Flea Beetles (Coleoptera: Chrysomelidae, Alticinae)

Total Page:16

File Type:pdf, Size:1020Kb

Flea Beetles (Coleoptera: Chrysomelidae, Alticinae) Crop Protection 77 (2015) 38e44 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Flea beetles (Coleoptera: Chrysomelidae, Alticinae) in Bt- (MON810) and near isogenic maize stands: Species composition and activity densities in Hungarian fields * Agnes Szen asi a, , Viktor Marko b a Plant Protection Institute, Faculty of Agriculture and Environmental Sciences, Szent Istvan University 2100 God€ oll€ oP} ater K. str. 1, Hungary b Department of Entomology, Faculty of Horticultural Science, Corvinus University of Budapest 1118 Budapest Menesi str. 44, Hungary article info abstract Article history: Flea beetles (Chrysomelidae, Alticinae) were collected with Pherocon AM yellow sticky traps in maize Received 2 April 2015 plots to compare the assemblages from transgenic Bt- (genetic event MON810, producing Cry1Ab protein Received in revised form effective against lepidopteran pests) and near isogenic maize in Hungary. Altogether, 51,348 flea beetle 7 July 2015 individuals from 26 species were collected. The dominant species were Phyllotreta atra (F.) and Phyllotreta Accepted 8 July 2015 vittula (Redtenbacher). Their abundances along with other (non-P. atra and non-P. vittula) flea beetle Available online 25 July 2015 species showed no significant differences between Bt- and isogenic maize plots. Similarly, no difference was found between Bt maize and isogenic maize plots in the species richness of the flea beetle Keywords: Flea beetles assemblages. © Bt maize 2015 Elsevier Ltd. All rights reserved. MON810 Species composition Phyllotreta atra Phyllotreta vittula 1. Introduction exposed to the Cry1Ab protein, e.g., the Cry1Ab toxin was detected in the flea beetle Chateocnema pulicaria Melsheimer feeding on The Cry1Ab toxin produced by maize hybrids containing MON810 maize (Harwood et al., 2005), although herbivores with MON810 event is highly effective in controlling target Lepidoptera different types of mouthparts (chewing, sucking) may ingest larvae (Ostrinia nubilalis (Hübner), Pyralidae and Sesamia non- different amounts of Bt toxin. Also, predators consuming agrioides (Lefebvre), Noctuidae) and may also affect larvae of other phytophagous insects containing Cry1Ab toxin may move the toxin Lepidoptera species (e.g. Helicoverpa armigera (Hübner) [Eizaguirre into higher trophic levels (Harwood et al., 2005). et al., 2010; Kiss et al., 2003] Mythimna unipuncta (Haworth) European Union legislation requires a pre-market risk assess- [Eizaguirre et al., 2010; Pilcher et al., 1997]). However, maize fields ment of genetically modified crops before commercial use (EC, harbour species rich assemblages of other arthropod groups 2001, 2002; EFSA, 2010; EU, 2013). For that purpose, this study (Mesz aros et al., 1984), including flea beetles, which are present in examined potential effects of genetically modified maize express- maize stands in high numbers, occasionally causing damage in both ing the Cry1Ab toxin on non-target, within-maize herbivores, using Europe (Vor€ os€ and Maros, 2004) and North America (Hoffmann flea beetles as model species. et al., 1995). These phytophagous insects in maize may also serve Several studies have found no differences in abundance, sea- as prey for predacious species (Arpas et al., 2005). The presence of sonal activity and assemblage characteristics in several non-target the Cry1Ab protein in all maize plant parts throughout the whole herbivore taxa in Bt (MON810) and isogenic maize (Balog et al., growing season might affect a number of associated organisms 2010a,b; Bourguet et al., 2002; Daly and Buntin, 2005; Lozzia, besides the target pests. Herbivores feeding on maize may be 1999; Lozzia and Rigamonti, 1998; Musser and Shelton, 2003; Sehnal et al., 2004). These same authors have raised the impor- tance of longer term field studies to detect possible cumulative effects over several seasons, to determine thresholds for detecting * Corresponding author. E-mail address: [email protected] (A. Szen asi). any effects and for selecting suitable species