Taxonomic Studies on the Genus Pediococcus "

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic Studies on the Genus Pediococcus J. Gen. App!. Microbic!. Vol. 5. No. 3 1959 " TAXONOMIC STUDIES ON THE GENUS PEDIOCOCCUS " ATSUSHI NAKAGAWA* and KAKUO KITAHARA Division of Zymomycology Receivedfor publicationApril 6. 1959 Since BALCKE(1) first named the tetrads-forming cocci in spoiled beer as Pediococcus ceyevisiae, various specific names (2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12) have been applied by many investigators to those strains of pedio- cocci associated with brewery products. In recent years, PEDERSON(13, 14) recognized the importance of pe- diococci in fermenting vegetables such as sauerkraut and pickles, and attempted the classification of many pediococci. According to the opinion of PEDERSONappearing in BERGEY'S Manual (15), the genus Pediococcus is included in the family Lactobacillaceae and is summarized into two species : Pediococcus ceyevisiae BALCKEand Pedio- coccus acidilactici LINDNER. The former species which is capable of growing in beer and hopped wort includes pediococci distributing in beer as well as in fermenting vegetables. But this opinion is still a debatable problem and is not yet settled today. More recently, two curious species were described by Japanese workers. One is mevalonic acid requiring strain, Pediococcus mevalovorus, which has been isolated by KITAHARA& NAKAGAWA(16) from beer, and the other is strongly halophilic Pediococcus soyae isolated from soy-mashes by SAKAGUCHI (17) and YAMAZATO(18) independently at almost the same time, which can- not be included into any of the above mentioned species. We have therefore attempted taxonomic studies on the pediococci iso- lated from mash, yeasts and beer including our unpublished strains and also on the authentic strains supplied by many investigators. As a conclusion, we have found that the pediococci growing in beer are quite different from those of fermenting vegetables in many taxonomic properties, and we wish to propose that the genus Pediococcus should at least be classified into five species, i.e., P. ceyevisiae, P. acidilactici, P. pentosaceus, P. halophilus and P. urinae-equi. The taxonomic properties of these species and the reason for classifying them into five species are described in herein as follows. EXPERIMENTAL 1. Strains Taxonomic studies have been made on the strains isolated by the * Asahi Breweries Co. Ltd., Tokyo. 95 96 A. NAKAGAWAand K. KITAHARA present authors, and those supplied by many investigators. These strains are described as follows. Strain No. Source § Acid sensitive group (Pediococcus urinae-equi & P. halophilus) *P . halophilus MEES (1934) .... P. hal..... anchovy (Tetracoccus No. 1 ORLA-JENSEN1919) pickles *P . urinae-equi MEES (1934) .... P. u.e..... horse-urine Tetrakokken Stamm von S. STRESE & S. WINDIscH (1955) (19) .... beer, brewing .... C, F, T, Sp-2 & Sp-4 -water, horse-urine °A -38 , A-40, N-21 & A-28 isolated by A. NAKAGAWA & K. KITAHARA(1956) .... yeasts *P . soyae K. SAKAGUCHI(1958) .... d-2, d-8 & dl-2.... soy-mash P. soyae K. YAMAZATO(1957) (18) .... soy-mash § Intermediate group (P. pentosaceus & P. acidilactici) *P . pentosaceus MEES (1934) .... P, pt..... yeast (Tetracoccus No. 2 ORLA-JENSEN1919) *P . damnosus Delft ....904.... beer ? *P . damnosus var. perniciosus Delft ....908.... beer ? *P . cerevisiae PEDERSON(1949) .... fermenting .... B-168, E-66, F-166, K-64, N-82, N-88 & P-611 vegetables *Streptococcus citrovorus Hammer (1920).... cit..... dairy products *Leuconostoc citrovorum ATCC .... 8081 .... dairy products P. lindneri Henneberg isolated by K. KITAHARA(1935) .... P. lin .... sake mash *Leuconostoc mesenteroides ATCC 8042 .... P-60.... °S-20 by A . NAKAGAWA& K. KITAHARA(1956) .... mash § Alkali sensitive group (P, cerevisiae) *P . damnosus MEES (1934) .... M-1.... beer *P . damnosus var. perniciosus MEES (1934) .. M-3.... beer *P3 damnosus var , diastaticus ANDREWS& GILLILAND(195 2) .... P. di..... beer P. mevalovorus KITAHARA& NAKAGAWA (1958) .... A-41 .... beer °8 -8 ,11-2,14-5,19-2.... forty strains isolated by A. NAKAGAWA & K. KITAHARA(1957) .... yeasts & beer ° .Unpublished strain(s), * .... Received strain(s). Remarks : Two strains, "904" & "908", were obtained through the courtesy of Dr. PEDERSON. 2. Method of isolation Many techniques intended for th e isolationIso a ion oto microorganisms inm pure culture have been reported. Whe n only one kind of organism predominates comparativelymicroflora,its pure isolation is in easy although such a case rarely occurs. 