Common Traits Associated with Establishment and Spread of Lessepsian Fishes in the Mediterranean Sea

Total Page:16

File Type:pdf, Size:1020Kb

Common Traits Associated with Establishment and Spread of Lessepsian Fishes in the Mediterranean Sea See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282190358 Common traits associated with establishment and spread of Lessepsian fishes in the Mediterranean Sea Article in Marine Biology · September 2015 DOI: 10.1007/s00227-015-2744-3 CITATIONS READS 6 223 2 authors: Erik Arndt Patrick Joseph Schembri Hochschule Anhalt University of Malta 11 PUBLICATIONS 109 CITATIONS 263 PUBLICATIONS 2,430 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: LIFE BAHAR for N2K View project Alien Species and other Newcomers in Maltese waters View project All content following this page was uploaded by Erik Arndt on 07 October 2015. OAR@UM The user has requested enhancement of the downloaded file. provided by View metadata, citation and similar papers at core.ac.uk CORE brought to you by Mar Biol (2015) 162:2141–2153 DOI 10.1007/s00227-015-2744-3 ORIGINAL PAPER Common traits associated with establishment and spread of Lessepsian fishes in the Mediterranean Sea Erik Arndt1 · Patrick J. Schembri2 Received: 25 February 2015 / Accepted: 14 September 2015 / Published online: 24 September 2015 © Springer-Verlag Berlin Heidelberg 2015 Abstract It was more than 30 years after the opening of the only significant trait influencing dispersal success. This the Suez Canal in 1869 that the first reports on Indo-Pacific trait is likely related to the architecture of the Suez Canal fishes entering the Mediterranean Sea (so-called ‘Lessep- since until the 1970s only species with a very low mini- sian migration’) were published. The number of new mum depth were recorded to have entered the Mediterra- records of Lessepsian fishes remained more or less constant nean, but species occurring in deeper water started to immi- between 1920 and 2000 but increased dramatically after grate after 1980 when the canal was deepened to 19.5 m. that. The accelerated rate of entry was attributed by many The establishment success of Lessepsian fishes was signifi- authors to an increase in the Mediterranean surface water cantly linked to size and spawning type. Benthic spawners temperature. However, the Suez Canal has been repeat- and species with adhesive eggs represent successful colo- edly deepened and widened during the last decades and the nizers. Moreover, successful colonizers are species with a increased immigration rate of Red Sea fishes might also be tendency to form schools, whereas solitary species are less related to reduced dispersal barriers. We analyse the rela- successful. The results show that dispersal and establish- tionship between dispersal and establishment success and ment success of Lessepsian fish immigrants are influenced a pool of different traits for 101 Lessepsian fish species by different ecological traits. using generalized linear models. Our models did not reveal a significant relationship between the sea surface tempera- ture in the native range of immigrant fishes and their dis- Introduction persal or establishment success in the Mediterranean Sea. The minimum depth in which a species was observed was The construction of canals bridges natural barriers to the distribution of aquatic organisms. It allows aquatic organ- Responsible Editor: M. Peck. isms to spread to new geographical areas and often results in important changes to the newly colonized ecosystems and Reviewed by undisclosed experts. their species assemblages (Leppäkoski et al. 2002; Gollasch et al. 2006; Nentwig 2007). This type of human mediated Electronic supplementary material The online version of this invasion has been frequently observed for freshwater canals. article (doi:10.1007/s00227-015-2744-3) contains supplementary material, which is available to authorized users. A