for impact studies. The http://dx.doi.org/10.1016/j.cropro.2015.07.008 0261-2194/© 2015 Elsevier Ltd. All rights reserved. A. Szenasi, V. Marko / Crop Protection 77 (2015) 38e44 39 necessity of a more ecological approach in the study of the potential our study was to complete and supplement these data. impact of growing GM crops on non-target organisms is raised by Cry1Ab protein (MON810 event) shows high specificity to target Andow et al. (2006, 2013), Arpaia et al. (2014), Lovei€ and Arpaia organisms (Ostrinia nubilalis, Sesamia nonagrioides) under labora- (2005), Lovei€ et al. (2009). tory studies (Tier1), and variable mortality to larvae of numerous Several studies have been conducted in Hungary on economi- Lepidoptera species (MON810 SO Update, Perry et al., 2010, 2011) cally important maize pests, secondary pests, other herbivores, and (Tier1a and b, Tier2) and by maize hybrids on the field (Tier3) predators including a 10-year maize ecosystem research study (intended effect). However, only a few in-planta data (unintended (Mesz aros et al., 1984). This faunal survey, however, focused pri- effect) are available about flea beetles in connection with secondary marily on the occurrence of arthropod taxa in the studied maize metabolites and others (Bak et al., 1999; Nielsen et al., 2001; fields and did not collect data on their abundance. Because the Verpoorte and Memelink, 2002). The further purpose of this Cry1Ab toxin is expressed in all maize tissues sampling should study was to survey for possible un-intended effects of the MON810 examine all groups of herbivores in maize that occur at high enough maize on flea beetles. density to permit quantitative comparisons between Bt and isogenic maize. 2. Materials and methods Our study group, flea beetles are best known as pests of Bras- sicaceae crops (Bohinc et al., 2013; Saringer, 1990; Trdan et al., 2.1. Experimental site 2008). In contrast, Phyllotreta vittula (Redtenbacher) has been recorded as a pest on cereals (including maize) (Fritzsche, 1971; The two-year (2002 and 2003) field experiment was carried out Szeoke,} 1997), sugar beet and crucifers (Naibo, 1974), including in an isolated maize stand located near Budapest (GPS, N: 47 250; yellow mustard (Hurej et al., 1997). Vig (1998a) reported a wide E: 18 470), Hungary, surrounded by large stone fruit orchards host range of P. vittula including grasses, maize and Brassicaceae, (apricot, peach and plum). Plots within the experimental field were but damage in Hungary is reported only on cereals, such as maize arranged in a randomized complete block design with six replica- (Nagy and Deseo,} 1969; Szeoke,} 1997). Phyllotreta vittula has been tions. The plots (sized 30 Â 30 m) were planted either with Bt maize found damaging maize in Hungary (Gyulai and Garay, 1996; (DK 440 BTY e transformation event MON810) or with its near Hinfner and Papp, 1961; Jablonowski, 1906; Nagy and Deseo,} isogenic line (DK 440) on chernozem soil. An alley distance of 3 m 1969; Szeoke} et al., 1996; Szeoke,} 1997; Szucs,} 1973; Vor€ os€ and was used between replications. A retention zone (a pollen capture Maros, 2004), in the former Soviet Union (Arnoldi and Gurjeva, crop surrounding the entire test field) was established to a maize 1960; Scsegolev, 1952), in Germany (Sorauer, 1954), in Poland hybrid of similar maturity ground to the test hybrid, in accordance (Kania, 1962), in the former Czechoslovakia (Hruska, 1962), in with the requirements of the release permit. France (Leclant, 1977), in the former Yugoslavia (Sekulic et al., 1989) Maize was planted at a seed rate of 65,000 seeds/ha and was and in Romania (Grozea et al., 2006), making it one of the most reduced to 50,000 plants/ha after emergence. Sowing was in late important Coleoptera species attacking maize foliage (Sekulic et al., April and maize was harvested in mid-October to early November 1989). Leaf-damage by P. vittula is most pregnant in spring on the depending on the year. juvenile plants (Saringer, 1990; Scsegolev, 1951; Szeoke} et al., 1996). In addition to P. vittula, Chaetocnema aridula (Gyllenhal) is found 2.2. Sampling in Hungary on maize and other cereals (Saringer, 