1959 "Taxonomic Studies on the Genus Pediococcus " 97 In most cases owing to the existence of various undesired organisms, a pure culture is directly employed upon consideration of the best condition for the desired organism, or after enrichment cultures. In order to isolate pediococci directly in pure culture, the following method has been generally adopted. Each sample is inoculated in the most favourable natural media (pH 5.0 to 7.0) at 25, 30° or higher, employing aerobic or anaerobic (C02-atmos- phere) plate culture or a high-layered agar-culture. In case of the aerobic plate culture (generally with the addition of calcium carbonate), the majority of the organisms are capable of develop- ing into colonies, while those of P. cerevisiae can hardly or very slowly develop into visible colonies. In order to inhibit the growth of other mixed organisms, chemical substances are often added to the media. Sodium-acetate •3H2O (2.0%), used as a buffer, inhibits the growth of catalase-positive bacteria such as Gram-negative Enterobacteriaceae and Gram-positive Tetracoccus (34). Antibiotics, for instance actidion (5 p.p.m.), fermicidin (10 p.p.m.) and eurocidin (30 p.p.m.) (17), are also employed to avoid the growth of yeasts and molds. Anaerobic and a high-layered cultures suppress the growth of aerobic organisms such as Bacillus, Acetobacter and molds. When a desired organism, such as P. cerevisiae, propagates more slowly than other mixed organisms in enrichment culture, its pure isolation becomes a very difficult matter. Table 1. Methods employed in pure culture for each species of Pediococcus. 98 A. NAKAGAWAand K. KITAHARA VOL. 5 We have almost succeeded in obtaining a pure culture for the slowly propagating cocci by inoculating them into the following media, and cultur- ing anaerobically or in a Burn-tube. Media: End-fermented beer with the addition of sodium acetate and D- mannose*, pH 5.0. Table 1 presents just an example of the conditions in enrichment or direct pure culture for each species of Pediococcus, although this is not always the best condition for propagation. 3. General characteristics As the genus Pediococcus is included in the family Lactobacillaceae (15), it possesses the same general properties as true lactic acid bacteria and the general characteristics of each strain are described as pediococci in this section. Cultural characters The propagating velocity of pediococci slows down in the order of P. pentosaceus, P. acidilactici, P. urinae-equi, P, halophilus and P. cerevisiae under both (micro) aerobic and anaerobic atmosphere, however, the growth of P. cerevisiae under anaerobic conditions (C02-atmosphere) is much mark- able than aerobic. Liquid culture : No strain can grow on liquid surface. Color of the cell sediments is usually white but occasionally yellowish, and the sediments are granular to viscous in the order of P. cerevisiae, P. acidilactici, P. pentosaceus, P. urinae-equi and P. halophilus. Among the five species, acid-sensitive strains belonging to P. halo- philus and P. urinae-equi tend to produce plenty of cell-sediments in the media. The growth media of the strains belonging to P, cerevisiae generally remain clear except P. perniciosus (5, 9), but others often make the media turbid especially at the time when cultures are young. Solid culture: Stab culture: all strains grow uniformly along the stab-canal in fili- f orm or papillate. Strains belonging to P. cerevisiae and P. soyae do not show any surface growth while other strains reveal either raised or leafy surface growth. Streak culture: strains show poor sweaty growth and their colonies are semi-transparent. When strains of P. cerevisiae are cultured in a high-layer, round or lens shaped colonies often develop from the bottom of the test tube. * Fermentable-sugar of the cocci and non fermentable-sugar of hop-tolerant Lacto- bacillus. 1959 '' Taxonomic Studies on the Genus Pediococcus '' 99 Growth in milk: Unlike the strains of Streptococcus, the majority of the strains do not show any change in milk (pH 5.6) or in Litmus-milk. But some strains belonging to P. urinae-equi (19), those in fermenting vege- tables (14) and P. citrovorum (15) ferment milk slowly with slightly producing an acid. Growth in sugar-free media: Strains generally show good growth in cabohydrate-free natural media except those of P. cerevisiae. Morphology and Physiology All strains are spheres, 0.6-0.8, or 0.8-1.0 ,u in diameter and never show any ovoid forms. Most of them appear as tetrad or diploid forms but never occur in chained forms. Capsuls are sometimes or often observed. Like other lactic acid bacteria, they are Gram-positive, non-motile, non- spore-forming, and do not reduce nitrates or liquefy gelatin. Indol formation also is