well-known example is the Rhine-Main-Danube Canal, connecting not only the catchments of two of the largest * Erik Arndt European rivers but also the Black Sea with the North Sea. [email protected]‑anhalt.de This canal caused one of the most extensive invasion pro- Patrick J. Schembri cesses known for freshwater systems (Tittizer et al. 2000) [email protected] and resulted in severe ecological problems (Haas 2002; 1 Department 1, Anhalt University of Applied Sciences, Leppäkoski et al. 2002; Nentwig 2007). The canals of the Strenzfelder Allee 28, 06406 Bernburg, Germany ‘Chicago Waterway System’ in North America, connecting 2 Department of Biology, University of Malta, Msida the Great Lakes with the Mississippi catchment, had similar MSD 2080, Malta important impacts (Brammeier et al. 2008). 1 3 2142 Mar Biol (2015) 162:2141–2153 Fig. 1 Mean annual immigra- tion rate per decade (except for 1867–1869 and 2010–2014) of Indo-Pacific fish species, sea surface temperature (Celsius) of the Mediterranean Sea (SST) and depth of the Suez Canal (in metres) at various times In the marine realm, beside the Panama canal, one canal declined to approximate that of the Red Sea and the in particular has been of overwhelming importance for physical and physiological barriers to the entry of fish the spread of organisms from one sea to another and thus from the Gulf of Suez were largely removed such that for bringing about profound changes to the ecology of the salinity of the canal no longer hindered successful the affected ecosystems and their species: the Suez Canal immigration into the Mediterranean Sea (Belmaker et al. (Golani 1998; Galil 2006; Rilov and Galil 2009). The 2013). The number of Lessepsian fish species increased importance of this canal has not only been limited to ecol- steadily in the decades following the 1920s but acceler- ogy and biogeography. Because several Indo-Pacific fish ated dramatically after the year 2000 (Fig. 1) and num- species that have immigrated to the Mediterranean Sea are bered 101 species in 2014 (see Table in Supplementary now present at high abundances and are extensively fished, material). this canal has had a considerable influence on the fisheries The accelerating influx of Lessepsian fish species in of the region, and thus on the economy as well (Rilov and the Mediterranean Sea has been the subject of several Galil 2009; EastMed 2010). papers. Most authors invoke climate change and increas- Just over 30 years from the opening of the Suez Canal ing Mediterranean water temperatures as the chief cause in 1869, Tillier (1902) reported Atherinomorus forska- of the increasing numbers of non-indigenous fish species lii from Alexandria (Egypt) and Liza carinata as well being recorded from the Mediterranean since the 1980s as other species from the vicinity of Port Said. Unfortu- (Ben-Tuvia and Golani 1996; Pallaoro and Dulcˇić 2001; nately the exact date of when the first fishes entered the Despalatović et al. 2008). Azzurro (2008) reports a north- Mediterranean is not known, but the reports by Tillier wards shift in the distribution of 51 thermophilic fish spe- (1902) and Norman (1929) imply that these fishes could cies in the Mediterranean Sea, 11 of which are of Indo- have arrived in the Mediterranean much earlier than Pacific origin. If the Mediterranean continues to warm at 1902. At the time, the canal was about 8 m deep and the the present rate, Ben Rais Lasram and Mouillot (2009), ‘Bitter Lakes’ that were incorporated in its route (Small Ben Rais Lasram et al. (2010) and Raitsos et al. (2010) Bitter Lake, Great Bitter Lake, Lake Timsah and Lake expect an increasing immigration of sub-tropical and tropi- Manzala) and were still hypersaline. It was only in the cal Lessepsian species. 