1990). The flea beetle Epitrix cucumeris (Harris) is an early season pest of maize in Flea beetle adults were collected with Pherocon AM yellow Kansas, USA, where chemical controls have occasionally been sticky traps (Trece Inc. California, USA), since yellow colour has long needed (Wilde et al., 2004). Chaetocnema pulicaria is a pest of maize been known as attractive for flea beetles (Hung and Hwang, 2000; in the USA (Steffey et al., 1999) and an important pest of sweet corn Vincent and Stewart, 1986). Three traps/plot were placed between in Iowa (Hoffmann et al., 1995). rows 20 and 21, 7.5 m apart and 7.5 m from the field edge. Traps In Hungary, dense flea beetle populations occur only in periods were fixed to a wooden stick at a height of maize canopy until of dry, sunny weather (Saringer, 1990), when young maize plants silking, when they were adjusted to ear height. In 2002, traps were are especially susceptible to injury if drought stressed (Szeoke} et al., changed weekly, and according to the experiences of the first year, 1996; Vor€ os€ and Maros, 2004). In older plants, flea beetles reduce in order to reduce efforts and costs of sampling, in 2003 they were foliar area and thus photosynthesis (Szeoke} et al., 1996). Under dry changed fortnightly. Sampling took place from late May to late conditions, damage increases and plant development is inhibited September in 2002 and from early June to mid-September in 2003. (Nagy and Deseo,} 1969). Among different crops the most conspic- Flea beetle adults were removed by petrol from the traps and uous injury by P. vittula is found in maize, mainly on the edges of submitted to I. Rozner (Museum of Natural History, Budapest) for fields and in unevenly emerged stands. In some cases, the lower identification. Collected adults were identified using the key of 1e4 leaves of certain maize plants are totally destroyed (Gyulai and Warchalowsky (2003).
Recommended publications
  • Morphological Systematics of the Nightshade Flea Beetles Epitrix
    Clemson University TigerPrints All Theses Theses 8-2016 Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico Anthony Martin Deczynski Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Deczynski, Anthony Martin, "Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico" (2016). All Theses. 2479. https://tigerprints.clemson.edu/all_theses/2479 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MORPHOLOGICAL SYSTEMATICS OF THE NIGHTSHADE FLEA BEETLES EPITRIX FOUDRAS AND ACALLEPITRIX BECHYNÉ (COLEOPTERA: CHRYSOMELIDAE: GALERUCINAE: ALTICINI) IN AMERICA NORTH OF MEXICO A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Anthony Martin Deczynski August 2016 Accepted by: Dr. Michael Caterino, Committee Chair Dr. Peter Adler Dr. J. Antonio Baeza ABSTRACT The flea beetle genera Epitrix and Acallepitrix are revised for America North of Mexico, building on a prior preliminary revision of the genus Epitrix by the author (Deczynski 2014). Four new species are described: Epitrix cuprea sp. nov., E. rileyi sp. nov., E. latifrons sp. nov., and E. vasinoda sp. nov., bringing the North American Epitrix fauna to a total of 26 species. A key is provided to adults of all species.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Epidemiology and Disease Management of Stewart's Disease of Corn in Iowa Paul David Esker Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2005 Epidemiology and disease management of Stewart's disease of corn in Iowa Paul David Esker Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Plant Pathology Commons Recommended Citation Esker, Paul David, "Epidemiology and disease management of Stewart's disease of corn in Iowa " (2005). Retrospective Theses and Dissertations. 1727. https://lib.dr.iastate.edu/rtd/1727 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Epidemiology and disease management of Stewart's disease of corn in Iowa by Paul David Esker A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Plant Pathology; Statistics Program of Study Committee: Philip M. Dixon, Co-major Professor Forrest W. Nutter, Jr., Co-major Professor Charles C. Block Petrutza C. Caragea Mark L. Gleason S. Elwynn Taylor Iowa State University Ames, Iowa 2005 UMI Number: 3200414 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Insect Management
