Introduction to System Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to System Dynamics 系统动力学入门教程 U.S. Department of Energy's Introduction to System Dynamics A Systems Approach to Understanding Complex Policy Issues Version 1.0 Prepared for: U.S. Department of Energy, Office of Policy and International Affairs, Office of Science & Technology Policy and Cooperation Adapted from Foundations of System Dynamics Modeling by: Michael J. Radzicki, Ph.D. Sustainable Solutions, Inc. Copyright © 1997 Designed by: Robert A. Taylor U.S. Department of Energy 注:本教程由学习型组织研修中心·中国学习型组织网(http://www.cko.com.cn) 打包编辑,仅供会员个人学习、研究参考,不得用于其他任何商业目的。未经允 许,不得发布、复制或传播本文件。 学习型组织研修中心·中国学习型组织网 http://www.cko.com.cn 编辑发布,2007 1 系统动力学入门教程 Index Overview ........................................................................................................................ 4 Chapter 1 Introduction .................................................................................................. 6 Origin of System Dynamics ............................................................................................... 6 System Dynamics and Energy Modeling .......................................................................... 11 Chapter 2 Why Model? ..................................................................................................25 Why Build Models in the First Place? .............................................................................. 25 Formal Models .......................................................................................................... 25 Mental Models ..........................................................................................................26 Combining Mental Models with System Dynamics ................................................. 27 Chapter 3 The Building Blocks .................................................................................... 29 Taking A Dynamic Perspective......................................................................................... 29 Time Paths ................................................................................................................ 29 Actual Data ............................................................................................................... 33 Seeing System Structure ................................................................................................... 39 Stocks and Flows ....................................................................................................... 39 Identifying Stocks and Flows ................................................................................... 40 Four Characteristics of Stocks ................................................................................. 40 Feedback ................................................................................................................... 47 Implicit and Explicit Goals ....................................................................................... 55 Archetypes ................................................................................................................ 58 Nonlinearity .............................................................................................................. 59 Implications of System Structure .................................................................................... 60 A System Problem and Its Symptoms are Separated By Time and Space ............... 60 Counterintuitive Behavior ........................................................................................ 62 Better Before Worse or Worse Before Better............................................................. 63 Policy Resistance ...................................................................................................... 64 Unpredictability ........................................................................................................ 65 Disequilibrium ......................................................................................................... 68 Chapter 4 Simple Structures ........................................................................................ 69 Exponential Growth, Exponential Decay, and Goal Seeking Behavior .......................... 69 Analytical Versus Simulated Solutions ..................................................................... 70 Exponential Growth ..................................................................................................76 Goal Seeking Behavior ............................................................................................. 90 Exponential Decay .................................................................................................... 93 System Oscillation ............................................................................................................97 S-Shaped Growth ............................................................................................................ 102 Chapter 5 The Modeling Process ................................................................................ 107 The Modeling Process .................................................................................................... 107 Management Flight Simulators ....................................................................................... 110 Chapter 6 Natural Gas Discovery Model ..................................................................... 114 Natural Gas Discovery Model: Reference Modes ............................................................ 114 学习型组织研修中心·中国学习型组织网 http://www.cko.com.cn 编辑发布,2007 2 系统动力学入门教程 Step-By-Step Re-Creation of the Natural Gas Discovery and Production Model ........... 116 Natural Gas Discovery and Production Model: First Cut ........................................ 