North Macedonia Factsheet About Future Investment in Biodiversity Conservation Projects in North Macedonia by the Critical Ecosystem Partnership Fund (CEPF)

Total Page:16

File Type:pdf, Size:1020Kb

North Macedonia Factsheet About Future Investment in Biodiversity Conservation Projects in North Macedonia by the Critical Ecosystem Partnership Fund (CEPF) CONTACT: Borut Rubinič CEPF Programme Officer for the Balkans T: +386 41 703282 E: [email protected] Mediterranean Basin Hotspot North Macedonia Factsheet about future investment in biodiversity conservation projects in North Macedonia by the Critical Ecosystem Partnership Fund (CEPF) Black-tailed Skimmer Orthetrum cancellatum © Thomie Vlachogianni/ MIO-ECSDE Established in 2000, the Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l'Agence Française de Développement, Conservation International, the European Union, the Global Environment Facility, the Government of Japan and the World Bank. A fundamental goal is to ensure civil society is engaged in biodiversity conservation. Please visit www.cepf.net and www.birdlife.org/cepf-med for more information about our programs. What is CEPF? When developing an Ecosystem Profile for a biodiversity hotspot, CEPF decides on a few priorities, The Critical Ecosystem Partnership Fund (CEPF) provides which are known as “Strategic Directions”. These are grants to non-governmental and private sector organizations to important to grant applicants because each project help protect biodiversity hotspots. Since its establishment in must address a Strategic Direction and one or more of 2000, CEPF has awarded more than 2,120 grants in 92 its investment priorities. countries and territories. A fundamental goal is to ensure civil society is engaged in biodiversity conservation. For the Mediterranean, these are the current Strategic Directions: What is the Mediterranean 1. Support civil society to engage stakeholders in Biodiversity Hotspot? demonstrating integrated approaches for the preservation of biodiversity in coastal areas. Stretching from Cabo Verde to eastern Turkey, the 2. Support the sustainable management of water Mediterranean Basin is identified as one of the world's 35 catchments through integrated approaches for biodiversity hotspots, earth’s most biologically rich, yet the conservation of threatened freshwater threatened, areas. biodiversity. 3. Promote the maintenance of traditional land CEPF has been active in the hotspot since 2012, investing US$ 11.2 million in the first 5 years, and began a new 5-year use practices necessary for the conservation of investment phase in 2017, with US$ 10 million to invest until Mediterranean biodiversity in priority corridors of September 2022. high cultural and biodiversity value. 4. Strengthen the engagement of civil society to CEPF’s initial investment phase demonstrated that through support the conservation of plants that are funding, along with mentoring, partnerships and innovative Critically Endangered or have highly restricted communication strategies, civil society groups play an important role in conservation efforts. ranges. 5. Strengthen the regional conservation community through the sharing of best practices and knowledge among grantees across the hotspot. Who is eligible for a grant? All NGOs, community groups, private enterprises and other civil society organizations may apply for funding. Our grant recipients range from small farming cooperatives and community associations to international organizations. What do they all have in common? They are dedicated to protecting biodiversity. For more details, please visit our page: www.cepf.net/grants/eligibility Map of the Mediterranean Biodiversity Hotspot What is CEPF’s investment How do I apply? strategy? Before providing funding to a hotspot, CEPF develops an For information on how to apply, please visit: “Ecosystem Profile” that informs its investment strategy. In the www.cepf.net/grants Mediterranean, more than 500 civil society organizations and other stakeholders in the region were consulted over a period of Calls for Proposals are announced on the CEPF 6 months for this in-depth analysis, helping to develop a shared website at: strategy from the outset that has a bigger impact for nature. www.cepf.net/grants/open-calls-for-proposals Please visit www.cepf.net and www.birdlife.org/cepf-med for more information about our programs. Why is CEPF investing in North Eligibility of projects in North Macedonia? Macedonia: To protect priority Key Biodiversity Areas and species CEPF investment in North Macedonia will focus on the following investment priorities: North Macedonia is part of the wider Mediterranean Region that has been identified as the third most important biodiversity hotspot Strategic Direction 2: Freshwater biodiversity: Support the in the world with respect to the number of endemic plant species. sustainable management of water catchments through integrated approaches for the conservation of threatened freshwater biodiversity by supporting the following investment priorities: 2.1: Enhance the knowledge base on freshwater biodiversity and its importance in maintenance of freshwater ecosystem services. 