never detected. Catalase reaction : Hitherto, all true lactic acid bacteria are considered to be catalase negative. There is only one exception on some strains belonging to Pediococcus pentosaceus as reported by FELTON, EVANS & NIVEN, (20). But even such strains give only weak positive reactions and their activity to the enzyme is not so distinct in contrast to the so-called Tetracoccus (34) which morphologically resembles to Pediococcus. Like P. pentosaceus, some strains of P. urinae-equi exhibited a some- what positive catalase reaction when they were cultured in the media con- taining a trace of sugar like Y.T.G. media (20). + + .... A-38, A-40 (P. urinae-equi), P. pt. B-168, E-66, K-64, N-82, N-88 (P. pentosaceus). + .... P-611, cit., 8081 (P. pentosaceus). -- .... P.u.e., A-28, N-21 (P, urinae-equi P.
Recommended publications
  • Rheonix® – Beer Spoileralert™ Assay
    Food and Drink Innovation Rheonix® Inc. Evaluation of Rheonix® Beer SpoilerAlert™ Assay www.campdenbri.co.uk 1 Summary In this study the Rheonix Beer SpoilerAlert™ Assay (PCR technology) using the Rheonix® Encompass Optimum™ Workstation was evaluated. The specificity of the assay was good with all the target organisms (P. claussenii, L. brevis, S. cerevisiae/pastorianus) being efficiently detected in beer samples. Additionally, beer-spoiler associated markers were detected at low concentrations, this being a very useful feature for brewers. However, although the assay is designed to identify Brettanomyces bruxellensis, detection of this organism in our tests was poor (NB one of the 2 strains, thought to be Brettanomyces bruxellensis, used in the study was subsequently identified as Saccharomyces cerevisiae var diastaticus). The system was found to be very sensitive with cell numbers down to ~ 103 cells/ml being detected. But a disadvantage, common for PCR based analyses, is the detection of dead non-culturable cell DNA. This resulted in the sterile beer sample showing some false positive results for yeast, a problem that may be circumvented by the manufacturer fine tuning the detection/reporting thresholds. Testing of a number of common brewery sample matrices showed that good results were obtained with bright beer and wort samples. However, when analysing yeast– containing samples (e.g. yeast slurry, fermentation sample) there was competition of the species reactions with those for yeast cells resulting in a suppression of the species signals. However, any spoiler-markers were consistently detected in all matrices. The system was very easy to use and required minimal sample handling and hands-on time.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • International Journal of Food Microbiology 291 (2019) 189–196
    International Journal of Food Microbiology 291 (2019) 189–196 Contents lists available at ScienceDirect International Journal of Food Microbiology journal homepage: www.elsevier.com/locate/ijfoodmicro Biopreservation potential of antimicrobial protein producing Pediococcus spp. towards selected food samples in comparison with chemical T preservatives ⁎ Sinosh Skariyachan , Sanjana Govindarajan R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore-560 078, Karnataka, India ARTICLE INFO ABSTRACT Keywords: The present study elucidates biopreservation potential of an antimicrobial protein; bacteriocin, producing Pediococcus spp. Pediococcus spp. isolated from dairy sample and enhancement of their shelf life in comparison with two chemical Biopreservation preservatives. The antimicrobial protein producing Pediococcus spp. was isolated from selected diary samples Chemical preservative and characterised by standard microbiology and molecular biology protocols. The cell free supernatant of Microbiological quality Pediococcus spp. was applied on the selected food samples and monitored on daily basis. Antimicrobial potential Enhanced shelf life of the partially purified protein from this bacterium was tested against clinical isolates by well diffusion assay. Antimicrobial potential The preservation efficiency of bacteriocin producing isolate at various concentrations was tested against selected food samples and compared with two chemical preservatives such as sodium sulphite and sodium benzoate. The bacteriocin was partially purified and the microbiological qualities of the biopreservative treated food samples were assessed. The present study suggested that 100 μg/l of bacteriocin extract demonstrated antimicrobial potential against E. coli and Shigella spp. The treatment with the Pediococcus spp. showed enhanced preservation at 15 mL/kg of selected samples for a period of 15 days in comparison with sodium sulphite and sodium benzoate.