116 Natural Gas Discovery and Production Model: Second Cut .................................... 119 Natural Gas Discovery and Production Model: Third Cut ..................................... 124 Natural Gas Discovery and Production Model: Fourth Cut ................................... 129 Natural Gas Discovery and Production Model: Fifth Cut ........................................ 133 Natural Gas Discovery and Production Model: Sixth Cut ....................................... 137 Policy Explorations with Natural Gas Model.................................................................. 142 Chapter 7 Next Steps ................................................................................................... 148 System Dynamics Resources .......................................................................................... 148 学习型组织研修中心·中国学习型组织网 http://www.cko.com.cn 编辑发布,2007 3 系统动力学入门教程 Overview The success or failure of a particular policy initiative or strategic plan is largely dependent on whether the decision maker truly understands the interaction and complexity of the system he or she is trying to influence. Considering the size and complexity of systems that public and private sector decision makers must manage, it is not surprising that the "intuitive" or "common sense" approach to policy design often falls short, or is counter-productive, to desired outcomes. This online book was written to introduce the concepts and "language" that make a systems-based study of such complex problems possible. Our intent is to provide the reader with a broad overview of the field of system dynamics, acquaint him or her with the fundamental stock-flow-feedback structures that determine the dynamic behavior in systems, and motivate the reader to begin analyzing problems dynamically and holistically. Knowing how to speak and think in terms of systems and interconnections is a critical step in effective policy design, policy implementation, and consensus building. In Chapter 1, Introduction, we provide some context for system dynamics by presenting a brief history of the field, beginning with Professor Jay W. Forrester's work at the Massachusetts Institute of Technology in the 1950's, through the present day. In addition, work related to energy policy is presented in some detail to provide the reader with examples of the type of issues that can be studied using system dynamics principles. In Chapter 2, Why Model?, we continue this discussion by exploring the question: "Why model at all?" Chapter 3, Building Blocks, presents the basic concepts behind the study of complex systems by first examining the patterns of behavior that real-world systems exhibit, and then discussing the structure that causes such patterns to emerge. This chapter can be thought of as the "language chapter" because it is here that the reader learns the concepts and terms required to construct the "theories" or "models" of their particular issues. With the concepts and language of system dynamics in hand, Chapter 4, Simple Structures, examines system behavioral types such as exponential growth or oscillation in greater detail. In this chapter, the reader is introduced to the concept of computer simulation. Current computer simulation technology allows decision-makers to easily construct models of a system's structure (including mathematical equations) to use in conducting policy experiments. In chapter 5, Basic Modeling Process, we share some thoughts and ideas about the process of constructing system dynamics models, from conceptual causal diagrams through detailed computer simulation models. Chapter 6, Natural Gas Discovery, reinforces the concepts introduced in the first five chapters by presenting a case-study based on a well-known system dynamics model of the U.S. natural gas
Recommended publications
  • The Emergence of Numerical Weather Prediction: Richardson’S Dream Peter Lynch Frontmatter More Information
    Cambridge University Press 978-1-107-41483-9 - The Emergence of Numerical Weather Prediction: Richardson’s Dream Peter Lynch Frontmatter More information THE EMERGENCE OF NUMERICAL WEATHER PREDICTION Richardson’s Dream In the early twentieth century, Lewis Fry Richardson dreamt that scientific weather prediction would one day become a practical reality. The method of computing changes in the state of the atmosphere that he mapped out in great detail is essen- tially the method used today. Before his ideas could bear fruit several advances were needed: better understanding of the dynamics of the atmosphere; stable com- putational algorithms to integrate the equations of motion; regular observations of the free atmosphere; and powerful automatic computer equipment. By 1950, advances on all these fronts were sufficient to permit the first computer weather forecast to be made. Over the ensuing 50 years progress in numerical weather prediction has been dramatic, allowing Richardson’s dream to become a reality. Weather prediction and climate modelling have now reached a high level of sophistication. This book tells the story of Richardson’s trial forecast, and the fulfilment of his dream of practical weather forecasting and climate modelling. It has a complete reconstruction of Richardson’s forecast, and analyses in detail the causes of the fail- ure of this forecast. It also includes a description of current practice, with particular emphasis on the work of the European Centre for Medium-Range Weather Fore- casts. This book will appeal to everyone involved in numerical weather forecasting, from researchers and graduate students to professionals. Peter Lynch is Met Eireann´ Professor of Meteorology at University College Dublin (UCD) and Director of the UCD Meteorology and Climate Centre.