2.2: Take action to reduce threats and improve management of selected sites in priority freshwater catchments with the participation of local stakeholders. 2.3: Engage with government, private sector and other stakeholders to support integrated river basin management practices that reduce threats to biodiversity in priority Catchment Management Zones. Strategic Direction 4: Plants: Strengthen the engagement of civil society to support the conservation of plants that are critically endangered or have highly restricted ranges through Ohrid Lake © Thomie Vlachogianni MIO-ECSDE supporting the following investment priorities: 4.1: Increase knowledge and skills to support assessment Although relatively small in territory, North Macedonia holds an and planning for the conservation of plants, and foster the important position on the global map of biological diversity emergence of a new generation of young professionals in hotspots. The country is strongly marked by three large lakes of plant conservation. tectonic origin (Ohrid, Prespa and Dojran) and 43 small glacial lakes, approximately half of which are found on Shar Planina 4.2: Support integration of plant conservation into the mountain. It also has rivers and other wetland types, deep gorges, management of protected areas. forests and Alpine mountains, all of which are very important for 4.3: Support innovative actions for the conservation of many endemic and threatened flora and fauna species. important populations of plants, working with landowners and managers. This unique nature has placed North Macedonia on the top of the diversity-rich countries in Europe list. However, there are numerous causes for biodiversity loss in the country, ranging from inadequate management of aquatic ecosystems, drainage of marshes and swamps, construction of hydropower reservoirs in gorges to the loss of habitats due to hotel and resort development, and traffic infrastructure etc. Despite the relatively extensive research, there is still not enough information concerning the status of the populations of a large number of endemic species nor the direct threats to their survival. That is why CEPF grantee projects in North Macedonia have helped to set better management guidelines for Dojran lake, evaluate the importance of Jablanica Mountain as a reservoir of water, forests and biodiversity and contributed heavily to more sustainable ways of development on and around Ohrid Lake. More information: www.birdlife.org/drin-river-balkan-waterways Balkan wall lizard Podarcis tauricus © Thomie Vlachogianni /MIO-ECSDE YouTube: The Act4Drin travelogue 'Living well in harmony with the Drin' Please visit www.cepf.net and www.birdlife.org/cepf-med for more information about our programs. Contact Information For questions specific to North Macedonia grants, contact: For general enquiries contact the Regional Implementation Borut Rubinič, CEPF Programme Officer for the Balkans Team (RIT) (led by BirdLife International): Ljubljana, Slovenia - DOPPS - BirdLife Slovenia Liz Smith, RIT Manager, BirdLife International, David p.p. 2990, Tržaška 2, SI - 1000 Ljubljana, Slovenija Attenborough Building, Pembroke Street, Cambridge, UK, CB2 [email protected] / +386 41 703282 3QZ Web & Social Media [email protected] / +44 (0)1223 279878 www.birdlife.org/cepf-med www.cepf.net @CEPF.MED @CEPFmed #CEPFmed List of Priority Key Biodiversity Areas (KBAs) and Catchment Management Zones in North Macedonia KBA Code KBA name KBA Code KBA name MKD01 Belasica MKD11 Pelister MKD02 Cm Drim MKD12 Prespansko ezero MKD03 Demirkapiska Klisura MKD13 Stogovo MKD04 Dojransko ezero MKD14 Reka Vardar MKD05 Galichica Planina MKD06 Ilinska Planina Catchment Management Country MKD07 Jablanica Zone North Macedonia, Greece Doirani Lake catchment MKD08 Mantovsko ezero I reka Kriva Lakavica MKD09 Monospitovsko blato Albania, North Macedonia Lake Ohrid catchment Albania, North Macedonia, Prespa Lake catchment MKD10 Ohridsko ezero Greece Please visit www.cepf.net and www.birdlife.org/cepf-med for more information about our programs. .