    [Show full text]
  • PDF Download
    Curr. Top. Lactic Acid Bac. Probio. Vol. 2, No. 1, pp. 34~37(2014) Diversity of Lactic Acid Bacteria in the Korean Traditional Fermented Beverage Shindari, Determined Using a Culture-dependent Method In-Tae Cha1†, Hae-Won Lee1,2†, Hye Seon Song1, Kyung June Yim1, Kil-Nam Kim1, Daekyung Kim1, Seong Woon Roh1,3*, and Young-Do Nam3,4* 1Jeju Center, Korea Basic Science Institute, Jeju 690-756, Korea 2World Institute of Kimchi, Gwangju 503-360, Korea 3University of Science and Technology, Daejeon 305-350, Korea 4Fermentation and Functionality Research Group, Korea Food Research Institute, Sungnam 463-746, Korea Abstract: The fermented food Shindari is a low-alcohol drink that is indigenous to Jeju island, South Korea. In this study, the diversity of lactic acid bacteria (LAB) in Shindari was determined using a culture-dependent method. LAB were culti- vated from Shindari samples using two different LAB culture media. Twenty-seven strains were randomly selected and iden- tified by 16S rRNA gene sequence analysis. The identified LAB strains comprised 6 species within the Enterococcus, Lactobacillus and Pediococcus genera. Five of the species, namely Enterococcus faecium, Lactobacillus fermentum, L. plan- tarum, Pediococcus pentosaceus and P. acidilactici were isolated from MRS medium, while 1 species, L. pentosus, was iso- lated from Rogosa medium. Most of the isolated strains were identified as members of the genus Lactobacillus (78%). This study provides basic microbiological information on the diversity of LAB and provides insight into the ecological roles of LAB in Shindari. Keywords: lactic acid bacteria, indigenous fermented food, Shindari, culture-dependent method The lactic acid bacteria (LAB) are acid-tolerant, low- tural profile of a food item.
    [Show full text]
  • A Pediococcus Strain to Rescue Honeybees by Decreasing Nosema
    A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects Elodie Peghaire, Anne Mone, Frédéric Delbac, Didier Debroas, Frédérique Chaucheyras-Durand, Hicham El Alaoui To cite this version: Elodie Peghaire, Anne Mone, Frédéric Delbac, Didier Debroas, Frédérique Chaucheyras-Durand, et al.. A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects. Biology, MDPI 2020, 163, pp.138-146. 10.1016/j.pestbp.2019.11.006. hal-02935692 HAL Id: hal-02935692 https://hal.inrae.fr/hal-02935692 Submitted on 10 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pesticide Biochemistry and Physiology 163 (2020) 138–146 Contents lists available at ScienceDirect Pesticide Biochemistry and Physiology journal homepage: www.elsevier.com/locate/pest A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects T Elodie Peghairea, Anne Monéa, Frédéric Delbaca, Didier Debroasa, ⁎ ⁎ Frédérique Chaucheyras-Durandb, , Hicham El Alaouia, a Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000S Clermont-ferrand, France b R&D Animal Nutrition, Lallemand, Blagnac, France ARTICLE INFO ABSTRACT Keywords: Honeybees ensure a key ecosystemic service by pollinating many agricultural crops and wild plants.
