General Packet Radio Service Third-Generation Wireless Systems Have Yet to Be Deployed

Total Page:16

File Type:pdf, Size:1020Kb

General Packet Radio Service Third-Generation Wireless Systems Have Yet to Be Deployed backed” onto existing GSM wireless networks. The fixed-band- width voice channels of the GSM network are then used for table look up (in the GSM’s Location Register data bases) to obtain a Packet Radio user profile. The signaling and the data traffic are then sent through a separate radio channel that provides 8 timeslots. These timeslots can be used together (to provide a wide-bandwidth channel for a single user) or they can be parceled out among multiple users (to pro- vide several narrow-bandwidth channels). By using multiple channel timeslots together, Packet Radio can provide mobile terminals with transmission speeds ranging from 14.4 Kbits/sec to 115 Kbits/sec. Because Packet Radio can pro- vide a wide range of bandwidths on demand, it can be configured to efficiently handle short “bursty” traffic (such as email and web browsing) as well as large volumes of data. In addition, different levels of service can be provided to different subscribers, billing them accordingly. By Robert Haim Once the user’s data has been sent over the radio channel times- lots, it is packetized for routing over an IP-based Public Land The volume of data traffic has been rapidly overtaking the Mobile Network. (Since these IP-based backbones are used to volume of voice traffic in fixed networks. Data traffic is expected interconnect wireless base stations within a local wireless system, to exceed voice traffic in fixed networks this year, and there is we will call them internal networks.) little doubt that wireless networks will follow soon after. However, second-generation wireless infrastructures were designed pri- Internal networks can be used to carry packets between mobile marily for voice communications, and will need to be replaced terminals within a local area. However, to allow a mobile terminal or enhanced to handle the anticipated data traffic. Third- to connect to a fixed terminal, the data packets are routed over generation wireless systems designed to handle a mix of voice Public Data Networks, such as ATM networks, X.25 networks, or and data traffic have been prototyped, but they have not yet been the Internet. (Because these networks carry data outside the local deployed. An interim solution is to enhance existing second- wireless system, we will call them external networks.) generation wireless systems with hardware and software that will allow them to carry data traffic. This article discusses how Packet Radio protocols and network components this is currently being done. To support Packet Radio operation, new protocols and new hard- ware components must be added to a GSM wireless network. Third-generation wireless systems (such as IMT-2000, UMTS) These are described in the next sections. have been designed to handle both voice and data traffic effi- ciently, taking into account the anticipated rise in data traffic, rel- Packet Radio Components ative to voice traffic. However, these new wireless systems are Two new major components are needed to: very complex, and that complexity has slowed the standardization process — international standards bodies have yet to approve all ■ Provide routing within and between internal networks of the needed standards. ■ Integrate the operation of the internal networks with an exist- ing (voice) GSM wireless network This complexity has also delayed full implementation and wide- ■ Provide routing between internal networks and external networks spread deployment of these third-generation systems. While there have been some proof-of-concept prototypes in Korea and Japan, These new components are called General Packet Radio Service third-generation wireless systems have yet to be deployed. Support Nodes. (We will call them simply Nodes.) General Packet Radio Service There are two types of Nodes: Because of the delays in implementing third-generation wireless ■ Serving Nodes ■ Gateway Nodes systems, General Packet Radio Service (GPRS) has been intro- duced as an interim method for sending data at high-speeds over Serving Nodes current wireless network infrastructures, such as: Serving Nodes on an internal network collectively perform sev- eral functions within their service area: ■ Global Systems for Mobile communications (GSM) wireless networks ■ They detect the presence of any new Packet Radio mobile station. ■ TDMA-based wireless networks ■ They process the registration of the new mobile subscriber, and keep a record of its location. Note: The term General Packet Radio Service is quite a mouthful, ■ They send queries to Home Location Registers, to obtain pro- so we will simply call it Packet Radio in this article. file data for each Packet Radio subscriber. ■ They deliver packets to the mobile stations. How Packet Radio works A voice-based wireless link provides a fixed bandwidth that is Gateway Nodes adequate for voice communication. However, different types of A Gateway Node also performs several functions: data communication require different bandwidths — often much more bandwidth than a voice channel can provide. To provide ■ It provides an interface between an internal network and an the additional bandwidth, Packet Radio systems can be “piggy- external network. ■ It maintains the routing information that is needed to “tunnel” ■ The Base Station System General Packet Radio Service Protocol Data Units (PDUs) between internal networks, allow- Protocol (BSSGP) communicates with its counterpart in the ing the Serving Nodes in one internal network to exchange Serving Node, to allow processing of routing and quality of data with those in another internal network. service information. The base station protocol uses the Frame ■ It provides network and subscriber screening, and address Relay Q.922 core protocol as its transport mechanism. mapping between internal networks and external networks. There are also special protocol layers that run on the Serving Network enhancements Nodes (see Figure 3). In addition to adding the Serving and Gateway nodes to the GSM wireless network (to provide high-speed data paths), the existing GSM infrastructure must also be enhanced to support Packet Serving Node protocol stacks Radio as follows: SNDCP GMM GTP ■ The GSM base stations must be enhanced to communicate LLC TCP/UDP with the Serving Node that is handling the wireless data com- munications within its coverage area. BSSAP+ BSSGP ■ The GSM Home Location Registers must be enhanced to register Packet Radio user profiles, and to respond to queries SCCP Network IP originating from Serving Nodes regarding these profiles. MTP3 Service Packet Radio MTP2 Q.922 (core) L2 network protocols Base station Application software running protocol stacks MTP1 HDLC PHY on a mobile terminal commu- Application nicates by making API calls Figure 3 to a standard network-level protocol, such as IP or X.25. IP or X.25 Below this network-level pro- GMM SNDCP ■ The Base Station System General Packet Radio Service tocol are layers that provide Protocol (BSSGP) communicates with its counterpart in the special data and signaling LLC base station, and processes routing and quality of service infor- protocols that are used to mation. The base station protocol uses the Frame Relay Q.922 communicate with GSM base RLC core protocol as its transport mechanism. stations and Serving Nodes. MAC ■ The BSSAP+ software manages paging for voice and data (See Figure 1) connections, and optimizes paging for mobile subscribers. PHY BSSAP+ is also responsible for location and routing updates, ■ The Sub-Network De- as well as mobile station alerting. pendent Convergence Pro- Figure 1 ■ The Logical Link Control (LLC) layer communicates with its tocol (SNDCP) is a special counterpart in the mobile terminal to assure reliable transfers layer below the network-level protocol that communicates with between the mobile terminal and the Serving Node across the its counterpart in the Serving Node. SNDCP also provides data wireless link. compression, data segmentation, and multiplexing of network- layer messages onto the radio link connection. There is also a special protocol layer ■ The Logical Link Control (LLC) is a special data link layer that runs on the Gateway Nodes (see Gateway Node protocol for Packet Radio that is similar to Link Access Figure 4). protocol stack Protocol -D (LAPD). This protocol layer communicates with its counterpart in the Serving Node to assure reliable transfers ■ The Tunnel Protocol (GTP) adds IP or X.25 between the mobile terminal and the Serving Node across the routing information to protocol wireless link. data units for Node-to-Node deliv- GTP ■ The Packet Radio Mobility Management (GMM) software ery through the IP backbone. The TCP/UDP is used for signaling, and handles mobility issues such as Tunnel Protocol operates on top of roaming, authentication, and selection of encryption algo- TCP/UDP over IP. IP rithms. Packet Radio L2 (IP/ATM) There are also several special network operation PHY protocol layers that run on Base station In Packet Radio communication, a the GSM base stations (see protocol stacks new network connection is estab- Figure 4 Figure 2). lished for each data transaction, and LLC Relay then released once that transaction is completed. However, these ■ The Network Service proto- connections are established so quickly that the user is given the BSSGP col manages the conver- RLC impression of always being “connected”. The process used to gence sublayer that operates Network establish and sever connections in real time requires several between the base station Service steps: protocol and the Frame MAC Relay Q.922 Core by map- Q.922 (core) ■ Network access ping the base station proto- ■ Routing and data transfer col’s service requests to the PHY ■ Mobility management appropriate Frame Relay services. Figure 2 These steps are described on next pages. a long time before widespread demand is apparent. As a result, leading-edge technology providers often face substantial risks when introducing new products. Packet Radio is a good example of this. The technology requires a very substantial initial investment in a new infrastructure, and the payoff might be a while coming.
