The Native Grape Species of Florida1

Total Page:16

File Type:pdf, Size:1020Kb

The Native Grape Species of Florida1 Proc.Fla. State Hort. Soc. 92:286-289. 1979. THE NATIVE GRAPE SPECIES OF FLORIDA1 David J. Rogers and John A. Mortensen There are differences in the number of genera (Small in Dept. of EPO Biology, Univ. of Colorado, cludes two genera) (17), and the number and names of Boulder, CO 80309 and, species and divisions within the genus Vitis. Only one IFAS, Agricultural Research Center, University of Florida, species, V. rotundifolia Michx., appears in all of the classi P. O. Box 388, Leesburg, FL 32748 fications listed. Some of the differences are purely nomen- clatural ones, but others are more questions of interpreta Additional index words, classification, Vitis, Vitaceae. tion on what constitutes a species. The classical difference between "splitter" and "lumper" in classification is exhibited Abstract. Because genetic resources of wild grapes fre by Bailey (2) and Duncan (6). Small (17) was probably quently enter into the germplasm of some of our cultivated the most knowledgeable about the variability and ecology grapes, it is important to produce a classification that recog of the species because his field work was carried out over a nizes the relationship and variations of the native wild number of years, and he made more personal observations species along with attributes that might be useful in breed over the growing seasons than any of the other workers ing. We recognize two muscadine and three bunch grape in Table 1. But all of them left numbers of uncertainties species (one with five subspecies) in our classification. Eco and confusion about the classification of the wild species of logical differences are significant not only for classification, Vitis. It is the purpose of this paper to reclassify the species but also to aid in selection of environmentally adapted wild to bring the work as up to date as possible while recogniz material in breeding programs for different areas of the ing that many more observations must be made before the State of Florida. final decision on the "correct" classification can be made. Rogers and Mortensen worked together at Leesburg from June to November, 1978 while the former was on sabbatical. The native grapes of Florida have provided valuable germplasm for improvement of cultivated species in all of the southeastern United States. A selection of Vitis mun Materials and Methods soniana Simpson ex Munson provided the genes for perfect flowers (5) in muscadine grape breeding. Vitis smalliana Herbarium specimens, photographs, and preserved fruit Bailey (F. aestivalis subspecies smalliana in this classifica ing materials were made of the wild species grown in the tion) was used as a species background for the cultivars vineyard at the Agricultural Research Center, IFAS, Lees 'Blue Lake' and 'Norris', conferring resistance to Pierce's burg. These specimens were used to compare with wild- disease. V. shuttleworthii House was used in the cultivar growing members of the same species. The herbarium 'Stover'. Others have been used in various programs of collection of any plant included parts of the youngest breeding with varying degrees of success. Because of these shoots, canes, and mature older stems with leaves to demon important contributions to Florida's growing interest in a strate variability within and between plants; if mature grape industry it was necessary to review the taxonomic fruits were available, FAA-preserved specimens were made. status of the native species to determine whether or not the Seeds were extracted and later germinated to provide extant classification is reflective of the existing genetic re seedling specimens as well as greenhouse-grown plants for sources. By comparing various classifications that include comparison. Standardized field data sets of each collection the Florida species, one may see that there is disagreement were gathered at the time of collecting, to include: (A) between various authorities and that some resolution of color of canes and shoots, pubescence color on canes and the differences needs to be made. Table 1 summarizes the shoots, tendril color both young and mature; (B) leaf species accepted by the most prominent students of grape characters such as upper surface texture, surface direction classification for those geographic regions including Florida. (flat, V-shaped, or cupped downward); (C) berry and cluster shapes, color and size of mature berries, presence iFlorida Agricultural Experiment Stations Journal Series No. 2106. or absence of bloom, flavor, pulp consistency; (D) habitat Supported by National Science Foundation Grant DEB 77-15070 to description, estimates of frequency and cover. the first author. Collections were made by the first author in all sections Table 1. Number of Florida species of Vitis recognized by various authorities. Planchon, 1887 Munson, 1909 Small, 1933 Bailey, 1934 Duncan, 1967 Euvitis Euvitis Vitis Euvitis Vitis V. aestivalis V. candicans V. aestivalis V. cordifolia V. aestivalis V. cordifolia