    C H A P T E R 5 INSECT MANAGEMENT “change in form.” Pests of field crops undergo either sim- LEARNING OBJECTIVES ple or complete metamorphosis. After completely studying this chapter, you should: Group 1. Simple Metamorphosis I Understand how insects grow and develop. When insects that develop by simple metamorphosis hatch from their eggs, they resemble the adult insects I Understand the difference between simple and com- except that the immatures, or nymphs, do not have plete metamorphosis. wings. Nymphs periodically molt, growing larger. After I Be able to identify general and major insect pests of the final molt, nymphs become adults and generally have alfalfa, corn, dry beans, soybeans, small grains, and wings. Many pests of field crops such as potato leafhop- sugar beets. per, sugarbeet root aphid, tarnished plant bug, and grasshoppers develop by simple metamorphosis. I Be able to describe the life cycles and habitats of the Nymphs and adults are often found together in the crop major field crop pests. and usually eat the same food. Insect damage reduces crop yield or quality, or conta- minates the final product. Insects can also transmit plant diseases. To effectively control insect pests, you should understand how insects grow and develop. Egg Nymphs Adult GROWTH AND DEVELOPMENT A plant bug is an example of an insect with simple Growth metamorphosis. An insect’s body is confined in a protective exoskele- Group 2. Complete Metamorphosis ton. This hard outer covering does not grow continuous- ly. A new, soft exoskeleton is formed under the old one, Insects that develop by complete metamorphosis and the old exoskeleton is shed—a process called molt- make a radical change in appearance from immature to ing.
    [Show full text]
  • Flea Beetles (Order: Coleoptera, Family: Chrysomelidae/Alticinae) Tobacco (Epitrix Hirtipennis (Melsheimer)) Southern Tobacco (
    Flea beetles (Order: Coleoptera, Family: Chrysomelidae/Alticinae) Tobacco (Epitrix hirtipennis (Melsheimer)) Southern tobacco (Epitrix fasciata (Blatchley)) Pale striped (Systena blanda (Melsheimer)) Description: Adult: The tobacco and southern tobacco flea beetle adults are small (1.4- 2.2 mm in length) and reddish, yellow brown, with a brown patch across the width of the elytra. The southern tobacco adult is slightly smaller and wider than the tobacco flea beetle. The pale striped flea beetle adult is larger (3.0- 4.3 mm long) and has a pair of pale yellow stripes lengthwise down the back, one stripe on each elytron. Immature stages: All of the above species have three larval instars that are whitish with darker heads, and all feed on fine roots near the soil surface or occasionally tunnel into larger roots. The tobacco flea beetle larvae range Tobacco flea beetle adult. from 1 mm after hatching to 4.2 mm at maturity, while the pale stripe larvae range from 1 to 11 mm. Biology: Life cycle: Tobacco flea beetle females can lay up to 200 eggs which hatch in 6- 8 days. The larval development typically lasts from 16-20 days under warm conditions. The last instar larva forms a small cell in the soil where it pupates, and the adult emerges 4-5 days later for a total of 26-33 days. The pale striped flea beetle requires a longer time to develop from egg to adult, 28-54 days total. Seasonal distribution: There are 3-4 generations of the tobacco flea beetles per year. High numbers have been observed in south Georgia in late June in Solanaceous crop transplants, and we think that this is likely a second generation.
    [Show full text]
  • Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management
    Agron. Sustain. Dev. 30 (2010) 311–348 Available online at: c INRA, EDP Sciences, 2009 www.agronomy-journal.org DOI: 10.1051/agro/2009025 for Sustainable Development Review article Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review Ishita Ahuja,JensRohloff, Atle Magnar Bones* Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway (Accepted 5 July 2009) Abstract – Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management.