Recommended publications
  • Abaco Systems / Radstone PMCQ1R Series Datasheet
    Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Abaco Systems / Radstone PMCQ1R-100 at our website: Click HERE PMCQ1 High Speed Serial and MIL-STD-1553 Rugged PMC I Available in 5 ruggedization levels I QUICC (68360) based serial communications offering 4 high-speed sync / async channels I Modular X.25 stack support I Optional MIL-STD-1553 interface (Single channel, Dual redundant) I Built-in test software support (BIT) I Support for VxWorks and LynxOS I 32bit / 33MHz PCI 2.1 compatible Product Overview Available in five ruggedization levels to meet the needs of the Industrial and Defense OEM marketplace, the PMCQ1 provides a means of adding high speed serial communication capabilities plus optional MIL-STD-1553 interface, to a main processing unit, to achieve cost effective system solutions. Targeted at rugged communications orientated applications, the PMCQ1 is ideal for use with Radstone’s market leading PowerPC based SBCs including the PPCx series and the EP1A-8240 from the EmPower product range. The PMCQ1 can also be used with Radstone’s PMC Carrier Cards, up to 9 PMC cards being addressable using PPzero (PCI Extensions over P0).
    [Show full text]
  • X Quarterly Report Pursuant to Section 13 Or 15(D) of the Securities ------Exchange Act of 1934 for the Quarterly Period Ended July 1, 2000
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-Q (Mark One) X Quarterly report pursuant to Section 13 or 15(d) of the Securities - ----- Exchange Act of 1934 For the quarterly period ended July 1, 2000 OR Transition report pursuant to Section 13 or 15(d) of the Securities - ----- Exchange Act of 1934 For the transition period from to ---------- ---------- Commission file number 0-6217 ------ INTEL CORPORATION (Exact name of registrant as specified in its charter) Delaware 94-1672743 -------- ---------- (State or other jurisdiction of (I.R.S. Employer incorporation or organization) Identification No.) 2200 Mission College Boulevard, Santa Clara, California 95052-8119 - ------------------------------------------------------- ---------- (Address of principal executive offices) (Zip Code) (408) 765-8080 -------------- (Registrant's telephone number, including area code) N/A ------------------------ (Former name, former address, and former fiscal year, if changed since last report) Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes X No ----- ----- Shares outstanding of the Registrant's common stock: Class Outstanding at July 1, 2000 Common stock, $0.001 par value 6,714 million PART I - FINANCIAL INFORMATION ITEM 1.
    [Show full text]
  • Intel Corporation 2000 Annual Report
    silicon is in 2000 Annual Report i n t e l .c o m i n t c . c o m Intel facts and figures Net revenues Diluted earnings per share Dollars in billions Dollars, adjusted for stock splits 35 1.6 33.7 1.51 30 29.4 1.2 26.3 25 25.1 Intel revenues 1.05 20.8 20 grew 15% in 2000, 0.97 0.86 0.8 giving us our 14th 16.2 15 0.73 consecutive year of 11.5 10 0.50 0.4 8.8 revenue growth. 0.33 0.33 5.8 5 4.8 0.12 0.16 0 0 91 92 93 94 95 9697 98 99 00 91 92 93 94 95 9697 98 99 00 Geographic breakdown of 2000 revenues Return on average stockholders’ equity Percent Percent 100 40 38.4 35.5 35.6 33.3 North America 41% Intel has 30 75 30.2 experienced strong 27.3 28.4 26.2 international growth, 21.6 20 50 with 59% of revenues 20.4 Asia-Pacific 26% outside North America in 2000. 10 25 Europe 24% 0 Japan 9% 91 92 93 94 95 9697 98 99 00 0 Capital additions to property, Stock price trading ranges by fiscal year plant and equipment † Dollars, adjusted for stock splits Dollars in millions 75 8,000 Capital invest- 6,674 ments reflect Intel’s 6,000 50 commitment to building leading-edge manu- 4,501 4,000 4,032 facturing capacity for 3,550 3,403 25 3,024 state-of-the-art 2,441 2,000 silicon products.