    [Show full text]
  • Profile of Microflora “Jambal Roti” (Traditional Fermented Fish) with Pediococcus Sp (Pediococcus Acidilactici F11 and Pe
    Profile of Microflora “Jambal Roti” (Traditional Fermented Fish) with Pediococcus sp (Pediococcus acidilactici F11 and Pediococcus halophillus FNCC-0032) Aplication and 25% NaCl Merkuria Karyantina1,2,, Sri Anggrahini3, Tyas Utami34 and Endang S Rahayu34 1 Faculty of Technology and Food Industry, Slamet Riyadi University, Sumpah Pemuda Street No 18, Joglo, Kadipiro, Surakarta 2 Doctoral Program in Agricultural Technology, Gadjah Mada University, Flora Street No 1, Bulaksumur, Caturtunggal, Yogyakarta 3Faculty of Agricultural Technology, Gadjah Mada University, Flora Street No 1, Bulaksumur, Caturtunggal, Yogyakarta 4Center for Food and Nutrition Studies, Gadjah Mada University, Yogyakarta, Indonesia 2Corresponding author: [email protected] and [email protected] ABSTRACT “Jambal roti” is a fermented fish product from manyung fish, which is quite famous in Java. The term “jambal roti” refers to the salting and drying of fish. Manyung fishes (Arius thalassinus) are easily damaged so that they need to be preserved by salting. Traditional production uses 30% salt, so the product is too salty. Decreased use of salt, allows the development of pathogenic bacteria. This study examined the effect of NaCl concentration (25%) on microflora profile during making of “jambal roti”. The results showed that the total lactic acid bacteria in de Mann Rogosa and Sharpe medium had an increase (2 log cycles) in all aplication. Total bacteria in Plate Count Agar medium and Total enterobacteriaceae (in VRBA medium) tends to be stable. Total Salmonella- Shigella pathogen in SSA media tends decrease (3 log cycles). The data shows that Pediococcus sp is able to grow up to 25% salinity and suppressed the growth of Salmonella-Shigella.
    [Show full text]
  • Multi-Product Lactic Acid Bacteria Fermentations: a Review
    fermentation Review Multi-Product Lactic Acid Bacteria Fermentations: A Review José Aníbal Mora-Villalobos 1 ,Jéssica Montero-Zamora 1, Natalia Barboza 2,3, Carolina Rojas-Garbanzo 3, Jessie Usaga 3, Mauricio Redondo-Solano 4, Linda Schroedter 5, Agata Olszewska-Widdrat 5 and José Pablo López-Gómez 5,* 1 National Center for Biotechnological Innovations of Costa Rica (CENIBiot), National Center of High Technology (CeNAT), San Jose 1174-1200, Costa Rica; [email protected] (J.A.M.-V.); [email protected] (J.M.-Z.) 2 Food Technology Department, University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] 3 National Center for Food Science and Technology (CITA), University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] (C.R.-G.); [email protected] (J.U.) 4 Research Center in Tropical Diseases (CIET) and Food Microbiology Section, Microbiology Faculty, University of Costa Rica (UCR), San Jose 11501-2060, Costa Rica; [email protected] 5 Bioengineering Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany; [email protected] (L.S.); [email protected] (A.O.-W.) * Correspondence: [email protected]; Tel.: +49-(0331)-5699-857 Received: 15 December 2019; Accepted: 4 February 2020; Published: 10 February 2020 Abstract: Industrial biotechnology is a continuously expanding field focused on the application of microorganisms to produce chemicals using renewable sources as substrates. Currently, an increasing interest in new versatile processes, able to utilize a variety of substrates to obtain diverse products, can be observed.
