1. Contestant Profile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dragonflies and Damselflies of the Western Cape
BIODIVERSITY OBSERVATIONS RESEARCH PAPER (CITIZEN SCIENCE) Dragonflies and damselflies of the Western Cape - OdonataMAP report, August 2018 Author(s): Journal editor: Underhill LG, Loftie-Eaton M and Pete Laver Navarro R Manuscript editor: Pete Laver Received: August 30, 2018; Accepted: September 6, 2018; Published: September 06, 2018 Citation: Underhill LG, Loftie-Eaton M and Navarro R. 2018. Dragonflies and damselflies of the Western Cape - OdonataMAP report, August 2018. Biodiversity Observations 9.7:1-21 Journal: https://journals.uct.ac.za/index.php/BO/ Manuscript: https://journals.uct.ac.za/index.php/BO/article/view/643 PDF: https://journals.uct.ac.za/index.php/BO/article/view/643/554 HTML: http://thebdi.org/blog/2018/09/06/odonata-of-the-western-cape Biodiversity Observations is an open access electronic journal published by the Animal Demography Unit at the University of Cape Town, available at https://journals.uct.ac.za/index.php/BO/ The scope of Biodiversity Observations includes papers describing observations about biodiversity in general, including animals, plants, algae and fungi. This includes observations of behaviour, breeding and flowering patterns, distributions and range extensions, foraging, food, movement, measurements, habitat and colouration/plumage variations. Biotic interactions such as pollination, fruit dispersal, herbivory and predation fall within the scope, as well as the use of indigenous and exotic species by humans. Observations of naturalised plants and animals will also be considered. Biodiversity Observations will also publish a variety of other interesting or relevant biodiversity material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, book reviews and any other appropriate material. -
Environmental and Social Impact Assessment Seismic Reflection Survey and Well Drilling, Umkhanyakude District Municipality, Northern Kzn
SFG1897 v2 Public Disclosure Authorized ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT SEISMIC REFLECTION SURVEY AND WELL DRILLING, UMKHANYAKUDE DISTRICT MUNICIPALITY, NORTHERN KZN Public Disclosure Authorized Client: SANEDI–SACCCS Consultant: G.A. Botha (PhD, Pr.Sci.Nat) in association with specialist consultants; Brousse-James and Associates, WetRest, Jeffares & Green, S. Allan Council for Geoscience, P.O. Box 900, Pietermaritzburg, 3200 Council for Geoscience report: 2016-0009 June, 2016 Copyright © Council for Geoscience, 2016 Public Disclosure Authorized Public Disclosure Authorized Table of Contents Executive Summary ..................................................................................................................................... vii 1 Introduction ........................................................................................................................................... 1 2 Project description ................................................................................................................................ 4 2.1 Location and regional context ....................................................................................................... 5 2.2 2D seismic reflection survey and well drilling; project description and technical aspects ............ 7 2.2.1 Seismic survey (vibroseis) process ....................................................................................... 7 2.2.2 Well drilling ........................................................................................................................... -
IDF-Report 126 (2018)
IDF International Dragonfly Fund - Report Journal of the International Dragonfly Fund 1- 36 Jens Kipping, Falk Petzold & César Ngoulou Dragonfly and Damselfly (Insects: Odonata) inventory of the Réserve Naturelle des Gorilles de Lésio-Louna (RNGLL) on the Batéké Plateau in the Republic of Congo Published: 26.12.2018 126 ISSN 1435-3393 The International Dragonfly Fund (IDF) is a scientific society founded in 1996 for the impro- vement of odonatological knowledge and the protection of species. Internet: http://www.dragonflyfund.org/ This series intends to publish studies promoted by IDF and to facilitate cost-efficient and ra- pid dissemination of odonatological data. Editorial Work: Rory A. Dow, Milen Marinov, Martin Schorr Layout: Martin Schorr IDF-home page: Holger Hunger Printing: Colour Connection GmbH, Frankfurt Impressum: Publisher: International Dragonfly Fund e.V., Schulstr. 