    [Show full text]
  • What's in a Mental Model of a Dynamic System? Conceptual Structure and Model Comparison
    What’s in a mental model of a dynamic system? Conceptual structure and model comparison Martin Schaffernicht Facultad de Ciencias Empresariales Universidad de Talca Avenida Lircay s/n 3460000 Talca, CHILE [email protected] Stefan N. Groesser University of St. Gallen Institute of Management System Dynamics Group Dufourstrasse 40a CH - 9000 St. Gallen, Switzerland Tel: +41 71 224 23 82 / Fax: +41 71 224 23 55 [email protected] Contribution to the International System Dynamics Conference 2009 Albuquerque, NM, U.S.A. Abstract This paper deals with the representation of mental models of dynamic systems (MMDS). Improving ’mental models’ has always been fundamental in the field of system dynamics. Even though a specific definition exists, no conceptual model of the structure of a MMDS has been offered so far. Previous research about the learning effects of system dynamics interventions have used two methods to represent and analyze mental models. To what extend is the result of these methods comparable? Can they be used to account for a MMDS which is suitable for the system dynamics methodology? Two exemplary MMDSs are compared with both methods. We have found that the procedures and results differ significantly . In addition, neither of the methods can account for the concept of feedback loops. Based on this finding, we propose a conceptual model for the structure of a MMDS, a method to compare them, and a revised definition of MMDS. The paper concludes with a call for more substantive research. Keywords : Mental models, dynamic systems, mental model comparison, graph theory, mental model measurement Introduction Mental models have been a key concept in system dynamics from the beginning of the field (Forrester, 1961).
    [Show full text]
  • The Role of Nuclear Energy in Mitigating Greenhouse Warming
    LA-UR-97-4380 Title: The Role of Nuclear Energy in Mitigating Greenhouse Warming Author(s): R. A. Krakowski Submitted to: http://lib-www.lanl.gov/la-pubs/00412585.pdf Los Alamos NATIONAL LABORATORY Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness. Form No. 836 R5 ST 2629 10/91 THE ROLE OF NUCLEAR ENERGY IN MITIGATING GREENHOUSE WARMING R. A. Krakowski Systems Engineering and Integration Group Technology and Safety Assessment Division Los Alamos National Laboratory Los Alamos, New Mexico 87545 ABSTRACT A behavioral, top-down, forced-equilibrium market model of long-term (~2100) global energy-economics interactions* has been modified with a “bottom-up” nuclear energy model and used to construct consistent scenarios describing future impacts
    [Show full text]
  • Computer Simulation Tools to Enhance Undergraduate Power Systems Edu- Cation
    Paper ID #9640 Computer Simulation Tools to Enhance Undergraduate Power Systems Edu- cation Dr. Matthew Turner, Purdue University (Statewide Technology) Matthew Turner is an Assistant Professor of Electrical and Computer Engineering Technology at Purdue University in New Albany, IN. Previously with the Conn Center for Renewable Energy Research at the University of Louisville, his research interests include power distribution system modelling, best practices for power systems education, and electric energy and public policy. Dr. Chris Foreman, Purdue University, West Lafayette Chris Foreman (Ph.D. Computer Science and Engineering, University of Louisville, 2008) is a Senior Member of IEEE, the Power and Energy Society, and holds both B.S. (1990) and M.Eng. (1996) degrees in Electrical Engineering, also from the University of Louisville. He is an Assistant Professor in the Department of Electrical and Computer Engineering Technology at Purdue University. He teaches and performs research in renewable energy systems, smart power grids, industrial control systems, and cyber- security. He has over 15 years of power industry experience with companies such as Westinghouse Process Control Division (now Emerson Process Management), Cinergy (now Duke Energy), and Alcoa Inc. Dr. Rajeswari Sundararajan, Purdue University, West Lafayette c American Society for Engineering Education, 2014 Computer Simulation Tools to Enhance Undergraduate Power Systems Education Abstract This paper presents a review of software simulation tools relevant for use in undergraduate electrical power systems education. A study of the software packages is presented with respect to their utility in teaching according to the Cognitive Domain Hierarchy of Bloom's Taxonomy. 1. Introduction In recent years a variety of factors have combined to place increasing pressure on the electric power industry; including increasing electrical energy demand, aging infrastructure, energy independence and security goals, and increasingly stringent environmental regulation.