1920s after the canal was deepened to 11 m, that a fur- However, the accelerating number of Lessepsian immi- ther influx of Lessepsian species was reported from the grants is not only associated with the increasing water Mediterranean coasts of Israel and Egypt (Steinitz 1927; temperature but is also influenced by changes in the canal Norman 1927, 1929). With further enlargement of the architecture (i.e., depth, width, profile) and the more bal- canal in 1956 (14.0 m), 1980 (19.5 m), 2001 (22.5 m) anced salinity relative to original conditions. Altering the and, most recently, in 2010 (24 m), its depth is now three architecture of the canal, and therefore altering also the times, and the bottom width five and a half times, that of current patterns, may enable the immigration and disper- the original construction (Galil 2006; Suez Canal Author- sal of species which were not able to overcome the barriers ity 2015). The salinity of the ‘Bitter Lakes’ gradually presented by the canal in the past. Therefore, temperature 1 3 Mar Biol (2015) 162:2141–2153 2143 preference is not the only or even the most important factor Materials and methods for the success of Lessepsian fish species. Trait-based approaches allow a more detailed evaluation All 101 Lessepsian fish species reported until October of the characteristics of immigrating fish species, especially 2014 were included in the analysis (see Table in Supple- if they consider not only one species or a species group but mentary material). Sources for this data set are Golani and all available information. Up to now, only a couple of stud- Appelbaum-Golani (2010a) and references cited therein as ies including data on all Lessepsian species have been pub- the fundamental database, and additionally Akamca et al. lished. Golani (1993) focussed on habitat-related traits of 2011; Bariche 2010a, b, 2011, 2012; Bariche and Azzurro Red Sea fishes and concluded that dominance in the equiva- 2012; Bariche and Heemstra 2012; Bariche et al. 2013; lent source habitat is a key contributor to successful coloni- Bilecenoğlu 2012; Çiçek and Bilecenoğlu 2009; Dalyan zation of the Eastern Mediterranean. Ben Rais Lasram et al. et al. 2012; Fricke et al. 2012; Golani and Appelbaum- (2008) examined several ecological characters of Lessep- Golani 2010b; Golani et al.
Recommended publications
  • In the Mediterranean Sea (Aegean, Greece)
    Aquatic Invasions (2007) Volume 2, Issue 2: 152-154 Open Access doi: http://dx.doi.org/10.3391/ai.2007.2.2.12 © 2007 The Author(s) Journal compilation © 2007 REABIC Short communication A new record of the Lessepsian invasive fish Etrumeus teres (Osteichthyes: Clupeidae) in the Mediterranean Sea (Aegean, Greece) Panagiotis Kasapidis*, Panagiota Peristeraki, Georgios Tserpes and Antonios Magoulas Hellenic Centre for Marine Research, Institute of Marine Biology and Genetics, P.O.Box 2214, 71003 Heraklion, Greece *Corresponding author E-mail: [email protected] (PK) Received: 6 March 2007 / Accepted: 11 May 2007 Abstract The Lessepsian invasive fish Etrumeus teres was recorded for the first time off Crete, Greece in July 2005. Their abundance suggests that the species may become of commercial importance in the south Aegean Sea. Key words: Etrumeus teres, Lessepsian invasive fish, Mediterranean, Aegean, new record The opening of the Suez Canal in 1869 reported that the species is occasionally connected the Red Sea to the Mediterranean and abundant in the western Cretan Sea, with a haul allowed the introduction of numerous Indo- of 2500 kg taken by a purse-seine in Chania Bay Pacific species into the Mediterranean (Golani in June 2004. They refer to the species as 1998a, 1998b), including Etrumeus teres (White- “gavrofrisa”, a combination of the common head 1963). This is the first record of the species Greek names for anchovy and round sardinella. off Crete, Greece (Figure 1). The suggested Greek common name is Etrumeus teres (round herring) is a pelagic, “stroggulosardela” (round sardine) (Economidis mainly inshore clupeid fish, found in the Red and Koutrakis 2001).