Recommended publications
  • Description of the Final Stadium Larva (Odonata: Libellulidae)
    ------- Received 22 May 2003; revised and accepted 06 October 2003------- Nesciothemis farinosa: description of the final stadium larva (Odonata: Libellulidae) Frank Suhling', Carsten Schutte' & Ole Muller' ' lnstitut fUr Geookologie, Technische Universitat Braunschweig, Langer Kamp 19c, D-381 02 Braunschweig, Germany. <e-mail [email protected]> ' Birkenweg 6d, D-15306 Libbenichen, Germany. Key words: Odonata, dragonfly, Nesciothemis farinosa, larval description, notes on ecology and development. ABSTRACT A written description and illustrations of the final stadium larva of Nesciothemis farinosa are presented, based on larvae and exuviae collected in Namibia. The larvae were reared in the laboratory until emergence. Additionally, information on larval microhabitat, behaviour and development is provided. INTRODUCTION The genus Nesciothemis Longfield, 1955 is composed of five species, N. farinosa (Forster, 1898), N. fitzgeraldi Longfield, 1955, N. minor Gambles, 1966, N. nigeriensis Gambles, 1966 and N. pujoli Pinhey, 1971 (Gambles 1966; Pinhey 1971; Dijkstra 2003) occurring in subsaharan continental Africa, Egypt and the southern Arabian Peninsula, with N. farinosa being the most widespread species, ranging from southern Africa to Egypt and Arabia (Dumont 1991; Schneider & Krupp 1993; Carfl & D'Andrea 1994; Samways 1999; Clausnitzer 2001). N. farinosa reported from western Africa (e.g. Ivory Coast, Tsuda 1991) are questionable, because they differ constantly from typical N. farinosa and might belong to N. pujoli (K.-D.B. Dijkstra in litt.). The larvae of all Nesciothemis species are hitherto not described. Here we describe the final stadium larva and exuvia of N. farinosa from material collected in Namibia. Additionally, information on the larval microhabitat, behaviour in the laboratory and develop­ ment is provided.
    [Show full text]
  • Key to the Species of the Orthetrum Newman, 1833 (Odonata, Libellulidae) with a New Record Species in Iraq
    Asmaa Hassan Al-Hashmi et al. Bull. Iraq nat. Hist. Mus. DOI: http://dx.doi.org/10.26842/binhm.7.2018.15.1.0015 July, (2018) 15 (1): 15-29 KEY TO THE SPECIES OF THE ORTHETRUM NEWMAN, 1833 (ODONATA, LIBELLULIDAE) WITH A NEW RECORD SPECIES IN IRAQ Asmaa Hassan Al-Hashmi* Hana H. Al-Saffar** and Razzaq Shalan Augul** *Department of Biology, College of Science, Al Mustansiriyah University, Baghdad, Iraq **Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad, Iraq *Corresponding author: [email protected] *[email protected] Received Date: 09 January 2018 Accepted Date: 21 January 2018 ABSTRACT This paper provides an identification key to the species of Orthetrum Newman, 1833 (Odonata, Libellulidae), including six species that were collected from different localities in Iraq. The species of O. anceps (Schneider, 1845) is registered as a new record in Iraq; the most important characters which are used in diagnostic key are included. Key words: Iraq, Libellulidae, New record, Odonata, Orthetrum. INTRODUCTION The dragonfly insects belonging to the Odonata, are abundant and of worldwide distribution (Corbet, 1980); the genus of Orthetrum Newman, 1833 under the guild of Anisoptera in Libellulidae family, is the biggest one of dragonfly world-wide (Manwar et al., 2012), and this genus is a very large one, spread across the old world (Watson et al., 1991). The genus of Orthetrum contains about sixty of species worldwide (Dijkstra and Kalkman, 2012). This genus is characterized by: sectors of arculus in fore wings with a differentiated merger before encounter arculus; bases of hind wings without blackish-brown markings; ever any accessive cross-veins to the bridge (Fraser, 1936).