    [Show full text]
  • Evaluation of Probiotic Properties of Pediococcus Acidilactici M76 Producing Functional Exopolysaccharides and Its Lactic Acid Fermentation of Black Raspberry Extract
    microorganisms Article Evaluation of Probiotic Properties of Pediococcus acidilactici M76 Producing Functional Exopolysaccharides and Its Lactic Acid Fermentation of Black Raspberry Extract Young-Ran Song, Chan-Mi Lee, Seon-Hye Lee and Sang-Ho Baik * Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 561-756, Korea; [email protected] (Y.-R.S.); [email protected] (C.-M.L.); [email protected] (S.-H.L.) * Correspondence: [email protected]; Tel.: +82-63-270-3857; Fax: +82-63-270-3854 Abstract: This study aimed to determine the probiotic potential of Pediococcus acidilactici M76 (PA- M76) for lactic acid fermentation of black raspberry extract (BRE). PA-M76 showed outstanding probiotic properties with high tolerance in acidic GIT environments, broad antimicrobial activity, and high adhesion capability in the intestinal tract of Caenorhabditis elegans. PA-M76 treatment resulted in significant increases of pro-inflammatory cytokine mRNA expression in macrophages, indicating that PA-M76 elicits an effective immune response. When PA-M76 was used for lactic acid fermentation of BRE, an EPS yield of 1.62 g/L was obtained under optimal conditions. Lactic acid fermentation of BRE by PA-M76 did not significantly affect the total anthocyanin and flavonoid content, except for a significant increase in total polyphenol content compared to non-fermented BRE (NfBRE). However, fBRE exhibited increased DPPH radical scavenging activity, linoleic acid peroxidation inhibition rate, and ABTS scavenging activity of fBRE compared to NfBRE. Among the 28 compounds identified Citation: Song, Y.-R.; Lee, C.-M.; Lee, in the GC-MS analysis, esters were present as the major groups.
    [Show full text]
  • Levels of Firmicutes, Actinobacteria Phyla and Lactobacillaceae
    agriculture Article Levels of Firmicutes, Actinobacteria Phyla and Lactobacillaceae Family on the Skin Surface of Broiler Chickens (Ross 308) Depending on the Nutritional Supplement and the Housing Conditions Paulina Cholewi ´nska 1,* , Marta Michalak 2, Konrad Wojnarowski 1 , Szymon Skowera 1, Jakub Smoli ´nski 1 and Katarzyna Czyz˙ 1 1 Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; [email protected] (K.W.); [email protected] (S.S.); [email protected] (J.S.); [email protected] (K.C.) 2 Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; [email protected] * Correspondence: [email protected] Abstract: The microbiome of animals, both in the digestive tract and in the skin, plays an important role in protecting the host. The skin is one of the largest surface organs for animals; therefore, the destabilization of the microbiota on its surface can increase the risk of diseases that may adversely af- fect animals’ health and production rates, including poultry. The aim of this study was to evaluate the Citation: Cholewi´nska,P.; Michalak, effect of nutritional supplementation in the form of fermented rapeseed meal and housing conditions M.; Wojnarowski, K.; Skowera, S.; on the level of selected bacteria phyla (Firmicutes, Actinobacteria, and family Lactobacillaceae). The Smoli´nski,J.; Czyz,˙ K. Levels of study was performed on 30 specimens of broiler chickens (Ross 308), individually kept in metabolic Firmicutes, Actinobacteria Phyla and cages for 36 days. They were divided into 5 groups depending on the feed received.
    [Show full text]
  • Lactobacillus Acidophilus Bacteriocin, from Production to Their Application: an Overview
    African Journal of Biotechnology Vol. 9 (20), pp. 2843-2850, 17 May, 2010 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2010 Academic Journals Review Lactobacillus acidophilus bacteriocin, from production to their application: An overview Zaheer Ahmed1, Yanping Wang2*, Qiaoling Cheng2 and M. Imran3 1Faculty of Sciences, Department of Home and Health Sciences, Allama Iqbal Open University, H-8, Islamabad Pakistan. 2Tianjin key laboratory of Food Nutrition and Safety, Faculty of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, P.R. China. 3University of Caen, Lower-Normandy Caen Cedex, France. Accepted 30 March, 2009 Antimicrobial proteinaceous compounds such as bacteriocins or bacteriocin-like compounds produced by Lactobacillus acidophilus are largely known and have been found to have potent antimicrobial activities toward closely related bacteria and undesirable harmful microorganisms. They are useful in the fields of food preservation or safety, health care, and pharmaceutical applications. The inhibition activity of these substances has been reported to be strain-dependent. Binding to the epithelial cell on the gastrointestinal surfaces is one of the important factors of resident microflora to colonize the intestine. Certain L. acidophilus strains are able to produce substances that compete and prevent pathogenic bacteria from adhering to the receptors on epithelial cells of intestinal surfaces. The potential probiotic effects of L. acidophilus is well known in the human ecosystem and their production of antimicrobial peptides can contribute to elucidate the precise mechanisms by which L. acidophilus can dominate the intestinal microbiota and achieve their probiotic function. This paper presents a review of the antimicrobial proteinaceous compounds produced by various acidophilus strains, the attempts made to purify them, their characterization and useful applications.