    [Show full text]
  • 1- Validating Simulation Models: a General Framework and Four
    -1- Validating Simulation Models: AGeneral Framework and Four Applied Examples Robert E. Marks Australian Graduate School of Management Australian School of Business University of NewSouth Wales SydneyNSW 2052 Australia [email protected] June 18, 2007 ABSTRACT:This paper provides a framework for discussing the empirical validation of simulation models of market phenomena, in particular of agent-based computational economics models. Such validation is difficult, perhaps because of their complexity; moreover, simulations can prove existence, but not in general necessity.The paper highlights the Energy Modeling Forum’sbenchmarking studies as an exemplar for simulators. A market of competing coffee brands is used to discuss the purposes and practices of simulation, including explanation. The paper discusses measures of complexity,and derivesthe functional complexity of an implementation of Schelling’s segregation model. Finally,the paper discusses howcourts might be convinced to trust simulation results, especially in merger policy. Acknowledgments: We thank Rich Burton, Yaneer Bar-Yam, Ian Wilkinson, Shayne Gary, Peter McBurney, Hill Huntington, Leigh Tesfatsion, the participants at the Fourth UCLA LakeArrowhead Conference on Human ComplexSystems, and twoanonymous referees for their comments and assistance. JEL codes: C63, C15 Ke ywords: simulation; validation; agent-based computational economics; antitrust; functional complexity; Schelling; sufficiency; Daubert criteria -2- 1. Introduction The apparent past reluctance of some in the discipline to accept computer simulation models of economic phenomena might stem from their lack of confidence in the behaviour and results exhibited by such models. Even if there are other reasons, better validation of such models would reduce anyskepticism about their results and their usefulness. Leombruni et al.
    [Show full text]
  • Interim Report 11-1-10
    New York State Climate Action Council Interim Report 11-1-10 Additional Material Full Descriptions of Adaptation Recommendations This document provides additional information for each of the Adaptation Recommendations, including the following: • Potential implementation mechanisms • Related efforts • Research and information needs In some cases, sections are expanded from what is provided in the Climate Action Plan Interim Report. New York State Climate Action Council Interim Report 11-1-10 Agriculture Vision Statement Develop and adopt strategies and technological advances that recognize agriculture as a critical climate and resource dependent New York State industry that is inextricably linked to Earth’s carbon and nitrogen cycles, and ensure that in 2050, the agricultural sector is not only viable, but thriving in a carbon-constrained economy, and is continually adapting to a changing climate. Background Agriculture is a significant component of the New York economy; it includes large wholesale grower-shippers selling products nationally and internationally, a substantial dairy industry, and thousands of small farm operations selling direct retail and providing communities throughout the state with local, fresh produce. Farmers will be on the front lines of coping with climate change, but the direct impacts on crops, livestock, and pests, and the costs of farmer adaptation will have cascading effects beyond the farm gate and throughout the New York economy. While climate change will create unprecedented challenges, there are likely to be new opportunities as well, such as developing markets for new crop options that may come with a longer growing season and warmer temperatures. Taking advantage of any opportunities and minimizing the adverse consequences of climate change will require new decision tools for strategic adaptation.
    [Show full text]
  • Mccarthy.Pdf
    HISTORY OF LISP John McCarthy A rtificial Intelligence Laboratory Stanford University 1. Introduction. 2. LISP prehistory - Summer 1956 through Summer 1958. This paper concentrates on the development of the basic My desire for an algebraic list processing language for ideas and distinguishes two periods - Summer 1956 through artificial intelligence work on the IBM 704 computer arose in the Summer 1958 when most of the key ideas were developed (some of summer of 1956 during the Dartmouth Summer Research Project which were implemented in the FORTRAN based FLPL), and Fall on Artificial Intelligence which was the first organized study of AL 1958 through 1962 when the programming language was During this n~eeting, Newell, Shaa, and Fimon described IPL 2, a implemented and applied to problems of artificial intelligence. list processing language for Rand Corporation's JOHNNIAC After 1962, the development of LISP became multi-stranded, and different ideas were pursued in different places. computer in which they implemented their Logic Theorist program. There was little temptation to copy IPL, because its form was based Except where I give credit to someone else for an idea or on a JOHNNIAC loader that happened to be available to them, decision, I should be regarded as tentatively claiming credit for It and because the FORTRAN idea of writing programs algebraically or else regarding it as a consequence of previous decisions. was attractive. It was immediately apparent that arbitrary However, I have made mistakes about such matters in the past, and subexpressions of symbolic expressions could be obtained by I have received very little response to requests for comments on composing the functions that extract immediate subexpresstons, and drafts of this paper.