    [Show full text]
  • First Update of the Atlas of the Odonata of the Mediterranean And
    Orthetrum machadoi and Agriocnemis sania new to Egypt 15. August 2010107 First update of the Atlas of the Odonata of the Mediterranean and North Africa: Orthetrum machadoi new to the Palaearctic and Agriocnemis sania new to the Egyptian Nile Valley Klaas-Douwe B. Dijkstra 1 and Jean-Pierre Boudot 2 1 Netherlands Centre for Biodiversity Naturalis, P.O. Box 9517, NL-2300 RA, Leiden, <[email protected]> 2 LIMOS, CNRS, UMR 7137, Université Henri Poincaré Nancy I, Faculté des Sciences, B.P. 70239, F-54506, Vandoeuvre-lès-Nancy Cedex, <[email protected]> Abstract Twenty-four species of Odonata were found in the Egyptian Nile Valley and Western Desert in May 2009, which represents 71 % of the fauna confirmed for African Egypt. Agriocnemis sania Nielsen, 1959 was recorded in the lower valley and delta of the Nile. This suggests that a doubtful old record of a damaged Agriocnemis exilis Selys, 1872 from Port Said referred to A. sania, and that A. exilis should be removed from the checklist of Egyptian, North African and Mediterranean Odonata. Agriocnemis sania is new to African Egypt and should be downgraded from «Regionally Extinct» to «Endangered»on the IUCN North African Red List. Orthetrum machadoi Longfield, 1955 was discovered in the Siwa Oasis and is new for Egypt and the Palaearctic at large. The site is over 2600 km from the nearest known locality in Ethiopia, and, like the sympatric and sometimes syntopic Acisoma pan orpoides Rambur, 1842, can be considered as a tropical relict from (a) pluvial period(s), more than 6,000 years ago, when the Sahara was considerably wetter.
    [Show full text]
  • Guidelines for Wildlife and Traffic in the Carpathians
    Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Part of Output 3.2 Planning Toolkit TRANSGREEN Project “Integrated Transport and Green Infrastructure Planning in the Danube-Carpathian Region for the Benefit of People and Nature” Danube Transnational Programme, DTP1-187-3.1 April 2019 Project co-funded by the European Regional Development Fund (ERDF) www.interreg-danube.eu/transgreen Authors Václav Hlaváč (Nature Conservation Agency of the Czech Republic, Member of the Carpathian Convention Work- ing Group for Sustainable Transport, co-author of “COST 341 Habitat Fragmentation due to Trans- portation Infrastructure, Wildlife and Traffic, A European Handbook for Identifying Conflicts and Designing Solutions” and “On the permeability of roads for wildlife: a handbook, 2002”) Petr Anděl (Consultant, EVERNIA s.r.o. Liberec, Czech Republic, co-author of “On the permeability of roads for wildlife: a handbook, 2002”) Jitka Matoušová (Nature Conservation Agency of the Czech Republic) Ivo Dostál (Transport Research Centre, Czech Republic) Martin Strnad (Nature Conservation Agency of the Czech Republic, specialist in ecological connectivity) Contributors Andriy-Taras Bashta (Biologist, Institute of Ecology of the Carpathians, National Academy of Science in Ukraine) Katarína Gáliková (National
    [Show full text]
  • Psonis Et Al. 2017
    Molecular Phylogenetics and Evolution 106 (2017) 6–17 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Hidden diversity in the Podarcis tauricus (Sauria, Lacertidae) species subgroup in the light of multilocus phylogeny and species delimitation ⇑ Nikolaos Psonis a,b, , Aglaia Antoniou c, Oleg Kukushkin d, Daniel Jablonski e, Boyan Petrov f, Jelka Crnobrnja-Isailovic´ g,h, Konstantinos Sotiropoulos i, Iulian Gherghel j,k, Petros Lymberakis a, Nikos Poulakakis a,b a Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio 71409, Greece b Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio 70013, Greece c Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, Gournes Pediados, Irakleio 71003, Greece d Department of Biodiversity Studies and Ecological Monitoring, T.I. Vyazemski Karadagh Scientific Station – Nature Reserve of RAS, Nauki Srt., 24, stm. Kurortnoe, Theodosia 298188, Republic of the Crimea, Russian Federation e Department of Zoology, Comenius University in Bratislava, Mlynská dolina, Ilkovicˇova 6, 842 15 Bratislava, Slovakia f National Museum of Natural History, Sofia 1000, Bulgaria g Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš 18000, Serbia h Department of Evolutionary Biology, Institute for Biological Research ‘‘Siniša Stankovic´”,
    [Show full text]
  • Podarcis Tauricus (Pallas, 1814), New to the Anatolian Part of the Province