V. cinerea, var. V. cinerea V. illex V. shuttleworthii V. coriacea floridana V. cordifolia V. rufotomentosa V. rotundifolia Muscadinia V. cordifolia V. coriacea V. shuttleworthii V. vulpina V. rotundifolia V. coriacea V. rufotomentosa V. simpsonii V. simpsonii V. simpsonii V. smalliana Muscadinia Muscadinia V. sola V. rotundifolia M. rotundifolia Muscadinia V. munsoniana M. munsoniana V. rotundifolia V. munsoniana one genus one genus two genera one genus one genus two subgenera two subgenera no subgenera two subgenera no subgenera 3 spp. bunch 5 spp. bunch 6 spp. bunch 7 spp. bunch 3 spp. bunch 1 sp. muscadine 2 spp. muscadines 2 spp. muscadines 2 spp. muscadines 1 sp. muscadine 286 Proc. Fla. State Hort. Soc. 92: 1979. of the state, guided by land form type and temperature Suwanee River to the St. Marys River). isotherms (Fig. 1) (3), vegetation maps (4) and soil maps 1. V* rotundifolia (8). Particular effort was made to collect in the type locali ties for species first described from Florida. 2. Berries smaller, generally less than 1 cm, with very little pulp. Clusters larger, usually 12 to 30 berries. Key to the Subgenera, Species and Subspecies Exocarp thinner and dark purple to black, without lenticels. Seeds smaller, 6 mm or less. Found almost 1. Bark of mature stems smooth, unbroken, glabrous, with exclusively in peninsular Florida, south of the Su- frequent lenticels, particularly at the nodes. Pith con wanee-St. Marys River line. tinuous, without diaphragm at the nodes. Tendrils simple, unbranched. Berries in loose, few-membered 2. V. munsoniana clusters, each berry easily separating from its pedicel. Bark of mature stems shredding in longitudinal strips (Subgenus Muscadinia). or squares, with diaphragm at the nodes. Tendrils fre 2. Berries large, pulpy, usually 1.5 cm or greater. quently branched. Berries in relatively large, many- Clusters small, usually 2 to 8 berries. Exocarp either membered clusters. (Subgenus Vitis) bronze or purple, thick and tough, frequently lenti- 3. Leaves (even the young ones) glabrous or essentially cellate. Seeds 8 mm long or longer. Species found so; cordate, rarely 3- or 5-lobed. Found principally almost exclusively in the north and western parts in north and west Florida. of Florida (generally, N. and W. of a line from the 3. V. vulpina 25 Fig. 1. Major landforms of Florida and isotherms for number of hours per year below 24°F. Adapted from Brooks and Rappenecker (3). Proc. Fla. State Hort. Soc. 92: 1979. 287 Leaves generally pubescent, frequently heavily so; in sinuses and "fig-leaf shape; outline, either shield-shaped, ovate, obovate or reni- margins entire or obscurely and form, from slightly longer than broad to broader irregularly toothed. Mostly on than long. deep sandy soils. 5d. F. aestivalis ssp. smalliana 4. Leaves thickened, with whitish (infrequently light brown), heavy, felted tomentum beneath, 8. Leaves with pointed lobe tips, 3-, the upper surface rugose, the leaf with a down 5-lobed; margins serrate. On ward curve from the midrib. Fruit large, 1 cm or loamy sand soils. more. Distributed in the peninsula alone, its 5e. V. aestivalis ssp. simpsoni northern limits on a line from about Levy County (Cedar Key) on the west to Volusia Descriptions of Species and Subspecies County on the east, most frequently in wet, low- lying regions. 4. V. shuttleworthii 1. Vitis rotundifolia Michaux (12). "Muscadine". 4. Leaves with a thin, flattened blade, with rusty This species, with roundish, glossy green, very deeply tomentum beneath (but never felted), the upper serrate leaves, is the most widely cultivated species of grapes surface smooth. Berries smaller, usually less than in the southeast. Its large berries fall easily from the 1 cm diam. Distributed throughout the state cluster, one of the greatest problems for its use as a com and north to at least New Jersey, in mesic condi mercial fruit. The cultivar 'Scuppernong' was selected very tions. Five subspecies. 5. F. aestivalis early after European contact in North America, and is supposed to be named after a river in North Carolina. F. 5. Leaves generally orbicular, seldom indented rotundifolia has been widely used in the breeding of all or lobed; pubescence mostly brownish. Con the present-day muscadine cultivars. Crosses with any of fined to mostly northeastern counties of the species of subgenus Vitis are difficult and most sterile. Nassau, Duval, Clay, and St. Johns. However, there have been recent successes (7, 14) that make 5a. F. aestivalis ssp. sola breeding a much more likely possibility to improve the culti 5. Leaves at least shouldered, most frequently vars. One of its greatest values is that the species in general at least 3-, and often 5-lobed; pubescence is resistant to Pierce's disease, Phylloxera, and nematodes. brown, tawny or rusty. Distribution over much of state. 2. Vitis munsoniana Simpson ex Munson (16). "Bullace". 6. Leaves most commonly shield-shaped, 3-, Although this species was recognized nearly one hundred 5-lobed, the tips of lobes pointing for years ago, it has not been considered separate from V.