    [Show full text]
  • Forecasting Natural Gas: a Literature Survey
    International Journal of Energy Economics and Policy ISSN: 2146-4553 available at http: www.econjournals.com International Journal of Energy Economics and Policy, 2018, 8(3), 216-249. Forecasting Natural Gas: A Literature Survey Jean Gaston Tamba1*, Salomé Ndjakomo Essiane2, Emmanuel Flavian Sapnken3, Francis Djanna Koffi4, Jean Luc Nsouandélé5, Bozidar Soldo6, Donatien Njomo7 1Department of Thermal and Energy Engineering, University Institute of Technology, University of Douala, PO Box 8698 Douala, Cameroon, 2Laboratory of Technologies and Applied Science, University Institute of Technology, University of Douala, PO Box 8698 Douala, Cameroon, 3Laboratory of Technologies and Applied Science, University Institute of Technology, University of Douala, PO Box 8698 Douala, Cameroon, 4Department of Thermal and Energy Engineering, University Institute of Technology, University of Douala, PO Box 8698 Douala, Cameroon, 5Department of Renewable Energy, Higher Institute of the Sahel, University of Maroua, PO Box 46, Maroua, Cameroon, 6HEP-Plin Ltd., Cara Hadrijana 7, HR-31000 Osijek, Croatia, 7Environmental Energy Technologies Laboratory, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon. *Email: [email protected] ABSTRACT This work presents a state-of-the-art survey of published papers that forecast natural gas production, consumption or demand, prices and income elasticity, market volatility and hike in prices. New models and techniques that have recently been applied in the field of natural gas forecasting have discussed with highlights on various methodologies, their specifics, data type, data size, data source, results and conclusions. Moreover, we undertook the difficult task of classifying existing models that have been applied in this field by giving their performance for instance. Our objective is to provide a synthesis of published papers in the field of natural gas forecasting, insights on modeling issues to achieve usable results, and the future research directions.
    [Show full text]
  • Introduction to Bioinformatics
    Mesleki İngilizce - Technical English II • Notes: Prof. Dr. Nizamettin AYDIN – In the slides, • texts enclosed by curly parenthesis, {…}, are examples. • texts enclosed by square parenthesis, […], are [email protected] explanations related to examples. http://www.yildiz.edu.tr/~naydin 1 2 Computer Simulation Computer Simulation • Learning Objectives • Keywords – to acquire basic knowledge about simulation kinds and – mathematical model history • an abstract model that uses mathematical language to – to understand difference between simulation and describe a system modelling – to understand the power of simulation and its influence – stochastic process on modern science • a process with an indeterminate or random element as • Sub-areas covered opposed to a deterministic process that has no random element – Computer simulation – Discrete – Computer graphics – Mathematics • not supporting or requiring the notion of continuity – discrete objects are countable sets such as integers 3 4 Computer Simulation Computer Simulation • Keywords • Reading text – Computer Generated Imagery (CGI) • an application of the field of computer graphics (or, more • Pre-reading questions specifically, 3D computer graphics) to special effects in films, television programs, commercials and simulation – How can we solve problems in cases where – differential equation physical models are too complex or expensive to • a mathematical equation for an unknown function of one or build? several variables that relates the values of the function itself and of its derivatives
    [Show full text]
  • ESD.00 Introduction to Systems Engineering, Lecture 3 Notes
    Introduction to Engineering Systems, ESD.00 System Dynamics Lecture 3 Dr. Afreen Siddiqi From Last Time: Systems Thinking • “we can’t do just one thing” – things are interconnected and our actions have Decisions numerous effects that we often do not anticipate or realize. Goals • Many times our policies and efforts aimed towards some objective fail to produce the desired outcomes, rather we often make Environment matters worse Image by MIT OpenCourseWare. Ref: Figure 1-4, J. Sterman, Business Dynamics: Systems • Systems Thinking involves holistic Thinking and Modeling for a complex world, McGraw Hill, 2000 consideration of our actions Dynamic Complexity • Dynamic (changing over time) • Governed by feedback (actions feedback on themselves) • Nonlinear (effect is rarely proportional to cause, and what happens locally often doesn’t apply in distant regions) • History‐dependent (taking one road often precludes taking others and determines your destination, you can’t unscramble an egg) • Adaptive (the capabilities and decision rules of agents in complex systems change over time) • Counterintuitive (cause and effect are distant in time and space) • Policy resistant (many seemingly obvious solutions to problems fail or actually worsen the situation) • Char acterized by trade‐offs (h(the l ong run is often differ ent f rom the short‐run response, due to time delays. High leverage policies often cause worse‐before‐better behavior while low leverage policies often generate transitory improvement before the problem grows worse. Modes of Behavior Exponential Growth Goal Seeking S-shaped Growth Time Time Time Oscillation Growth with Overshoot Overshoot and Collapse Time Time Time Image by MIT OpenCourseWare. Ref: Figure 4-1, J.