    all_Short_Notes_(Seiten 59-112):SHORT_NOTE.qxd 07.08.2017 19:01 Seite 20 78 SHORT NOTE HERPETOZOa 30 (1/2) Wien, 30. Juli 2017 SHORT NOTE genus Teius MERREM , 1820 (Reptilia: Squamata: Table 1: Climate data of Çanakkale Meteoro - Teiidae).- Zootaxa, auckland; 4136 (3): 491-514. logy Station ( BiCkiCi & B alaS 2010), representative of kEY WORDS: Reptilia: Squamata: Sauria: the near Çardak lagoon area. Teiidae: Teius suquiensis , parthenogenetic species, chorology, new record, los Juríes, Santiago del Estero, Parameter Value argentina annual mean temperature 14.9 °C SUBMiTTED: June 27, 2016 Mean temperature of January (coldest aUTHORS: Jorge CéSPEDEZ 1) , Pier CaCCi - month) 6.3 °C ali (Cor responding author < pier.cacciali@senckenberg. Mean temperature of July (hottest month) 25.0 °C de >) 2, 3, 4) , Martha MOTTE 5) & Juan CéSPEDEZ 6) Mean annual rainfall 595.6 mm 1) Departamento de Biología. Facultad de Cien - Rainfall in December, the month cias Exactas y Naturales y agrimensura, Universidad of maximum rainfall 103.3 mm Nacional del Nordeste. av. libertad 5470, (3400) Cor - Rainfall in august, the month rientes, argentina. of lowest rainfall 4.1 mm 2) Senckenberg Forschungsinstitut und Natur - Sea water temperature in summer 24 °C museum, Senckenberganlage 25, 60325 Frankfurt am Sea water temperature in winter 7 °C Main, Germany. 3) Johann Wolfgang Goethe-University, institute for Ecology, Evolution & Diversity, Biologicum, Building C, Max-von-laue-Straße 13, 60438 Frankfurt am Main, Germany. (1952). Further records of the species refer 4) instituto de investigación Biológica del Para- to northwestern anatolia ( BaRaN 1977; guay, Del Escudo 1607, 1425 asunción, Paraguay. NilSON et al.
    [Show full text]
  • CBD First National Report
    FIRST NATIONAL REPORT OF THE REPUBLIC OF SERBIA TO THE UNITED NATIONS CONVENTION ON BIOLOGICAL DIVERSITY July 2010 ACRONYMS AND ABBREVIATIONS .................................................................................... 3 1. EXECUTIVE SUMMARY ........................................................................................... 4 2. INTRODUCTION ....................................................................................................... 5 2.1 Geographic Profile .......................................................................................... 5 2.2 Climate Profile ...................................................................................................... 5 2.3 Population Profile ................................................................................................. 7 2.4 Economic Profile .................................................................................................. 7 3 THE BIODIVERSITY OF SERBIA .............................................................................. 8 3.1 Overview......................................................................................................... 8 3.2 Ecosystem and Habitat Diversity .................................................................... 8 3.3 Species Diversity ............................................................................................ 9 3.4 Genetic Diversity ............................................................................................. 9 3.5 Protected Areas .............................................................................................10
    [Show full text]
  • Contribution to the Knowledge of the Reptile Fauna and Diversity in FYR of Macedonia
    NORTH-WESTERN JOURNAL OF ZOOLOGY 10 (1): 83-92 ©NwjZ, Oradea, Romania, 2014 Article No.: 131519 http://biozoojournals.ro/nwjz/index.html Contribution to the knowledge of the Reptile fauna and diversity in FYR of Macedonia Bogoljub STERIJOVSKI1, Ljiljana TOMOVIĆ2,3,* and Rastko AJTIĆ4 1. Macedonian Ecological Society, Faculty of Natural Sciences, Blvd. "Kuzman Josifovski - Pitu" 28/3-7 1000 Skopje, FYR of Macedonia. 2. Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia. 3. Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefanaa 142, 11000 Belgrade, Serbia. 4. Institute for Nature Conservation of Serbia, Dr Ivana Ribara 71, 11000 Belgrade, Serbia. *Corresponding author, L. Tomović, E-mail: [email protected] Received: 22. April 2011 / Accepted: 20. September 2013 / Available online: 23. December 2013 / Printed: June 2014 Abstract. Although reptile fauna of FYR of Macedonia (FYROM) was the matter of interest since more than a century, detailed distributions of most of the species are still missing. According to published data, 32 reptile species inhabit FYROM. In this paper, detailed distribution data of reptile species in FYROM are presented. Research of herpetofauna of FYROM was conducted from 1999 until 2012 and included 393 localities. For 32 recorded reptile species, exact localities and altitudes, as well as published records are given. Analyses of the reptile diversity of the FYROM showed that the regions with the highest species diversity are: the Prespa and Ohrid Lake Region, Skopje region, Veles region and the Dojran Lake Region, with 18-21 reptile species per UTM 10 x 10 squares.