    [Show full text]
  • First Record of Pope's Ponyfish Equulites Popei (Whitley, 1932), (Osteichthyes: Leiognathidae) in the Syrian Marine Waters (Eastern Mediterranean)
    DOI: 10.22120/jwb.2020.123579.1127 Special issue 1-5 (2020) Challenges for Biodiversity and Conservation in the Mediterranean Region (http://www.wildlife-biodiversity.com/) Short communication First Record of Pope's ponyfish Equulites popei (Whitley, 1932), (Osteichthyes: Leiognathidae) in the Syrian Marine Waters (Eastern Mediterranean) Amir Ibrahim1, Chirine Hussein1, Firas Introduction Alshawy1*, Alaa Alcheikh Ahmad2 The Mediterranean Sea has received numerous 1Marine Biology Department, High Institute of alien species (Katsanevakis et al. 2014), that 'Marine Research، Tishreen University، Lattakia benefited from the environmental conditions –Syria, alteration due to climate changes and human 2 General Commission of Fisheries Resources: activities ((Katsanevakis et al. 2016, Mannino Coastal Area Branch, Tartous-Syria et al. 2017, Queiroz and Pooley 2018, Giovos department of Biological, Geological and et al. 2019). Leiognathidae family includes Environmental Sciences, University of Catania, ten genera containing 51 species (Froese and Catania, Italy *Email: [email protected] Pauly 2019) that spread in the tropical and Received: 26 March 2020 / Revised: 1 May 2020 / Accepted: 29 subtropical marine waters. They are May 2020 / Published online: 5 June 2020. Ministry of Sciences, characterized by small to medium-size (rarely Research, and Technology, Arak University, Iran. exceeding 16 cm) and protractile mouth Abstract forming, when extended, a tube directed either The eastern Mediterranean has received many upwards (Secutor species), forward (Gazza alien fish species, mainly due to climate species) or forward-downward (Leiognathus changes and human activities. The Lessepsian species) (Carpenter and Niem 1999). Equulites species Equulites popei (Whitley, 1932) had popei (Whitley, 1932), of the family been previously recorded in the northern and Leiognathidae, had been recorded in the southern parts of the eastern Mediterranean.
    [Show full text]
  • Malacca-Max the Ul Timate Container Carrier
    MALACCA-MAX THE UL TIMATE CONTAINER CARRIER Design innovation in container shipping 2443 625 8 Bibliotheek TU Delft . IIIII I IIII III III II II III 1111 I I11111 C 0003815611 DELFT MARINE TECHNOLOGY SERIES 1 . Analysis of the Containership Charter Market 1983-1992 2 . Innovation in Forest Products Shipping 3. Innovation in Shortsea Shipping: Self-Ioading and Unloading Ship systems 4. Nederlandse Maritieme Sektor: Economische Structuur en Betekenis 5. Innovation in Chemical Shipping: Port and Slops Management 6. Multimodal Shortsea shipping 7. De Toekomst van de Nederlandse Zeevaartsector: Economische Impact Studie (EIS) en Beleidsanalyse 8. Innovatie in de Containerbinnenvaart: Geautomatiseerd Overslagsysteem 9. Analysis of the Panamax bulk Carrier Charter Market 1989-1994: In relation to the Design Characteristics 10. Analysis of the Competitive Position of Short Sea Shipping: Development of Policy Measures 11. Design Innovation in Shipping 12. Shipping 13. Shipping Industry Structure 14. Malacca-max: The Ultimate Container Carrier For more information about these publications, see : http://www-mt.wbmt.tudelft.nl/rederijkunde/index.htm MALACCA-MAX THE ULTIMATE CONTAINER CARRIER Niko Wijnolst Marco Scholtens Frans Waals DELFT UNIVERSITY PRESS 1999 Published and distributed by: Delft University Press P.O. Box 98 2600 MG Delft The Netherlands Tel: +31-15-2783254 Fax: +31-15-2781661 E-mail: [email protected] CIP-DATA KONINKLIJKE BIBLIOTHEEK, Tp1X Niko Wijnolst, Marco Scholtens, Frans Waals Shipping Industry Structure/Wijnolst, N.; Scholtens, M; Waals, F.A .J . Delft: Delft University Press. - 111. Lit. ISBN 90-407-1947-0 NUGI834 Keywords: Container ship, Design innovation, Suez Canal Copyright <tl 1999 by N. Wijnolst, M .