    [Show full text]
  • 3G Telecommunication Networks Kajali Bansal Assistant Professor Computer Science & Engineering Dept
    Volume 3, Issue 6, June 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com 3G Telecommunication Networks Kajali Bansal Assistant Professor Computer Science & Engineering Dept. Chandigarh University (Punjab) India Abstract: 3G is the third generation of wireless technologies. This comes with enhancements over previous wireless technologies, as high-speed transmission, advanced multimedia access and. 3G is mostly used with mobile phones and handsets as a means to connect the phone to the Internet or other IP networks in order to make voice and video calls, download and upload data and to surf the net. 3G is the successor of 2G and 1G standards. The 3G networks handle the majority of all data transfers for cellular service providers. Keywords: 3G, 4G, 5G, Radio Access Network, Telecommunication, Cellular Network. I. Introduction 3G wireless technology is the convergence of various 2G wireless telecommunications systems into a single global system which includes both terrestrial and satellite components. 3G wireless technology has ability to unify existing cellular standards with CDMA, GSM, and TDMA. 3G has the following enhancements over 2.5G and previous networks: Higher data speed, Video-conferencing support, Enhanced audio and video streaming, Web and WAP browsing at higher speeds, IPTV (TV through the Internet) support transfer rate for 3G networks is between 128 and 144 kbps for devices that are moving fast and 384 kbps for slow ones. For fixed wireless LANs, the speed goes beyond 2mbps. II. Back Ground The first mobile telephone systems (car phone) were introduced in the late 1940s in the United States and in 1950s in Europe.
    [Show full text]
  • Federal Register/Vol. 65, No. 199/Friday, October 13, 2000/Notices
    60960 Federal Register / Vol. 65, No. 199 / Friday, October 13, 2000 / Notices Transaction No. Acquiring Acquired Entities 20004365 .......... Marubeni Corporation ...................... PLM International Inc ....................... PLM International, Inc. 20004366 .......... Intel Corporation .............................. Trillium Digital Systems, Inc ............ Trillium Digital Systems, Inc. 20004369 .......... Andrea L. Cunningham .................... Incepta Group Plc ............................ Incepta Group Plc. 20004370 .......... Incepta Group Plc ............................ Andrea L. Cunningham .................... Cunningham Communications, Inc. 20004371 .......... Insilco Holding Co ............................ Dale Fleming .................................... Precision Cable Manufacturing Corporation. 20004372 .......... American Reprographics Holdings, The Sandpoint Charitable Trust ...... Wilco Reprographics, Inc. L.L.C. 20004378 .......... James L. Barksdale ......................... Webvan Group, Inc .......................... Webvan Group, Inc. 20004380 .......... Kan S. Bajaj ..................................... Commerce One, Inc ........................ Commerce One, Inc. 20004382 .......... Sapa AB ........................................... Anodizing, Inc .................................. Anodizing, Inc. 20004421 .......... Reuters Group PLC ......................... The RiskMetrics Group, Inc ............. The RiskMetrics Group, Inc. Transactions Granted Early TerminationÐ08/17/2000 20002951 .......... Healtheon/WebMD
    [Show full text]
  • OF NOTIFICATIONS Published from 1 January to 31 December 2003 (Nos
    INDEX OF NOTIFICATIONS published from 1 January to 31 December 2003 (Nos. 1422 - 1433) Note - The following symbols are used in this Index: C&C Geneva (1992) = Constitution of the International Telecommunication Union and Convention of the International Telecommunication Union (Geneva, 1992) Amendments Minneapolis (1998) = Instruments amending the Constitution and the Convention of the International Telecommunication Union (Geneva, 1992) (Minneapolis, 1998) Amendments Marrakesh (2002) = Instruments amending the Constitution and the Convention of the International Telecommunication Union (Geneva, 1992) (Marrakesh, 2002) Final Acts WRC-00 = Final Acts of the World Radiocommunication Conference, (Istanbul, 2000) __________________________________________ 3, Maidenhead, United Kingdom. Change of 1430, 1432. Peru: 1422, 1431. Poland: 1428. denomination (ITU-R, ITU-T): 1423. Qatar: 1424. Samoa: 1430. San Marino: 1422. 3G Americas, Bellevue, Washington, United States. Saudi Arabia: 1426. Senegal: 1427. Serbia and Participation SG 8 of ITU-R, SSG of ITU-T, Montenegro: 1430. Singapore: 1426. Slovakia: SG 2 of ITU-D: 1431. 1432. Somalia: 1430. Spain: 1430. Swaziland: 1430. Syrian Arab Republic: 1424. Tajikistan: ABFICT-Arab Business Forum for Information and 1423. Thailand: 1422. The Former Yugoslav Communication Technology, Cairo. Republic of Macedonia: 1432. Togo: Participation in ITU-D: 1432. 1430.Turkey: 1426. Vanuatu: 1429. Venezuela: Acterna Eningen GmbH, Eningen, Germany. Change of 1423, 1431. denomination (ITU-T): 1426. Advanced Space Business Corporation, Tokyo, Japan. Acterna Germany GmbH, Eningen, Germany. Change Participation SG 6 of ITU-R: 1425. of denomination (ITU-T): 1426. Advanced Telecom Co., Riyadh, Saudi Arabia. AD “Makedonski Telekomunikacii”, Skopje, The Participation in ITU-D: 1431. Former Yugoslav Republic of Macedonia. Afghan Wireless Communication Company, Kabul, Participation in ITU-D: 1422.