Recommended publications
  • Oslo Riverfront Conservation Area Plant List by Common Name As of 11-2-2014
    Oslo Riverfront Conservation Area Plant List by Common Name as of 11-2-2014 Family Common name Scientific name Dioscoreaceae Air potato Dioscorea bulbifera Asteraceae Aster Aster aff. Dumosus Symphyotrichum Aster Symphyotrichum dumosum Casuarinaceae Australian pine Casuarina sp. Bromeliaceae Ball moss Tillandsia recurvata Poaceae Basket grass Oplismenus setarius Goodeniaceae Beach naupaka Scaevola taccada Lamiaceae Beautyberry Callicarpa americana Asteraceae Beggarticks Bidens alba Euphorbiaceae Bishopwood Bischofia javanica Avicenniaceae Black mangrove Avicennia germinans Asteraceae Blazing star Liatris sp. Blechnaceae Blechnum fern Blechnum serrulatum Nyctaginaceae Blolly Guapira discolor Lamiaceae Blue curls Trichostema dichotomum Iradaceae Blue-eyed grass Sisyrinchium angustiofolium Anacardiaceae Brazilian pepper Schinus terebinthifolius Poaceae Broom sedge Andropogon glomeratus Orchidaceae Butterfly orchid Encyclia tampensis Combretaceae Buttonwood Conocarpus erecta Arecaceae Cabbage palm Sabal palmetto Malvaceae Caesarweed Urena lobata Vitaceae Calusa grape Vitis shuttleworthii Polygalaceae Candyroot Polygala nana Sapindaceae Carrotwood Cupaniopsis anacardiodes Myrtaceae Cattley guava Psidium cattelianum Fagaceae Chapman oak Quercus chapmani Rosaceae Cherry laurel Prunus carolinianum Solanaceae Christmas berry Lycium carolinanum Fabaceae Climbing cowpea Vigna luteola Asteraceae Climbing hempvine Mikania cordifolia Fabaceae Climbing senna Senna pendula Asteraceae Coastal plain palafox Palafoxia integrifolia Ericaeae Coastplain fetterbush
    [Show full text]
  • Cocoa Beach Maritime Hammock Preserve Management Plan
    MANAGEMENT PLAN Cocoa Beach’s Maritime Hammock Preserve City of Cocoa Beach, Florida Florida Communities Trust Project No. 03 – 035 –FF3 Adopted March 18, 2004 TABLE OF CONTENTS SECTION PAGE I. Introduction ……………………………………………………………. 1 II. Purpose …………………………………………………………….……. 2 a. Future Uses ………….………………………………….…….…… 2 b. Management Objectives ………………………………………….... 2 c. Major Comprehensive Plan Directives ………………………..….... 2 III. Site Development and Improvement ………………………………… 3 a. Existing Physical Improvements ……….…………………………. 3 b. Proposed Physical Improvements…………………………………… 3 c. Wetland Buffer ………...………….………………………………… 4 d. Acknowledgment Sign …………………………………..………… 4 e. Parking ………………………….………………………………… 5 f. Stormwater Facilities …………….………………………………… 5 g. Hazard Mitigation ………………………………………………… 5 h. Permits ………………………….………………………………… 5 i. Easements, Concessions, and Leases …………………………..… 5 IV. Natural Resources ……………………………………………..……… 6 a. Natural Communities ………………………..……………………. 6 b. Listed Animal Species ………………………….…………….……. 7 c. Listed Plant Species …………………………..…………………... 8 d. Inventory of the Natural Communities ………………..………….... 10 e. Water Quality …………..………………………….…..…………... 10 f. Unique Geological Features ………………………………………. 10 g. Trail Network ………………………………….…..………..……... 10 h. Greenways ………………………………….…..……………..……. 11 i Adopted March 18, 2004 V. Resources Enhancement …………………………..…………………… 11 a. Upland Restoration ………………………..………………………. 11 b. Wetland Restoration ………………………….…………….………. 13 c. Invasive Exotic Plants …………………………..…………………... 13 d. Feral
    [Show full text]
  • In Situ Conservation of America's Wild Grapes
    In Situ Conservation of America’s Wild Grapes Diane S. Pavek U.S. Department of Agriculture, Agriculture Research Service, National Germplasm Resources Laboratory, Plant Exchange Office, 10300 Baltimore Ave., Beltsville, MD 20705-2350 Warren F. Lamboy U.S. Department of Agriculture, Agriculture Research Service, Plant Genetic Resources Unit, Cornell University, Geneva, NY 14456-0462 Edward J. Garvey U.S. Department of Agriculture, Agriculture Research Service, National Germplasm Resources Laboratory, Plant Exchange Office, 10300 Baltimore Ave., Beltsville, MD 20705-2350 Characterizing genetic diversity and its distribution throughout (Vitis rupestris Scheele), a species of concern to conservationists