    [Show full text]
  • An Anti-Shigella Dysenteriae Bacteriocin from Pediococcus Pentosaceus MTCC 5151 Cheese Isolate
    R. AGRAWAL, S. DHARMESH Turk J Biol 36 (2012) 177-185 © TÜBİTAK doi:10.3906/biy-1010-142 An anti-Shigella dysenteriae bacteriocin from Pediococcus pentosaceus MTCC 5151 cheese isolate Renu AGRAWAL1, Shylaja DHARMESH2 1Department of Food Microbiology, Central Food Technological Research Institute, Mysore 570020 - INDIA 2Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570020 - INDIA Received: 13.10.2010 Abstract: A cheese isolate Pediococcus pentosaceus lactic acid bacterium, which has been deposited at the Microbial Type Culture Collection Centre Chandigarh with the accession number MTCC 5151, was tested for anti-Shigella dysenteriae activity and the bacteriocin was characterized. Th e protein band was observed with tricine sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) as a single band with a molecular mass of 23 kDa. Th is is a new and novel bacteriocin that inhibits S. dysenteriae and has not yet been reported from P. pentosaceus. It was purifi ed on a Sephacryl column and the active fraction specifi c for anti-Shigella dysenteriae with 23 kDa was found and confi rmed via liquid chromatography mass spectrometry (LC-MS). Th e eff ect of various physical parameters on bacteriocin activity was also studied, with the optimum conditions being determined at a pH level of 5.5 with an 18-h-grown culture. Key words: Bacteriocin, Pediococcus pentosaceus, purifi cation, anti-Shigella dysenteriae Introduction side eff ects. Pediococci spp. are saprophytes and are Shigellosis is a disease occurring in unhygienic known to preserve products by inhibiting pathogens conditions. As Shigella has acquired multiple (5). Detailed biochemical characterization of such antimicrobial resistances, it presents a challenge for bacteriocins has not been performed to evaluate their eff ective clinical management (1).
    [Show full text]
  • Hop Resistant Lactobacillus and Pediococcus Species Genesig
    Primerdesign TM Ltd Hop resistant Lactobacillus and Pediococcus species HorA and HorC Genes genesig® Standard Kit 150 tests For general laboratory and research use only Quantification of Hop resistant Lactobacillus and Pediococcus species genomes. 1 genesig Standard kit handbook HB10.04.10 Published Date: 09/11/2018 Introduction to Hop resistant Lactobacillus and Pediococcus species Hops are the flowers of the hop plant Humulus lupulus which are used in the brewing industry to give the bitter flavour that is distinctive of beer. However, they are also used to stabilise the microbial population whilst brewing takes place. Recently two hop resistant related proteins known as horA and horC have been discovered that enable beer spoilage lactic acid bacteria, such as Lactobacillus spp and Pediococcus spp, to grow in beer in spite of the presence of these antibacterial hop compounds. The horA gene encodes an ATP dependent multidrug transporter that removes hop bitter acids out of the bacterial cells whilst the horC is thought to act as a proton motive force (PMF)-dependent multidrug transporter. These two genes were found to be almost exclusively distributed in various species of beer spoilage lactic acid bacteria strains, therefore lending themselves to detection by real-time PCR. Finally, the nucleotide sequence analysis of horA and horC genes show that both genes are essentially identical among distinct beer spoilage species, indicating horA and horC have been acquired by beer spoilage lactic acid bacteria through horizontal gene transfer. This genesig® kit will detect all horA/horc genes relevant to beer spoilage with high levels of fidelity. Using Real-Time PCR is the fastest, most reliable way of detection horA/horC contamination in your samples.
    [Show full text]