    [Show full text]
  • Programmable Interfaces for IP Routers and Switches
    Informing Science Challenges to Informing Clients: A Transdisciplinary Approach June 2001 Using Programmable Interfaces for Networks as the Key to Provide Quality of Service in the Internet Jairo A. Gutierrez Terence Wee University of Auckland, New Zealand National Computer Systems Pte Ltd, [email protected] Singapore [email protected] Abstract The growth of the Internet with its increasing levels of traffic, more ambitious applications and the convergence of communication technologies re- sults in poor quality of service. New technologies such as those discussed in this paper have been developed to aid in introducing quality of service to the Internet. However, those efforts may seem to be in vain due to the heterogeneous nature of IP-based networks. This paper suggests an inte- grated approach to provide end-to-end quality of service on the Internet based on the use of programmable interfaces. The need for dynamic modifi- cation of policies and configurations within IP routers and switches is already beginning to emerge and that functionality will help fulfill customers' demands for differentiated services. Keywords: Programmable networks, Quality of Service, Programming Interfaces, Multiple Protocol Label Switching (MPLS), Differentiated Services, Asynchronous Transfer Mode (ATM) Introduction • Compatibility with a wide range of routing proto- cols (Callon, R. et al, 1997) The objective of enabling the development of higher-level multimedia services with guaranteed quality of service • Resource reservation (QoS) on networks
    [Show full text]
  • 2Nd Generation and 3Rd Generation Mobile Services
    International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 108 ISSN 2229-5518 2nd Generation and 3rd Generation mobile Services Nitikesh Thakre Neha S. Sakhare Vasanti D.Deshmukh Assistant Professor(M.E) Student of 3rd year (CSE) Student of 3rd year (CSE) Abstract : 3G services represents an evolution in telecommunication industry. However, 3G services has not received great adoption rate as expected despite of various benefits provided by this service. This study aims to investigate the factors affecting the intention to adopt 3G services among the university students in Malaysia since they expected to be the group with great potential to adopt 3G services. Diffusion of innovation theory is modified and applied in this study to achieve the objective. Results of this study show that perceived compatibility, perceived relative advantage, perceived results demonstrability, perceived trailability, perceived image, and perceived enjoyment are significantly associated with intention to adopt 3G services. Surprisingly, perceived cost of using 3G services is found to be positive but insignificant associated with intention to adopt 3G services. Managerial implications and conclusion have been discussed. All mobile operators with both 2G and 3G license require the maximum reuse of the existing infrastructure when building the 3G-network. Because of the importance of a seamless mobile network, Ericsson has been involved and working very much with definition of the interfaces, new protocols and to create a solution for integration of the 2G and 3G mobile systems. Ericsson as a leading company in the telecommunication field is active in all standardization forum, including ITU, 3GPP, etc. Ericsson Seamless Network for 2G and 3G, includes: - Common core & Service network - Common Network Management - Common Transmission - Common sites (one seamless radio network) Good Quality of Service, requires the possibility of Handover between the existing 2G and 2.5 G network and the 3G network.
    [Show full text]
  • OFDM Transmitter
    APPLICATIONS OF DIGITAL SIGNAL PROCESSING METHODS FOR 4G WIRELESS COMMUNICATION SYSTEMS Anna Torrens Senior Project Report Course: EECE 419 Date submitted: January 10, 2012 Advisor: Dr. Evriclea Voudouri-Maniati Manhattan College ABSTRACT The increasing interest of users in multimedia applications of data communication is growing up very fast; this is the reason why mobile wireless networks are converging to a new generation where the speed is one of the issues. This project, which has been developed in Manhattan College, a University in New York City, evaluates the technique of OFDM. OFDM is used in the current generation of mobile communication as well as in the upcoming generations like 4G and beyond. Specifically, an introduction to the LTE (one of the fourth generation standards) is provided followed by a review of the features of OFDM. A simulation with MATLAB code demonstrates that the transmitted video data can be recovered at the receiver without errors in the presence of indoors and outdoors multipath fading. In addition, as Manhattan College has acquired the Texas Instruments 6713 DSP Starter Kit (DSK), the form of the previous theoretical research has been applied to a practical experiment, in the implementation of the OFDM transmitter. 2 Manhattan College OVERVIEW Nowadays mobile communications are getting a central role in our society. Few years ago a cell phone was used only for voice, but with the introduction of data new directions have been researched to solve the demand of the users. In this report we want to introduce the fourth generation as the new technology of mobile wireless network, and be involved in one of its standards for transmission and reception of data called OFDM.