7B, 54314 Zerf, Germany. E-mail: [email protected] Responsible editor: Martin Schorr Cover picture: Elattoneura odzalae Photographer: Jens Kipping Published 26.12.2018 Dragonfly and Damselfly (Insects: Odonata) inventory of the Réserve Naturelle des Gorilles de Lésio-Louna (RNGLL) on the Batéké Plateau in the Republic of Congo Jens Kipping1, Falk Petzold2 & César Ngoulou3 1independent researcher, BioCart Ökologische Gutachten, Albrecht-Dürer-Weg 8, D-04425 Taucha/Leipzig, Germany, Email: [email protected] 2independent researcher, Pappelallee 73, D-10437 Berlin, Germany, Email: [email protected] 3IRSEN, Brazzaville, Republic of Congo, Email: [email protected] Abstract We present records of 99 Odonata species from the Réserve Naturelle des Gorilles de Lésio-Louna (RNGLL) in the Republic of Congo (Congo-Brazzaville) collected during a short survey from 14 January to 01 February 2017. -
Barcode of Life Data Systems (BOLD) Versus Genbank Molecular Identification of a Dragonfly from the UAE in Comparison to the Morphological Identification
OnLine Journal of Biological Sciences Original Research Paper Barcode of Life Data Systems (BOLD) Versus GenBank Molecular Identification of a Dragonfly from the UAE in Comparison to the Morphological Identification 1Noora Almansoori, 1,2Mohamed Rizk Enan and 1Mohammad Ali Al-Deeb 1Department of Biology, United Arab Emirates University, Al-Ain, UAE 2Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt Article history Abstract: Dragonflies are insects in the order Odonata. They inhabit Received: 26-09-2019 freshwater ecosystems and are found in the UAE. To date, few checklists Revised: 19-11-2019 have been published for the local dragonflies and the used identification Accepted: 29-11-2019 keys are not comprehensive of Arabia. The aim of this study was to provide a molecular identification of a dragonfly based on the mitochondrial Corresponding Author: Cytochrome c Oxidase subunit I (COI) gene using the National Center for Mohammad Ali Al-Deeb, Biotechnology Information (NCBI) database and the Barcode of Life Data Department of Biology, United Systems (BOLD) in comparison with the morphology. The insect’s DNA Arab Emirates University, Al- was extracted and the PCR was performed on the target gene. The insect Ain, UAE Email: [email protected] was identified initially as Anax imperator based on the NCBI database and as Anax parthenope based on the BOLD. However, the morphological identification was in agreement with the one produced by the BOLD. The results of this study is a demonstration of how, in some cases, the DNA- based identification does not provide a conclusive species designation and that a morphology-based identification is needed. -
Okavango) Catchment, Angola
Southern African Regional Environmental Program (SAREP) First Biodiversity Field Survey Upper Cubango (Okavango) catchment, Angola May 2012 Dragonflies & Damselflies (Insecta: Odonata) Expert Report December 2012 Dipl.-Ing. (FH) Jens Kipping BioCart Assessments Albrecht-Dürer-Weg 8 D-04425 Taucha/Leipzig Germany ++49 34298 209414 [email protected] wwwbiocart.de Survey supported by Disclaimer This work is not issued for purposes of zoological nomenclature and is not published within the meaning of the International Code of Zoological Nomenclature (1999). Index 1 Introduction ...................................................................................................................3 1.1 Odonata as indicators of freshwater health ..............................................................3 1.2 African Odonata .......................................................................................................5 1.2 Odonata research in Angola - past and present .......................................................8 1.3 Aims of the project from Odonata experts perspective ...........................................13 2 Methods .......................................................................................................................14 3 Results .........................................................................................................................18 3.1 Overall Odonata species inventory .........................................................................18 3.2 Odonata species per field -
