-Ho Baik * Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 561-756, Korea; [email protected] (Y.-R.S.); [email protected] (C.-M.L.); [email protected] (S.-H.L.) * Correspondence: [email protected]; Tel.: +82-63-270-3857; Fax: +82-63-270-3854 Abstract: This study aimed to determine the probiotic potential of Pediococcus acidilactici M76 (PA- M76) for lactic acid fermentation of black raspberry extract (BRE). PA-M76 showed outstanding probiotic properties with high tolerance in acidic GIT environments, broad antimicrobial activity, and high adhesion capability in the intestinal tract of Caenorhabditis elegans. PA-M76 treatment resulted in significant increases of pro-inflammatory cytokine mRNA expression in macrophages, indicating that PA-M76 elicits an effective immune response. When PA-M76 was used for lactic acid fermentation of BRE, an EPS yield of 1.62 g/L was obtained under optimal conditions. Lactic acid fermentation of BRE by PA-M76 did not significantly affect the total anthocyanin and flavonoid content, except for a significant increase in total polyphenol content compared to non-fermented BRE (NfBRE). However, fBRE exhibited increased DPPH radical scavenging activity, linoleic acid peroxidation inhibition rate, and ABTS scavenging activity of fBRE compared to NfBRE. Among the 28 compounds identified Citation: Song, Y.-R.; Lee, C.-M.; Lee, in the GC-MS analysis, esters were present as the major groups. -
An Anti-Shigella Dysenteriae Bacteriocin from Pediococcus Pentosaceus MTCC 5151 Cheese Isolate
R. AGRAWAL, S. DHARMESH Turk J Biol 36 (2012) 177-185 © TÜBİTAK doi:10.3906/biy-1010-142 An anti-Shigella dysenteriae bacteriocin from Pediococcus pentosaceus MTCC 5151 cheese isolate Renu AGRAWAL1, Shylaja DHARMESH2 1Department of Food Microbiology, Central Food Technological Research Institute, Mysore 570020 - INDIA 2Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570020 - INDIA Received: 13.10.2010 Abstract: A cheese isolate Pediococcus pentosaceus lactic acid bacterium, which has been deposited at the Microbial Type Culture Collection Centre Chandigarh with the accession number MTCC 5151, was tested for anti-Shigella dysenteriae activity and the bacteriocin was characterized. Th e protein band was observed with tricine sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) as a single band with a molecular mass of 23 kDa. Th is is a new and novel bacteriocin that inhibits S. dysenteriae and has not yet been reported from P. pentosaceus. It was purifi ed on a Sephacryl column and the active fraction specifi c for anti-Shigella dysenteriae with 23 kDa was found and confi rmed via liquid chromatography mass spectrometry (LC-MS). Th e eff ect of various physical parameters on bacteriocin activity was also studied, with the optimum conditions being determined at a pH level of 5.5 with an 18-h-grown culture. Key words: Bacteriocin, Pediococcus pentosaceus, purifi cation, anti-Shigella dysenteriae Introduction side eff ects. Pediococci spp. are saprophytes and are Shigellosis is a disease occurring in unhygienic known to preserve products by inhibiting pathogens conditions. As Shigella has acquired multiple (5). Detailed biochemical characterization of such antimicrobial resistances, it presents a challenge for bacteriocins has not been performed to evaluate their eff ective clinical management (1). -
Taxonomic Status of Lactic Acid Bacteria in Wine and Key Characteristics to Differentiate Species
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University: SUNJournals Taxonomic Status of Lactic Acid Bacteria in Wine and Key Characteristics to Differentiate Species L.M.T. Dicks* and A. Endo Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa Submitted for publication: March 2009 Accepted for publication: May 2009 Key words: Taxonomy; malolactic bacteria; key characteristics Oenococcus oeni is the best malolactic bacterium adapted to low pH and the high SO2 and ethanol concentrations in wine. Leuconostoc mesenteroides and Leuconostoc paramesenteroides (now classified asWeissella paramesenteroides) have also been isolated from wine. Pediococcus damnosus is not often found in wine and is considered a contaminant of high pH wines. Pediococcus inopinatus, Pediococcus parvulus and Pediococcus pentosaceus have occasionally been isolated from wines. Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus hilgardii (previously Lactobacillus vermiforme), Lactobacillus fructivorans (previously Lactobacillus trichoides and Lactobacillus heterohiochii) and Lactobacillus fermentum have been isolated from most wines. Lactobacillus hilgardii and L. fructivorans are resistant to high acid and alcohol and have been isolated from spoiled fortified wines. Lactobacillus vini, Lactobacillus lindneri, Lactobacillus nagelii and Lactobacillus kunkeei have been described more recently. The latter two species are -
Whole Genome Sequence of Lactic Acid Bacterium