    [Show full text]
  • 2016 New Mediterranean Biodiversity Records
    Mediterranean Marine Science Vol. 17, 2016 New Mediterranean Biodiversity Records (November, 2016) MYTILINEOU CH. Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, GR-19013, Anavyssos AKEL E.H.Kh. Fishery Biology Lab, National Institute of Oceanography and Fisheries Kait-Bey, Alexandria BABALI N. National Research Center for Developing of Fisheries and Aquaculture / National College of Marines Sciences and Coastal Management BALISTRERI P. Vicolo Giotto 6, 91023, Favignana BARICHE M. Department of Biology, American University of Beirut, PO Box 11-0236, Beirut 1107 2020 BOYACI Y.Ö. Eğirdir Fisheries Faculty, Süleyman Demirel University, Isparta CILENTI L. Istituto di Scienze Marine, C.N.R, UOS Lesina, Via Pola, 4, 71010 Lesina (FG) CONSTANTINOU C. Τhessalonikis 15, Agios Dometios, 2363, Nicosia CROCETTA F. Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, GR-19013, Anavyssos ÇELİK M. Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000, Kötekli, Muğla DERELI H. Faculty of Fisheries, Izmir Katip Celebi University, Izmir DOUNAS C. Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Heraklion, Kriti DURUCAN F. Eğirdir Fisheries Faculty, http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 10/04/2020 10:21:52 | Süleyman Demirel University, Isparta GARRIDO A. Agencia de Gestión Agraria y Pesquera de Andalucía, Ctra. de Cártama, km 12, 29591 Santa Rosalía, Campanillas, Málaga GEROVASILEIOU V. Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Heraklion, Kriti KAPIRIS K. Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, GR-19013, Anavyssos KEBAPCIOGLU T.
    [Show full text]
  • 1 Present Facilities, Equipment and Natural Condition
    Chapter 1 Present facilities, equipment and natural condition 1.1 The Canal The Suez Canal is a waterway of 162.25km in length, which bridges the Mediterranean Sea and the Red Sea. North and South Approaches are set at both ends of the Canal. Timsah Lake, the Great Bitter Lake and the Little Bitter Lake are situated along the Canal. Layout of the Canal is shown in Figure 1.1.1. Table 1.1.1 Outline of the Suez Canal Overall length 190.250km From Port Said to Port Tewfic 162.250km From Port Said to Ismailia 78.500km From Ismailia to Port Tewfic 83.750km From the fairway buoy to Port Said lighthouse 19.500km From the waiting area to the southern entrance 15.000km The length of doubled parts 78.000km Width at water level (North/South) 345/280m Width between buoys (North/South) 210/180m Maximum permissible draught for ships 58ft Cross section area (North/South) 4,500/3,900m2 Being increased 4,700/4,000m2 Permissible speed for tankers group 11-15km/hr for other vessels 13-16km/hr Source) SCA Table 1.1.2 Historical Progress of the Suez Canal Item 1869 1956 1962 1980 1994 1996 2000 Overall Length (km) 164 175 175 190.25 190.25 190.25 190.25 Doubled Parts (km) - 29 29 78 78 78 78 Width at 11m depth (m) - 60 90 160 210/180 210/180 210/200 Water Depth (m) 10 14 15.5 19.5 20.5 21 21 Max. Draft of Ship (feet) 22 35 38 53 56 58 58 Cross Section Area (m2) 304 1,100 1,800 3,600 4,300 4,500 4,500 /3,800 /3,900 /4,100 Max.
    [Show full text]
  • Measuring Productivity of Australian Tropical Estuaries Using Standing Stock Analysis
    ResearchOnline@JCU This file is part of the following work: Fries, Jakob (2019) Measuring productivity of Australian tropical estuaries using standing stock analysis. Masters (Research) Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/km1r%2D5n34 Copyright © 2019 Jakob Fries. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] Measuring productivity of Australian tropical estuaries using standing stock analysis Thesis submitted by Jakob Fries December 2019 For the degree of Master of Philosophy College of Science and Engineering School of Marine Biology and Aquaculture James Cook University Abstract Increasingly, anthropogenic use of ecosystems is resulting in cumulative degradation of ecosystem functions and the values held by these systems. Threats from nutrient pollution, catchment scale modifications to land use and water flows are increasing. This is concerning for estuarine and coastal fisheries as estuarine producers are inextricably linked to land-derived nutrients and freshwater flows. In tropical estuarine ecosystems the complexity and variability of environmental, biological, and ecological factors culminate in a matrix of largely unknown causal relationships. Because of this, our knowledge of land use impacts on fisheries is limited. Additionally, the disjunction of current measurement scales and impact scales has reduced our ability to measure the resultant impacts on estuarine ecosystems. Therefore, to fully understand anthropogenic impacts on estuarine ecosystems, integrative measures of ecosystem health, functioning, and productive output are required.