    [Show full text]
  • United States Securities and Exchange Commission Form
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark One) /x/ Annual Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 For the fiscal year ended December 30, 2000, / / Transition Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 For the transition period from to . Commission File Number 0-6217 INTEL CORPORATION (Exact name of registrant as specified in its charter) Delaware 94-1672743 (State or other jurisdiction of (I.R.S. Employer incorporation or organization) Identification No.) 2200 Mission College Boulevard, Santa Clara, California, 95052-8119 (Address of Principal Executive Offices, Zip Code) Registrant's telephone number, including area code (408) 765-8080 Securities registered pursuant to Section 12(b) of the Act: Title of each class Name of each exchange on which registered NONE Securities registered pursuant to Section 12(g) of the Act: Common stock, $0.001 par value Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes /x/ No / / Indicate by check mark if disclosure of delinquent filers pursuant to Item 405 of Regulation S-K is not contained herein, and will not be contained, to the best of registrant's knowledge, in definitive proxy or information statements incorporated by reference in Part III of this Form 10-K or any amendment to this Form 10-K.
    [Show full text]
  • Heavy Traffic Drives Networks to IP Over Sonet
    . This consideration has become much more important to carriers as the volume Heavy Traffic of IP traffic has increased. Internet ser- vice providers (ISPs), local telephone car- riers, and even large corporate users have Technology News Technology thus begun sending IP directly over Sonet Drives Networks as a fast, cost-effective, reliable, fault-tol- erant, and more easily configurable alter- native. “Companies that have it will be able to IP over Sonet to compete more successfully in the face of deregulation in the new markets,” said Robert Rosenberg, president of The David Clark Insight Research Corp., a telecommuni- cations market research firm. ABOUT SONET In the face of emerging proprietary ith Internet use continuing optical transmission protocols, Sonet was to explode, with an in- conceived by MCI and developed by creasing number of users Bellcore in the mid-1980s to create an switching to IP-based net- open standard for synchronous data W works, and with data traf- transmission on optical media. The stan- fic about to surpass voice traffic, network dard was approved in 1988 by Comité service providers have begun looking for Consultatif Internationale de Télé- a faster, more efficient, and less expensive phonique et Télégraphique (Consultative transport technology to handle the heavy Committee on International Telephone volumes of traffic they are experiencing. and Telegraphy), the predecessor to With this in mind, many providers Network service today’s International Telecommunication have decided to carry IP traffic directly providers are looking Union, and in 1989 by the American over Sonet (synchronous optical net- for a faster, more National Standards Institute.
    [Show full text]
  • CSR-T Volume 9 #7, October 1998
    COMMUNICATIONS STANDARDS REVIEW TELECOMMUNICATIONS Volume 9, Number 7 October 1998 In This Issue The following reports of recent standards meetings represent the view of the reporter and are not official, authorized minutes of the meetings. TR-29 Facsimile Systems and Equipment Engineering, August 10 – 12,1998, Santa Rosa, CA..........................2 TR-29.1 Facsimile and File Transfer Protocols...............................................................................3 TR-29.2 Facsimile Digital Interfaces...........................................................................................7 TR-41 User Premises Telecom Equipment, August 17 – 21, 1998, Calgary, Alberta, Canada..............................9 TR-41.1 Multi-Line Telecom Systems..........................................................................................9 TR-41.1.1, Multi-Line Telecom Systems - Transmission...................................................................10 TR-41.1.9, Multi-Line Telecom Systems Support of Enhanced 911 Service............................................11 TR-41.2, Conformity Assessment...............................................................................................11 TR-41.3, Analog and Digital Wireline Telephones..........................................................................13 TR-41.5, Multimedia Building Distribution Systems........................................................................13 TR-41.6, Wireless User Premises Equipment (WUPE).......................................................................14
    [Show full text]