    [Show full text]
  • Habitat Requirements of Orthetrum Coerulescens and Management of a Secondary Habitat in a Highly Man-Modified Landscape (Odonata: Libellulidae)
    -------Received 14 January 2008; revised and accepted 21 May 2008------- Habitat requirements of Orthetrum coerulescens and management of a secondary habitat in a highly man-modified landscape (Odonata: Libellulidae) Hansruedi Wildermuth Haltbergstrasse 43, CH-8630 Ruti, Switzerland. <[email protected]> Key words: Odonata, dragonfly, Orthetrum coerulescens, habitat use, habitat recognition, habitat management, conservation, Switzerland. ABSTRACT Due to the destruction of its primary habitats, the West Palaearctic libellulid Orthe­ trum coerulescens has suffered much decline in central Europe. However, at the re­ gional scale it has survived in a variety of secondary habitat, such as draining ditches. In order to find adequate measures for its conservation and promotion, habitat use and habitat recognition of 0. coerulescens were investigated by description and ex­ perimentation at fenland ditches in a small nature reserve in the Swiss Plateau. This breeding habitat, which harbours a viable population, had been restored and main­ tained for 25 years. The most densely populated sites comprised small ditches be­ tween 40-70 em wide, with rather sparse vegetation of narrow-leaved plants and that had parts of the water surface uncovered; the peaty, mud ground was partly overgrown with submerged pads of stonewort (Chara spp.). Water was mainly sup­ plied by seepage springs with a mixture of local slow flow that were hardly recog­ nizable and shallow sites, which were used for oviposition. In hot summer spells the water temperature could exceed 30°C. Some freezing occurred in winter, but the mud was permanently ice-free. The development of the breeding population, which comprised more than 200 individuals in 2006, was followed over two subsequent years.
    [Show full text]
  • Distribution of Reptiles in Kosovo and Metohija Province
    UNIVERSITY THOUGHT doi:10.5937/univtho8-16981 Publication in Natural Sciences, Vol. 8, No. 2, 2018, pp. 1-6. Original Scientific Paper CONTRIBUTION TO THE HERPETOFAUNA OF SERBIA - DISTRIBUTION OF REPTILES IN KOSOVO AND METOHIJA PROVINCE LJILJANA TOMOVIĆ1*, MAGDALENA TIMOTIJEVIĆ2, RASTKO AJTIĆ3, IMRE KRIZMANIĆ1, NENAD LABUS2 1Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia 2Faculty of Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia 3Institute for Nature Conservation of Serbia, Belgrade, Serbia ABSTRACT Kosovo and Metohija have already been recognized as regions with the highest diversity of reptiles in Serbia, where 92% (22 of 24) of existing reptile species can be found (Tomović et al., 2015a). First comprehensive contribution to herpetofauna of Kosovo and Metohija was provided by late Professor Gojko Pasuljević. In this study we present a complete dataset of distribution records for 13 most common reptile species in Kosovo and Metohija, including published and new distribution data compiled, and provide standardized 10 x 10 km UTM maps for these data. Results of this study include 1013 distribution records (278 new and 735 published data) for the following reptiles: Testudo hermanni, Ablepharus kitaibelii, Anguis fragilis, Lacerta agilis, Lacerta viridis, Podarcis muralis, Podarcis tauricus, Coronella austriaca, Dolichophis caspius, Natrix natrix, Natrix tessellata, Zamenis longissimus and Vipera ammodytes. The most widely distributed species, which occupy more than 50 UTM 10 x 10 km squares are: Podarcis muralis and Vipera ammodytes. Species with limited distribution which occupy less than 20 UTM 10 x 10 km are: Dolichophis caspius and Lacerta agilis. The largest numbers of new or confirmed literature data are recorded for: Anguis fragilis, Testudo hermanni and Vipera ammodytes.