species’ ranges furthers our understanding about the adaptation and because of extensive habitat loss. Out of seven rock grape populations survival of wild species and ensures that genetic resources are avail- proposed as in situ conservation sites, four were finally established as able for study or potential use in research and breeding programs. Both the first such conservation sites within the NPGS. In the final year of in situ (i.e., preserving wild populations in their natural habitats) and the project, work focused on populations of Caloosa grape (Vitis ex situ approaches are important to the conservation of genetic shuttleworthii House), an endemic to central and southern Florida, and resources (Bretting and Duvick, 1997; Dulloo et al., 1998; Merezhko, sweet mountain grape (Vitis monticola Buckl.), an endemic on the 1998; Nevo, 1998). Most of our staple crops are native to other Edwards Plateau in central Texas. continents, which means that in situ conservation of wild crop relatives Caloosa and sweet mountain grapes are important to agriculture for in America will have a limited role in the U.S.
    [Show full text]
  • Research Progress Reports for Pierce's Disease and Other
    2019 Research Progress Reports Research Progress Reports Pierce’s Disease and Other Designated Pests and Diseases of Winegrapes - December 2019 - Compiled by: Pierce’s Disease Control Program California Department of Food and Agriculture Sacramento, CA 95814 2019 Research Progress Reports Editor: Thomas Esser, CDFA Cover Design: Sean Veling, CDFA Cover Photograph: Photo by David Köhler on Unsplash Cite as: Research Progress Reports: Pierce’s Disease and Other Designated Pests and Diseases of Winegrapes. December 2019. California Department of Food and Agriculture, Sacramento, CA. Available on the Internet at: https://www.cdfa.ca.gov/pdcp/Research.html Acknowledgements: Many thanks to the scientists and cooperators conducting research on Pierce’s disease and other pests and diseases of winegrapes for submitting reports for inclusion in this document. Note to Readers: The reports in this document have not been peer reviewed. 2019 Research Progress Reports TABLE OF CONTENTS Section 1: Xylella fastidiosa and Pierce’s Disease REPORTS • Addressing Knowledge Gaps in Pierce’s Disease Epidemiology: Underappreciated Vectors, Genotypes, and Patterns of Spread Rodrigo P.P. Almeida, Monica L. Cooper, Matt Daugherty, and Rhonda Smith ......................2 • Testing of Grapevines Designed to Block Vector Transmission of Xylella fastidiosa Rodrigo P.P. Almeida ..............................................................................................................11 • Field-Testing Transgenic Grapevine Rootstocks Expressing Chimeric Antimicrobial
    [Show full text]
  • Proceedings of the 2018 Pierce's Disease Research Symposium
    Proceedings of the 2018 Pierce’s Disease Research Symposium - December 2018 - Compiled by: Pierce’s Disease Control Program California Department of Food and Agriculture Sacramento, CA 95814 Editor: Thomas Esser, CDFA Cover Design: Sean Veling, CDFA Cover Photograph: Ken Freeze, Brown-Miller Communication Printer: California Office of State Publishing, Sacramento, California Cite as: Proceedings of the 2018 Pierce’s Disease Research Symposium. California Department of Food and Agriculture, Sacramento, CA. Available on the Internet at: https://www.cdfa.ca.gov/pdcp/Research.html Acknowledgements: Many thanks to the scientists and cooperators conducting research on Pierce’s disease and other pests and diseases of winegrapes for submitting reports for inclusion in this document. Note to Readers: The reports in this document have not been peer reviewed. TABLE OF CONTENTS Section 1: Xylella fastidiosa and Pierce’s Disease REPORTS • The Epidemiology of Novel Pdr1 Resistant Grapevines: Epidemic and Vector Movement Models to Support Integrated Disease Management Rodrigo Almeida. ...................................................................................................................................3 • Evaluating Potential Shifts in Pierce's Disease Epidemiology Rodrigo Almeida ..................................................................................................................................11 • Addressing Knowledge Gaps in Pierce’s Disease Epidemiology: Underappreciated Vectors, Genotypes, and Patterns of Spread Rodrigo