    [Show full text]
  • Emigrating Animals and Migratory Humans: Belonging, Prosperity and Security in More-Than-Human World
    Emigrating Animals and Migratory Humans: Belonging, Prosperity and Security in More-Than-Human World Dates: 10—11 September 2019 Venue: Na Florenci 3 (Lower Hall), Prague 1, Czech Republic Workshop organised by Luděk Brož, Giovanna Capponi, Paul Keil, Jiří Krejčík & Virginie Vaté Kindly supported by Strategy 21 – Global Conflicts and Local Interactions & Institute of Ethnology and Institute of Sociology, Czech Academy of Sciences (CAS) and CEFRES (CNRS-MEAE) DAY 1 9.45 Getting to know each other over a cup of tea or coffee 10.00—10.30 Welcome address and introduction (Luděk Brož, Giovanna Capponi, Jiří Krejčík & Virginie Vaté) Session 1. Chair: Daniel Sosna, Institute of Ethnology CAS 10.30—11.00 Aníbal G. Arregui University of Barcelona Porcine Proto-Ecologies: Activating an Infra-Species Cosmopolitics The increasing movement of wild-boars between the Collserola forests and the periphery of Barcelona is problematizing not only dual categories of pigs as species (e.g. wild vs. domestic), but also the boundaries of what is commonly understood as a ‚city‘ (e.g. urban vs. rural). The transit of wild boars between different ecological niches—which transforms these niches themselves—is traceable from at least three scales of anthropogenic influence: On a global, climatologic scale, wild boars proliferate due to global warming (Vetter et al. 2015). On a geographically localized level, wild boars are ‚invited‘ into the city by food availability in trash, pet feeding spots, water reservoirs, etc. At the scale of interactions between individuals, it becomes evident that, while some citizens ‚care‘ for the wild boars (e.g. petting or feeding them), other reject them for being ‚wild‘, ‚dangerous‘ and ‚dirty‘ animals.
    [Show full text]
  • CLAY OKOTH OBOTA Thesis.Pdf (866.6Kb)
    ii REPRODUCTIVE BIOLOGY OF EXPLOITED POPULATIONS OF THE EMPEROR ANGELFISH, Pomacanthus imperator BLOCH, 1787 ALONG THE KENYAN COAST CLAY OKOTH OBOTA A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Fisheries of Pwani University MAY, 2016 ii DECLARATION iii DEDICATION This thesis is dedicated to my K’Ochero family, classmates and friends who stood by me. I will always remember your words of encouragement and support when I needed you. iv ACKNOWLEDGEMENT This study was undertaken with the invaluable academic guidance from my supervisors, Dr. Bernerd Fulanda (Pwani University) and Dr. Edward Kimani (KMFRI). I further thank them for patience throughout this study and ensuring that despite their advice and opinions, I was the sole driver of my study project and hence fully responsible for my thesis and making sure that my study project was scientifically sound and practically workable, as could possibly be. Many thanks go to the Director KMFRI for support and provision of laboratory working space. My gratitude goes to Jibril Olunga and KMFRI interns for their assistance in laboratory work. To the long list of the rest of the people who helped shape both the field work, analysis and write up in one way or the other, may God bless you abundantly your help was greatly appreciated. This work was financially supported by the Kenya Coastal Development Project (KCDP) through a student fellowship grant; to KMFRI and KCDP, I would like to say "A big thank you". v ABSTRACT Substantial proportion of the Pomacanthus imperator are traded in terms of value and quantity and also harvested as food in the artisanal fishery in Kenya.