    [Show full text]
  • Amphibians and Reptiles of the Mediterranean Basin
    Chapter 9 Amphibians and Reptiles of the Mediterranean Basin Kerim Çiçek and Oğzukan Cumhuriyet Kerim Çiçek and Oğzukan Cumhuriyet Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.70357 Abstract The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by three continents. The chapter is focused on a diversity of Mediterranean amphibians and reptiles, discussing major threats to the species and its conservation status. There are 117 amphibians, of which 80 (68%) are endemic and 398 reptiles, of which 216 (54%) are endemic distributed throughout the Basin. While the species diversity increases in the north and west for amphibians, the reptile diversity increases from north to south and from west to east direction. Amphibians are almost twice as threatened (29%) as reptiles (14%). Habitat loss and degradation, pollution, invasive/alien species, unsustainable use, and persecution are major threats to the species. The important conservation actions should be directed to sustainable management measures and legal protection of endangered species and their habitats, all for the future of Mediterranean biodiversity. Keywords: amphibians, conservation, Mediterranean basin, reptiles, threatened species 1. Introduction The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by Europe, Asia and Africa. The Basin was shaped by the collision of the northward-moving African-Arabian continental plate with the Eurasian continental plate which occurred on a wide range of scales and time in the course of the past 250 mya [1].
    [Show full text]
  • Strasbourg, 22 May 2002
    Strasbourg, 21 October 2015 T-PVS/Inf (2015) 18 [Inf18e_2015.docx] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 35th meeting Strasbourg, 1-4 December 2015 GROUP OF EXPERTS ON THE CONSERVATION OF AMPHIBIANS AND REPTILES 1-2 July 2015 Bern, Switzerland - NATIONAL REPORTS - Compilation prepared by the Directorate of Democratic Governance / The reports are being circulated in the form and the languages in which they were received by the Secretariat. This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2015) 18 - 2 – CONTENTS / SOMMAIRE __________ 1. Armenia / Arménie 2. Austria / Autriche 3. Belgium / Belgique 4. Croatia / Croatie 5. Estonia / Estonie 6. France / France 7. Italy /Italie 8. Latvia / Lettonie 9. Liechtenstein / Liechtenstein 10. Malta / Malte 11. Monaco / Monaco 12. The Netherlands / Pays-Bas 13. Poland / Pologne 14. Slovak Republic /République slovaque 15. “the former Yugoslav Republic of Macedonia” / L’« ex-République yougoslave de Macédoine » 16. Ukraine - 3 - T-PVS/Inf (2015) 18 ARMENIA / ARMENIE NATIONAL REPORT OF REPUBLIC OF ARMENIA ON NATIONAL ACTIVITIES AND INITIATIVES ON THE CONSERVATION OF AMPHIBIANS AND REPTILES GENERAL INFORMATION ON THE COUNTRY AND ITS BIOLOGICAL DIVERSITY Armenia is a small landlocked mountainous country located in the Southern Caucasus. Forty four percent of the territory of Armenia is a high mountainous area not suitable for inhabitation. The degree of land use is strongly unproportional. The zones under intensive development make 18.2% of the territory of Armenia with concentration of 87.7% of total population.
    [Show full text]