    [Show full text]
  • Floristic Composition of the South-Central Florida Dry Prairie Landscape Steve L
    Floristic Composition of the South-Central Florida Dry Prairie Landscape Steve L. Orzell Avon Park Air Force Range, 29 South Blvd., Avon Park Air Force Range, FL 33825-5700 [email protected] Edwin L. Bridges Botanical and Ecological Consultant, 7752 Holly Tree Place NW, Bremerton, WA 98312-1063 [email protected] ABSTRACT Floristic composition of the Florida dry prairie landscape was compiled from 291 sites in nine south-central peninsular counties. Floristic lists were based upon field inventory and compilation from reliable sources to- taling 11,250 site and community type-specific observations and were analyzed by region (Kissimmee River, Desoto/Glades “Big Prairie,” and Myakka). The known vascular flora consists of 658 vascular plant taxa, rep- resenting 317 genera and 115 families. Families with the highest number of species are Poaceae (103), Asteraceae (78), Cyperaceae (76), Fabaceae (23), Scrophulariaceae (20), and Orchidaceae (18). The most diverse genera are Rhynchospora (29), Dichanthelium (17), Ludwigia (13), Xyris (12), and Andropogon (11). Of this flora 24 taxa are endemic to central or southern peninsular Florida, primarily within the pine savanna- flatwood/dry prairie landscape, and 41 taxa are of Floridian biotic affinity. Although most species are not re- gionally specific, a few (Carphephorus carnosus, Ctenium aromaticum, and Liatris spicata) appear to be ab- sent from the Myakka prairie region, while Marshallia tenuifolia appears to be absent from both the Desoto/ Glades and Myakka prairie regions. Within the dry prairie landscape Hypericum edisonianum is restricted to the Desoto/Glades region. A few other species somewhat differentiate between prairie regions; however, most occur in other habitats in the counties where they are absent or nearly absent from dry prairie.
    [Show full text]
  • Orange River Preserve Plant Species List
    ORP Plant Species List Designated Status Scientific Name Common Name Native Status EPPC FDACS IRC FNAI Family: Phallaceae (stinkhorn) Clathrus ruber latticed stinkhorn native Family: Blechnaceae (midsorus fern) Blechnum serrulatum swamp fern native Woodwardia virginica Virginia chain fern native R Family: Dennstaedtiaceae (cuplet fern) Pteridium aquilinum var. caudatum lacy bracken native Family: Nephrolepidaceae (sword fern) Nephrolepis cordifolia tuberous sword fern exotic I Family: Polypodiaceae (polypody) Pleopeltis polypodioides resurrection fern native Family: Pteridaceae (brake fern) Acrostichum danaeifolium giant leather fern native Family: Vittariaceae (shoestring fern) Vittaria lineata shoestring fern native Family: Pinaceae (pine) Pinus elliottii var. densa south Florida slash pine native Family: Araceae (arum) Colocasia esculenta wild taro exotic I Family: Arecaceae (palm) Sabal palmetto cabbage palm native Serenoa repens saw palmetto native Syagrus romanzoffiana queen palm exotic ll Family: Bromeliaceae (pineapple) Tillandsia fasciculata var. densispica cardinal airplant native E Tillandsia recurvata ballmoss native Tillandsia setacea southern needleleaf native Tillandsia usneoides Spanish moss native Tillandsia utriculata giant airplant native E Family: Commelinaceae (spiderwort) Commelina diffusa common dayflower exotic Family: Cyperaceae (sedge) Cyperus erythrorhizos redroot flatsedge native Family: Dioscoreraceae (yam) Dioscorea bulbifera air-potato exotic I Family: Eriocaulaceae (pipewort) Syngonanthus flavidulus yellow
    [Show full text]
  • 22 - Effects Were Observed from the Xylem Saps Collected from Early Spring