b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 8 (2 0 1 7) 395–396 ht tp://www.bjmicrobiol.com.br/ Genome Announcement Whole genome sequence of lactic acid bacterium Pediococcus acidilactici strain S1 a a a b b Gun-Seok Park , Sung-Jun Hong , Byung Kwon Jung , Seulki Park , Hyewon Jin , b,c a,d,∗ b,c,∗∗ Sang-Jae Lee , Jae-Ho Shin , Han-Seung Lee a Kyungpook National University, School of Applied Biosciences, Daegu, Republic of Korea b Silla University, College of Medical and Life Sciences, Major in Food Biotechnology, Busan, Republic of Korea c Silla University, The Research Center for Extremophiles and Marine Microbiology, Busan, Republic of Korea d Kyungpook National University, Institute for Phylogenomics and Evolution, Daegu, Republic of Korea a r t i c l e i n f o a b s t r a c t Article history: Pediococcus acidilactici strain S1, a lactic acid-fermenting bacterium, was isolated from Received 13 June 2016 makgeolli—a Korean traditional fermented alcoholic beverage. Here we report the Accepted 18 September 2016 1,980,172 bp (G + C content, 42%) genome sequence of Pediococcus acidilactici strain S1 with Available online 4 February 2017 1,525 protein-coding sequences (CDS), of which 47% could be assigned to recognized func- tional genes. The genome sequence of the strain S1 might provide insights into the genetic Associate Editor: John McCulloch basis of the lactic acid bacterium with alcohol-tolerant. -
Malolactic Fermentation- Importance of Wine Lactic Acid Bacteria in Winemaking
LALLEMAND MALOLACTIC FERMENTATION- IMPORTANCE OF In an effort to compile the latest usable OF WINE LACTIC ACID BACTERIA IN WINEMAKING – IMPORTANCE MALOLACTIC FERMENTATION WINE LACTIC ACID BACTERIA information regarding malolactic fermen- tation, Lallemand published Malolactic IN WINEMAKING Fermentation in Wine - Understanding the Science and the Practice in 2005. This addition is an update to that publi- cation with new and relevant information. We intend it to be a compendium of both scientific and applied information of practical use to winemakers from all geo- graphic areas and wine growing regions. It is the desire and intention of the authors to supply the industry with information winemaking professionals can use in the pursuit and furtherance of their art. 2015 For the most recent information, log onto www.lallemandwine.com ISBN 978-2-9815255-0-5 ISBN 978-2-9815255-0-5 9 782981 525505 9 782981 525505 CouvImposéeBible June 1, 2015 8:29 AM 200p 0,46 Production coordinator: Claude Racine Copy editing: Judith Brown and Grant Hamilton Designer: François Messier Printing: Groupe Quadriscan Certain research published or cited in this publication was funded in whole or in part by Lallemand Inc. © 2015 Lallemand Inc. All rights reserved. No part of this book may be reproduced in any form or by any means whatsoever, whether electronic, mechanical, photocopying or record- ing, or otherwise, without the prior written permission of Lallemand Inc. Legal deposit Bibliothèque et Archives nationales du Québec 2015 Library and Archives Canada 2015 ISBN 978-2-9815255-0-5 DISCLAIMER: Lallemand has compiled the information contained herein and, to the best of its knowledge, the information is true and accurate. -
Growth Rate Alterations of Human Colorectal Cancer Cells by 157 Gut
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.14.876367; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Growth rate alterations of human colorectal cancer cells by 157 gut bacteria 1,# 2,# 1 3 Rahwa Taddese , Daniel R. Garza , Lilian N. Ruiter , Marien I. de Jonge , Clara 4 4 1 2,5,* 1,* Belzer , Steven Aalvink , Iris D. Nagtegaal , Bas E. Dutilh , Annemarie Boleij 1 Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands. 2 Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands. 3 Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands 4 Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands. 5 Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands. #,* Equal contribution Corresponding authors: [email protected], [email protected] Keywords: colorectal cancer, cell proliferation, MTT assay, human microbiome, secretomes 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.14.876367; this version posted December 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
The Effects of Pediococcus Acidilactici As a Probiotic on Growth Performance and Survival Rate of Great Sturgeon, Huso Huso (Linnaeus, 1758)
The effects of Pediococcus acidilactici as a probiotic on growth performance and survival rate of great sturgeon, Huso huso (Linnaeus, 1758) Item Type article Authors Zare, A.; Azari-Takami, G.; Taridashti, F.; Khara, H. Download date 02/10/2021 06:14:21 Link to Item http://hdl.handle.net/1834/37754 Iranian Journal of Fisheries Sciences 16(1) 150-161 2017 The effects of Pediococcus acidilactici as a probiotic on growth performance and survival rate of great sturgeon, Huso huso (Linnaeus, 1758) Zare A.1; Azari-Takami G.2; Taridashti F.3*; Khara H.1 Received: August 2015 Accepted: July 2016 Abstract This study was accomplished to investigate the effect of Artemia urmiana nauplii enriched with Pediococcus acidilactici as probiotic on growth performance and survival rate of great sturgeon, Huso huso. Artemia nauplii were enriched with P. acidilactici at a final concentration of 1010 CFU mL-1 in three time dependent treatments as 3 h (T3), 6 h (T6), 9 h (T9), and one non-enriched Artemia as the control treatment. All treatments were considered in triplicates. Since the nauplii enriched for 9 hours (T9) had the most significant CFU/g compared to other treatments (p<0.05), juvenile beluga at the stage of first feeding with the mean body weight of 48 ± 1 mg (mean ± SE) were fed with nauplii enriched for 9 hours (T9) and the control diet, with three tanks assigned to each diet. No significant differences were observed in final weight, final length, condition factor, specific growth rate, average daily growth, and survival rate for fish fed with T9 compared to those in the control group (p>0.05).