The Penultimate and Ultimate Larvae Instars of Ictinogomphus Ferox
Journal of Entomology and Zoology Studies 2018; 6(4): 149-152 E-ISSN: 2320-7078 P-ISSN: 2349-6800 The penultimate and ultimate larvae instars of JEZS 2018; 6(4): 149-152 © 2018 JEZS Ictinogomphus ferox (Rambur, 1842) Odonata: Received: 14-05-2018 Accepted: 15-06-2018 Gomphidae from Igbara-oke, southwestern, Adu BW Nigeria Department of Biology, the Federal University of Technology, Akure, Nigeria Adu BW Abstract Ictinogomphus ferox (Rambur, 1842): Common Tiger tail larva was collected at the littoral section of River Owena dam in Igbara-Oke, Nigeria. The penultimate and ultimate instars of the larva was described with the morphological character of the species and was compared with Gomphidia which is also in Nigeria. There is similarity in the general appearance of Ictinogompus larva and that of the Gomphidia. But the Ictinogomphus is bigger than the Gomphidia both as larvae or Adults. This study is describing the larvae of Ictinogomphus forex from Nigeria for the first time. Keywords: Odonata, Gomphidae, Ictinogomphus ferox, Penultimate and Ultimate larva Introduction Ictinogomphus ferox (Rambur, 1842) is one of the species of Gomphidae, and known to be [4] widespread across Africa . The adult was originally described by Rambur in 1842. Gomphidae have been widely investigated and described as an adult and larvae [5, 6, 2], and [10]. About 90 genera and 1000 species of this family are known worldwide, while less than a sixth of this are found in Africa [7]. However, it was expected that being one of the largest anisopteran the description and identification manual of larvae of this family should readily be available. -
Phylogeny of the Higher Libelluloidea (Anisoptera: Odonata): an Exploration of the Most Speciose Superfamily of Dragonflies
Molecular Phylogenetics and Evolution 45 (2007) 289–310 www.elsevier.com/locate/ympev Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): An exploration of the most speciose superfamily of dragonflies Jessica Ware a,*, Michael May a, Karl Kjer b a Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, NJ 08901, USA b Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA Received 8 December 2006; revised 8 May 2007; accepted 21 May 2007 Available online 4 July 2007 Abstract Although libelluloid dragonflies are diverse, numerous, and commonly observed and studied, their phylogenetic history is uncertain. Over 150 years of taxonomic study of Libelluloidea Rambur, 1842, beginning with Hagen (1840), [Rambur, M.P., 1842. Neuropteres. Histoire naturelle des Insectes, Paris, pp. 534; Hagen, H., 1840. Synonymia Libellularum Europaearum. Dissertation inaugularis quam consensu et auctoritate gratiosi medicorum ordinis in academia albertina ad summos in medicina et chirurgia honores.] and Selys (1850), [de Selys Longchamps, E., 1850. Revue des Odonates ou Libellules d’Europe [avec la collaboration de H.A. Hagen]. Muquardt, Brux- elles; Leipzig, 1–408.], has failed to produce a consensus about family and subfamily relationships. The present study provides a well- substantiated phylogeny of the Libelluloidea generated from gene fragments of two independent genes, the 16S and 28S ribosomal RNA (rRNA), and using models that take into account non-independence of correlated rRNA sites. Ninety-three ingroup taxa and six outgroup taxa were amplified for the 28S fragment; 78 ingroup taxa and five outgroup taxa were amplified for the 16S fragment. -
Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice Through Integrated and Adaptive Management
Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2020 Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management Erasme Uyizeye Follow this and additional works at: https://aura.antioch.edu/etds Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, and the Environmental Sciences Commons Department of Environmental Studies DISSERTATION COMMITTEE PAGE The undersigned have examined the dissertation entitled: Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management, presented by Erasme Uyizeye, candidate for the degree of Doctor of Philosophy, and hereby certify that it is accepted*. Committee Chair: Beth A. Kaplin, Ph.D. Antioch University New England, USA Committee member: Lisabeth Willey, Ph.D. Antioch University New England, USA Committee member: Viola Clausnitzer, Ph.D. Senckenberg Museum of Natural History Görlitz, Germany. Defense Date: April 17th, 2020. Date Approved by all Committee Members: April 30th, 2020. Date Deposited: April 30th, 2020. *Signatures are on file with the Registrar’s Office at Antioch University New England. Developing an Odonate-Based Index for Monitoring Freshwater Ecosystems in Rwanda: Towards Linking Policy to Practice through Integrated and Adaptive Management By Erasme Uyizeye A dissertation submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Environmental Studies at Antioch University New England Keene, New Hampshire 2020 ii © 2020 by Erasme Uyizeye All rights reserve iii Dedication I dedicate this dissertation to my daughter who was born in the midst of this doctoral journey, my wife who has stayed by my side, my father for his words of encouragement (1956-1993) & my mother for her unwavering support and love. -
1997, a Odonata, Specifically on the Dragonflies of Ghana Published
67-86 Odonatologica 30(1): March 1, 2001 An annotated list of Odonata collected in Ghana in 1997, a checklist of Ghana Odonata, and comments on West African odonate biodiversity and biogeography G. O’Neill¹ and D.R. Paulson² 1 Department of Biology, University of Puget Sound, Tacoma, WA 98416, United States (present address: 14 Lehigh Ave., Wilmington, DE 19805, United States) 2 Slater Museum of Natural History, University of Puget Sound, Tacoma, WA 98416, United States; — e-mail: [email protected] Received August 8, 2000 / Revised and Accepted September 4, 2000 made 8 in southern Collections were at localities Ghana during the summer of 1997. coastal Three regions were sampled: savanna, wooded savanna, and rainforest. 71 spp. were collected, 24 of which are new for the country, bringing the Ghana to A of known from is list 123 spp. list spp. the country included. Trithemis dejouxi Pinhey, 1978, is raised to specific rank. Individual variation in Phaon iridipennis and Palpopleura lucia is quantified. West African Odonata biodiversity and biogeography are discussed. INTRODUCTION To four studies date, only have focused specifically on the dragonflies ofGhana (KARSCH, 1893;NEVILLE, 1960;MARSHALL& GAMBLES, 1977;D’ANDREA & CARFI, 1994). Little has been published about the biology of the species and list of known from occurring there, no species the country has been compiled. From these papers and others, especially PINHEY (1962a), 99 species ofOdonata have been recorded in Ghana to date. The landscape of Ghana varies from wet forest to dry savanna due to a sharp rainfall gradient. The southern portion of the country is covered by wet, semi- moist and semi-dry forests, while farthernorth, in central Ghana, forest gives way the tall short to grasses, shrubs, and scattered trees of the savanna (SAYER et al., Terrestrial exhibit 1992). -
(Zygoptera) Limnological Survey (Region of Lamto, Ivory-Coast
Odonatologica 6 (I): 21 - 26 March 1,1977 The foodof the damselflylarvae of a temporarytropicalpond (Zygoptera) E.H. Lamoot Institut d’Ecologie tropicale, Université d’Abidjan, B.P. 8109, Abidjan, Ivory Coast and Laboratory of Ecology, Ruca, Middelheimlaan 1, B-2020 Antwerpen, Belgium Received September 3, 1976 / Revised and Accepted December 30, 1976 A study of the food of the damselfly larvae of a temporary tropical pond reveals that the dietary ingredients become more diversified with the size of the larvae. In general, it is difficult to speak of a clear food preference in terms of size. The kind of the larvae is particle prey captured by only partly determined the size of the larvae and of the The in and by prey. ease capturing item result in for smaller eating a prey may a preference prey (chydorid Cladocera) when apparently more attractive bigger prey (midge larvae) are also available. INTRODUCTION in In the course of a limnological survey of some temporary ponds situated a tropical savannah environment (region of Lamto, Ivory-Coast), some aspects of the insect fauna of these biotopes were considered. In some, a major fractionof the insect fauna consists of zygopteran larvae, amongwhich Coenagrionidae and Lestidae abundant the are the most (FORGE, 1976). In order to estimate impact of these larvae on the plankton and benthos communities, I examined their gut contents. larvae Although it is universally known that dragonfly are predators, re- markably little is known about their diets in natural conditions, and no system- A atic survey has been carried out to throw light on this question. -