    CHARACTERIZATION AND IDENTIFICATION OF PIERCE’S DISEASE RESISTANCE MECHANISMS: ANALYSIS OF XYLEM ANATOMICAL STRUCTURES AND OF NATURAL PRODUCTS IN XYLEM SAP AMONG VITIS Project Leader: Cooperator: Hong Lin Andrew Walker Crop Diseases, Pests, & Genetics Dept. of Viticulture and Enology USDA, ARS University of California Parlier, CA 93648 Davis, CA, 95616 Reporting Period: The results reported here are from November 2003 to October 2004. ABSTRACT This research tests the hypothesis that Pierce’s disease (PD) resistance is due to the presence of chemical factors, e.g. anti- microbial compounds expressed in the xylem sap that suppress Xylella fastidiosa (Xf) and /or are due to anatomical features of the xylem, e.g. pit membrane that restrict Xf’s mobility in xylem. A wide range of PD resistance from various genetic backgrounds of Vitis species was selected for this study. To determine if pathogen movement in xylem is related to anatomic structure, an inter-grafting method was used to evaluate the movement of Xf across between PD susceptible and resistant stems. SEM and quantitative PCR were used for this study. To test the effect of xylem sap, an in vitro bioassay method was developed. The preliminary bioassay results suggest that xylem saps from PD resistant grapes may have effect when the test was compared with the sap from V. vinifera cv. Chardonnay. INTRODUCTION Plants have evolved a variety of resistance and tolerance mechanisms against biotic stress. This rich diversity results in part from an evolutionary process driven by selection for acquisition of defense compounds against microbial attack or insect/animal predation. As pesticide use becomes more restricted, it becomes increasingly important to explore and utilize compounds from plant’s natural defense systems.
    [Show full text]
  • PINWR Area Plant List As of 3-25-2012
    Pelican Island National Wildlife Refuge Area Plant List as 3/9/2018 Family Common name Scientific name Pteridaceae Giant leather fern Acrostichum danaeifolium Asteraceae Chalky bluestem Andropogon glomeratus Apocynacae Latexplant Araujla odorata Apocynacae Scarlet milkweed*** Asclepias curassavica Bataceae Saltwort Batis maritima Asteraceae Comon beggars ticks Bidens alba Asteraceae Sea oxeye daisy Borrichia frutescens Burseraceae Gumbo limbo Bursera simarouba Lamiaceae Beautyberry Callicarpa americana Caricaceae Papaya Carica papaya Fabaceae Spurred butterfly pea Centrosema virginianum Rubiacae Snowberry Chiococca alba Polygonaceae Sea grape Coccoloba uvifera Combretaceae Green buttonwood Conocarpus erectus Fabaceae Rattlebox*** Crotalaria spectabilis Euphorbiaceae Beach tea Croton punctatus Fabaceae Coin vine Dalbergia ecastaphyllum Orchidaceae Florida butterfly orchid Encyclia tampensis Fabaceae Coral bean Erythrina herbacea Euphorbiaceae Paintedleaf Euphorbia cyathophora Asteraceae Yellowtop Flaveria linearis Oleaceae Florida privet Forestiera segregata Asteraceae Blanket flower Gaillardia pulchella Asteraceae Beach dune sunflower Helianthus debilis Boraginaceae Scorpionstail Heliotropium angiospermum Boraginaceae Seaside heliotrope Heliotropium curassavicum Ipomaceae Moon vine Ipomoea alba Ipomaceae Railroad vine Ipomoea pes-capre Solanaceae Christmas berry Lycium carolinianum Poaceae Natal grass* Melinis repens Loasaceae Poor man's patch Mentzleia floridana Cucurbitaceae Wild balsam apple Momordica charantia Lamiaceae Dotted horsemint
    [Show full text]
  • Technical Abstracts 2005 Program Committee
    American Society for Enology and Viticulture 56TH Annual Meeting June 20-24, 2005 Washington State Convention & Trade Center Seattle, Washington Technical Abstracts 2005 Program Committee Program Committee Chair Robert Wample, California State University, Fresno Linda Bisson, University of California, Davis Charles Edwards, Washington State University Sanliang Gu, California State University, Fresno Edward Hellman, Texas A&M University Patricia Howe, Allied Domecq Technical Services James Lapsley, University of California Davis Extension Patty McClain, Kathryn Hall Vineyards Sara Spayd, Washington State University, Prosser Poster Sessions Chair Thomas Davenport, National Grape Cooperative Copyright © 