    [Show full text]
  • Bioinvasions in the Mediterranean Sea 2 7
    Metamorphoses: Bioinvasions in the Mediterranean Sea 2 7 B. S. Galil and Menachem Goren Abstract Six hundred and eighty alien marine multicellular species have been recorded in the Mediterranean Sea, with many establishing viable populations and dispersing along its coastline. A brief history of bioinvasions research in the Mediterranean Sea is presented. Particular attention is paid to gelatinous invasive species: the temporal and spatial spread of four alien scyphozoans and two alien ctenophores is outlined. We highlight few of the dis- cernible, and sometimes dramatic, physical alterations to habitats associated with invasive aliens in the Mediterranean littoral, as well as food web interactions of alien and native fi sh. The propagule pressure driving the Erythraean invasion is powerful in the establishment and spread of alien species in the eastern and central Mediterranean. The implications of the enlargement of Suez Canal, refl ecting patterns in global trade and economy, are briefl y discussed. Keywords Alien • Vectors • Trends • Propagule pressure • Trophic levels • Jellyfi sh • Mediterranean Sea Brief History of Bioinvasion Research came suddenly with the much publicized plans of the in the Mediterranean Sea Saint- Simonians for a “Canal de jonction des deux mers” at the Isthmus of Suez. Even before the Suez Canal was fully The eminent European marine naturalists of the sixteenth excavated, the French zoologist Léon Vaillant ( 1865 ) argued century – Belon, Rondelet, Salviani, Gesner and Aldrovandi – that the breaching of the isthmus will bring about species recorded solely species native to the Mediterranean Sea, migration and mixing of faunas, and advocated what would though mercantile horizons have already expanded with be considered nowadays a ‘baseline study’.
    [Show full text]
  • And Platycephalus Indicus (Teleostei: Platycephalidae) in the Mediterranean Sea
    BioInvasions Records (2012) Volume 1, Issue 1: 53–57 doi: http://dx.doi.org/10.3391/bir.2012.1.1.12 Open Access © 2012 The Author(s). Journal compilation © 2012 REABIC Aquatic Invasions Records Recent evidence on the presence of Heniochus intermedius (Teleostei: Chaetodontidae) and Platycephalus indicus (Teleostei: Platycephalidae) in the Mediterranean Sea Michel Bariche Department of Biology, Faculty of Arts and Sciences, American University of Beirut, PO Box 11-0236, Beirut, Lebanon E-mail: [email protected] Received: 4 January 2012 / Accepted: 23 February 2012 / Published online: 7 March 2012 Handling editor: Ernesto Azzurro, ISPRA, Institute for Environmental Protection and Research, Italy Abstract A second specimen of the Red Sea bannerfish Heniochus intermedius Steindachner, 1893 and a specimen of the Bartail flathead Platycephalus indicus (Linnaeus, 1758) have been recently collected from Lebanon (eastern Mediterranean). The two alien species constitute very rare occurrences in the Mediterranean; the first record of H. intermedius dates back to 2002 and only a few P. indicus individuals were collected between the 1950s and 1970s. Their presence in the Mediterranean is discussed as well as possible future trends in light of recent environmental changes. Key words: Heniochus intermedius, Platycephalus indicus, alien species, Lessepsian migration, Lebanon, eastern Mediterranean Introduction associated to coral reefs (Randall 1983; CIESM 2009). Butterflyfishes (Chaetodontidae) are marine Flatheads (Platycephalidae) are large bottom fishes that can be easily recognized by a deep dwelling fishes found mostly in the Indo-Pacific compressed body, small terminal and protractile area. They are characterized by an elongate mouth and bright coloration patterns (Randall body, a depressed head and a large mouth, with 1983; Nelson 2006).