Acknowledgements the Assistance of Dr M.J.Parr in Identifying
International Journal of Odonatology 1 (1) 1998. © 1998 Backhuys Publishers. Acknowledgements The assistance of Dr M.J.Parr in identifying Orthetrum kristenseni and lending papers concerning the Italian expeditions is gratefully acknowledged. References Brignoli, P.M., C. Consiglio, V. Cottarelli & A. Vigna Taglianti, 1978. General Remarks about the first and second Zoological Expeditions to Ethiopia. Problemi attuali di Scienza e di Cultura Quaderno no 243: S-26. Accademia Naz. dei Lincei. Consiglio, C.,1978. Odonata collected in Ethiopia by the Expeditions of the Accademia Naz. dei Lincei. Introduction and Zygoptera. ibid: 27-52. Dumont. H.J., 1983. On the Dragonflies of the Ethiopian Plateau and Lake Tana. Notulae Odontologicae 2: 10-11. Pinhey, E. C. G., 1961. A Survey of the Dragonflies (Order Odonata) of Eastern Africa. Trustees of British Museum. Pinhey, E.C.G. 1970. A New Approach to African Orthetrum (Odonata). Occ. Pap.Nat. Museum Rhodesia 4 (30B): 261-321. Pinhey, E.C.G., 1981. Odonata collected in Ethiopia III, Anisoptera. Quaderno no. 252: 5-56. Accademia Naz. dei Linzei. Ris, I. 1911. Zwei neue Afrikanische Arten der Libellulen-Gattung Orthetrum. Rev. Zool. Afr. 1: 125-131. TETRATHEMIS POLLEN!, ITS REPRODUCTIVE BEHAVIOUR AND PREFERRED HABITAT. by Jill Silsby 1, Haydn Avenue, Purley, Surrey, UK A colony of Tetrathemis polleni was observed frequently over a period beginning 07 and ending 12 February 1998. The site was a pond (c. lOft x 15ft) situated some 50 yards from the Sabie River at Hazyview in Eastern Transvaal, Republic of South Africa (S25o 01.722, E 013o 08.100, altitude 1075ft). It was a small, dirty pond overhung by a large Matumi Tree (Breonadia salicina) and with several small patches of reedmace growing a foot or so in from the perimeter. -
Dorsolateral Cuticular Outgrowths in Second Stadium Larvae of Gomphus flavipes (Odonata: Gomphidae)
International Journal of Odonatology, 2015 Vol. 18, No. 1, 65–69, http://dx.doi.org/10.1080/13887890.2015.1013512 Dorsolateral cuticular outgrowths in second stadium larvae of Gomphus flavipes (Odonata: Gomphidae) Carsten Schüttea∗ and Ole Müllerb aBindestraße 16, D-38162 Weddel, Germany; bBirkenweg 6d, D-15306 Libbenichen, Germany (Received 24 November 2014; Accepted 23 January 2015) Dedicated to Georg Rüppell, who always inspires us with his enthusiasm for dragonflies. Second and third stadium larvae of Gomphus flavipes have dorsolateral cuticular outgrowths in the form of small basal tubercles bearing fan-shaped setae. These sensilla are aligned in two rows on each side of the thorax and abdomen. European species of Gomphus, Onychogomphus and Ophiogomphus that we examined lack these structures, having instead, at most, short hairlike setae in double rows. The fan- shaped setae of G. flavipes are present only in second and third stadia, apparently being lost later in larval development. We speculate that this loss might be due to changes in microhabitat or might be some kind of phylogenetic constraint. Keywords: dragonfly; larvae; abdominal protuberance; Gomphus flavipes; Gomphus graslini; Gomphus pulchellus; Gomphus simillimus; Ophiogomphus cecilia; Onychogomphus uncatus Introduction To distinguish larvae of different species of the family of Gomphidae morphological characters like lateral abdominal spines or dorsal hooks were used (e.g. Suhling & Müller, 1996). Within European members of the genus Gomphus, only the larva of Gomphus flavipes (Charpentier) has developed a small single-scaled structure at the posterior margin of abdominal segment 9 (Suhling & Müller, 1996, p. 169), so it can be distinguished from other European Gomphus species.