2005. The American Society for Enology and Viticulture (ASEV) is not responsible for incorrect listings or errors in the abstracts. The ASEV Annual Meeting and related documents and graphics are the property of the ASEV. Reproduction of any part of the ASEV Annual Meeting in any form with- out written consent is strictly prohibited. Permission requests may be submitted to the managing editor ([email protected]). All presentations of any form are exclusive and released only to the ASEV and its recording contractor for repro- duction in any form including electronic/Internet distribution. The ASEV is not responsible for statements or opinions printed in its publica- tions; they represent the views of the authors or the persons to whom they are credited and are not binding on the ASEV as a whole. Any participant presenting any material for which copyright laws apply is solely responsible for adhering to such laws. The mention of products or services in the ASEV 56th Annual Meet- ing Technical Abstracts does not imply endorsement of these or other products.
    [Show full text]
  • A Vascular Plant Inventory and Description of the Twelve Plant Community Types Found in the University of South Florida Ecologic
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 7-29-2005 A Vascular Plant Inventory and Description of the Twelve Plant Community Types Found in the University of South Florida Ecological Research Area, Hillsborough County, Florida Anne Candace Schmidt University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Schmidt, Anne Candace, "A Vascular Plant Inventory and Description of the Twelve Plant Community Types Found in the University of South Florida Ecological Research Area, Hillsborough County, Florida" (2005). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/855 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Vascular Plant Inventory and Description of the Twelve Plant Community Types Found in the University of South Florida Ecological Research Area, Hillsborough County, Florida by Anne Candace Schmidt A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Biology College of Arts and Sciences University of South Florida Co-Major Professor: Richard P. Wunderlin, Ph.D. Co-Major Professor: Frederick B. Essig, Ph.D. Gordon A. Fox, Ph.D. Date of Approval: July 29, 2005 Keywords: floristic
    [Show full text]
  • Coefficients of Conservatism Values and the Floristic Quality Index for the Vascular Plants of South Florida
    U.S. Department of the Interior U.S. Fish and Wildlife Service Coefficients of Conservatism Values and the Floristic Quality Index for the Vascular Plants of South Florida Coefficients of Conservatism Values and the Floristic Quality Index for the Vascular Plants of South Florida Steve Mortellaro1, Mike Barry 2, George Gann3, John Zahina4, Sally Channon5, Charles Hilsenbeck6, Douglas Scofield7, George Wilder8 and Gerould Wilhelm9 1U. S. Fish and Wildlife Service, 1339 20th Street, Vero Beach FL 32960 2U. S. Fish and Wildlife Service, Naples, FL (Formerly) 2Institute for Regional Conservation, 22601 S.W. 152 Ave., Miami, FL 33170 (Currently) 3Institute for Regional Conservation, 22601 S.W. 152 Ave., Miami, FL 33170 4 South Florida Water Management District, 3301 Gun Club Road, West Palm Beach, FL 5Palm Beach County Department of Environmental Resources Management, 2300 North Jog Rd, 4th Floor, West Palm Beach, FL 33411 6 17516 Birchwood Drive, Boca Raton, FL 33487 7University of California, Los Angeles, 1509 Life Sciences, Box 951786, Los Angeles, CA 90095-1786 8Naples Botanical Garden, 4820 Bayshore Drive, Naples, FL 34112 9Conservation Design Forum, Inc., 375 W. First Street, Elmhurst, IL 60126 January 2009 South Florida Ecological Services Field Office Vero Beach, Florida Table of Contents ABSTRACT.................................................................................................................................... 1 Introduction....................................................................................................................................
    [Show full text]