    [Show full text]
  • Mediterranean Marine Science
    Mediterranean Marine Science Vol. 20, 2019 “New Mediterranean Biodiversity Records” 2019 STERN NIR BADREDDINE ALI BITAR GHAZI CROCETTA FABIO DEIDUN ALAN DRAGIČEVIĆ BRANCO DULČIĆ JAKOV DURGHAM HANI GALIL BELLA GALIYA MOHAMMAD IKHTIYAR SAMAR IZQUIREDO-MUÑOZ ANDREAS KASSAR ABDERRAHMANE LOMBARDO ANDREA LUBINEVSKY HADAS MASALLES DAVID OTHMAN RANIM OUSSELLAM MARIAM PEŠIĆ VLADIMIR PIPITONE CARLO RAMOS-ESPLÁ ALFONSO RILOV GIL ROTHMAN SHEVY SELFATI MOHAMED TIRALONGO FRANCESCO TÜRKER ALI UGARKOVIĆ PERO YAPICI SERCAN ZAVA BRUNO http://dx.doi.org/10.12681/mms.20602 Copyright © 2019 Mediterranean Marine Science To cite this article: STERN, N., BADREDDINE, A., BITAR, G., CROCETTA, F., DEIDUN, A., DRAGIČEVIĆ, B., DULČIĆ, J., DURGHAM, http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 03/10/2019 11:35:16 | H., GALIL, B., GALIYA, M., IKHTIYAR, S., IZQUIREDO-MUÑOZ, A., KASSAR, A., LOMBARDO, A., LUBINEVSKY, H., MASALLES, D., OTHMAN, R., OUSSELLAM, M., PEŠIĆ, V., PIPITONE, C., RAMOS-ESPLÁ, A., RILOV, G., ROTHMAN, S., SELFATI, M., TIRALONGO, F., TÜRKER, A., UGARKOVIĆ, P., YAPICI, S., & ZAVA, B. (2019). “New Mediterranean Biodiversity Records” 2019. Mediterranean Marine Science, 20(2), 409-426. doi:http://dx.doi.org/10.12681/mms.20602 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 03/10/2019 11:35:16 | Collective Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.20602 New Mediterranean Biodiversity Records (July 2019) Nir STERN1, Ali BADREDDINE2, Ghazi BITAR3, Fabio CROCETTA4, Alan DEIDUN5, Branko DRAGIČEVIĆ6, Jakov DULČIĆ6, Hani DURGHAM7,8, Bella S.
    [Show full text]
  • Employing DNA Barcoding As Taxonomy and Conservation Tools For
    Journal for Nature Conservation 36 (2017) 1–9 Contents lists available at ScienceDirect Journal for Nature Conservation journal homepage: www.elsevier.de/jnc Employing DNA barcoding as taxonomy and conservation tools for fish species censuses at the southeastern Mediterranean, a hot-spot area for biological invasion a,b,∗ b b b a b Arzu Karahan , Jacob Douek , Guy Paz , Nir Stern , Ahmet Erkan Kideys , Lee Shaish c b , Menachem Goren , Baruch Rinkevich a Middle East Technical University, Institute of Marine Science, Department of Marine Biology and Fisheries, Mersin, Turkey b National Institute of Oceanography, Israel Oceanography and Limnological Research, Department of Marine Biology and Biotechnology, Tel Shikmona, PO Box 8030, Haifa 31080, Israel c Tel Aviv University, Department of Zoology and the Steinhardt Museum of Natural History, Tel Aviv 69978, Israel a r t i c l e i n f o a b s t r a c t Article history: This study evaluates the utility of DNA barcoding (mitochondrial cytochrome oxidase subunit I; COI) as a Received 2 November 2015 biodiversity and conservation applied tool for identifying fish fauna from the southeastern Mediterranean Received in revised form 27 October 2016 (the continental coast of Israel), a hot-spot area for biological invasion, also with an eye to establish the Accepted 18 January 2017 foundation for follow-up studies that will use environmental DNA (eDNA) tracks of native and invasive species, and for the application of eDNA concepts and methodologies in nature conservation. We estab- Keywords: lished a dataset of 280 DNA barcodes, representing 110 marine fish species (all identified by a taxonomist), Mediterranean fish belonging to 75 native and 35 Lessepsian migratory species that were tested within and against the BOLD DNA barcode Taxonomy system database.
    [Show full text]