    [Show full text]
  • Issues to Consider While Developing a System Dynamics Model
    Issues to Consider While Developing a System Dynamics Model Elizabeth K. Keating Kellogg Graduate School of Management Northwestern University Leverone Hall, Room 599 Evanston, IL 60208-2002 Tel: (847) 467-3343 Fax: (847) 467-1202 e-mail: [email protected] August 1999 I. Introduction Over the past forty years, system dynamicists have developed techniques to aid in the design, development and testing of system dynamics models. Several articles have proposed model development frameworks (for example, Randers (1980), Richardson and Pugh (1981), and Roberts et al. (1983)), while others have provided detailed advice on more narrow modeling issues. This note is designed as a reference tool for system dynamic modelers, tying the numerous specialized articles to the modeling framework outlined in Forrester (1994). The note first reviews the “system dynamics process” and modeling phases suggested by Forrester (1994). Within each modeling phase, the note provides a list of issues to consider; the modeler should then use discretion in selecting the issues that are appropriate for that model and modeling engagement. Alternatively, this note can serve as a guide for students to assist them in analyzing and critiquing system dynamic models. II. A System Dynamic Model Development Framework System dynamics modelers often pursue a similar development pattern. Several system dynamicists have proposed employing structured development procedures when creating system dynamics models. Some modelers have often relied on the “standard method” proposed by Randers (1980), Richardson and Pugh (1981), and Roberts et al. (1983) to ensure the quality and reliability of the model development process. Forrester (1994) Recently, Wolstenholme (1994) and Loebbke and Bui (1996) have drawn upon experiences in developing decision support systems (DSS) to provide guidance on model construction and analysis.
    [Show full text]
  • Generic and Reusable Structure in Systems Dynamics Modelling: Roadmap of Literature and Future Research Questions
    Generic and reusable structure in systems dynamics modelling: roadmap of literature and future research questions Sondoss ElSawah1,2, Alan McLucas3, Mike Ryan3 1Post-doctoral researcher, School of Information Technology and Electrical Engineering, University of New South Wales, Canberra, Australia 2 Adjunct Fellow, Integrated Catchment Assessment and Management Centre, Fenner School of Environment & Society, Australian National University, Canberra, Australia 3 Senior lecturer, School of Information Technology and Electrical Engineering, University of New South Wales, Canberra, Australia UNSW Australia at the Australian Defence Force Academy Northcott Drive, Canberra ACT 2600 Ph. +61 (0)2 6125 9021, +61 (0)4 3030 3946 Fax 61 (0)2 6125 8395 [email protected] Abstract In the systems dynamics literature, some research efforts have focused on the idea of developing generic and reusable modelling elements. This literature is largely fragmented, which makes it challenging, especially for newcomers, to synthesise what has been achieved and to identify potential research directions. Key insights from the paper are that there is little research into the process of designing reusable structures, and there is a clear gap between the design of these structures and how they can be used effectively in practice. We envisage that emerging research directions such as exploratory system dynamics modelling and XMILE may present opportunities to refresh interest in the topic. Keywords: generic structures, molecules, system dynamics-meta model, object-oriented Introduction In the first issue of the Systems Dynamics Review, Paich (1985) presented the topic of “generic structures” as a research problem, and put forward to the system dynamics community questions about their meaning, research value, utility to policy makers, and the approach to identify and validate them.
    [Show full text]