    [Show full text]
  • Data on Cerambycidae and Chrysomelidae (Coleoptera: Chrysomeloidea) from Bucureªti and Surroundings
    Travaux du Muséum National d’Histoire Naturelle © Novembre Vol. LI pp. 387–416 «Grigore Antipa» 2008 DATA ON CERAMBYCIDAE AND CHRYSOMELIDAE (COLEOPTERA: CHRYSOMELOIDEA) FROM BUCUREªTI AND SURROUNDINGS RODICA SERAFIM, SANDA MAICAN Abstract. The paper presents a synthesis of the data refering to the presence of cerambycids and chrysomelids species of Bucharest and its surroundings, basing on bibliographical sources and the study of the collection material. A number of 365 species of superfamily Chrysomeloidea (140 cerambycids and 225 chrysomelids species), belonging to 125 genera of 16 subfamilies are listed. The species Chlorophorus herbstii, Clytus lama, Cortodera femorata, Phytoecia caerulea, Lema cyanella, Chrysolina varians, Phaedon cochleariae, Phyllotreta undulata, Cassida prasina and Cassida vittata are reported for the first time in this area. Résumé. Ce travail présente une synthèse des données concernant la présence des espèces de cerambycides et de chrysomelides de Bucarest et de ses environs, la base en étant les sources bibliographiques ainsi que l’étude du matériel existant dans les collections du musée. La liste comprend 365 espèces appartenant à la supra-famille des Chrysomeloidea (140 espèces de cerambycides et 225 espèces de chrysomelides), encadrées en 125 genres et 16 sous-familles. Les espèces Chlorophorus herbstii, Clytus lama, Cortodera femorata, Phytoecia caerulea, Lema cyanella, Chrysolina varians, Phaedon cochleariae, Phyllotreta undulata, Cassida prasina et Cassida vittata sont mentionnées pour la première fois dans cette zone Key words: Coleoptera, Chrysomeloidea, Cerambycidae, Chrysomelidae, Bucureºti (Bucharest) and surrounding areas. INTRODUCTION Data on the distribution of the cerambycids and chrysomelids species in Bucureºti (Bucharest) and the surrounding areas were published beginning with the end of the 19th century by: Jaquet (1898 a, b, 1899 a, b, 1900 a, b, 1901, 1902), Montandon (1880, 1906, 1908), Hurmuzachi (1901, 1902, 1904), Fleck (1905 a, b), Manolache (1930), Panin (1941, 1944), Eliescu et al.
    [Show full text]
  • Millichope Park and Estate Invertebrate Survey 2020
    Millichope Park and Estate Invertebrate survey 2020 (Coleoptera, Diptera and Aculeate Hymenoptera) Nigel Jones & Dr. Caroline Uff Shropshire Entomology Services CONTENTS Summary 3 Introduction ……………………………………………………….. 3 Methodology …………………………………………………….. 4 Results ………………………………………………………………. 5 Coleoptera – Beeetles 5 Method ……………………………………………………………. 6 Results ……………………………………………………………. 6 Analysis of saproxylic Coleoptera ……………………. 7 Conclusion ………………………………………………………. 8 Diptera and aculeate Hymenoptera – true flies, bees, wasps ants 8 Diptera 8 Method …………………………………………………………… 9 Results ……………………………………………………………. 9 Aculeate Hymenoptera 9 Method …………………………………………………………… 9 Results …………………………………………………………….. 9 Analysis of Diptera and aculeate Hymenoptera … 10 Conclusion Diptera and aculeate Hymenoptera .. 11 Other species ……………………………………………………. 12 Wetland fauna ………………………………………………….. 12 Table 2 Key Coleoptera species ………………………… 13 Table 3 Key Diptera species ……………………………… 18 Table 4 Key aculeate Hymenoptera species ……… 21 Bibliography and references 22 Appendix 1 Conservation designations …………….. 24 Appendix 2 ………………………………………………………… 25 2 SUMMARY During 2020, 811 invertebrate species (mainly beetles, true-flies, bees, wasps and ants) were recorded from Millichope Park and a small area of adjoining arable estate. The park’s saproxylic beetle fauna, associated with dead wood and veteran trees, can be considered as nationally important. True flies associated with decaying wood add further significant species to the site’s saproxylic fauna. There is also a strong
    [Show full text]
  • BD5208 Wide Scale Enhancement of Biodiversity (WEB) Final Report on Phase 2, and Overview of Whole Project Executive Summary
    BD5208 Wide Scale Enhancement of Biodiversity (WEB) Final report on phase 2, and overview of whole project Executive summary Core objective The WEB project aimed to inform the development of new or existing Entry Level (ELS) and Higher Level Stewardship scheme (HLS) options that create grassland of modest biodiversity value, and deliver environmental ecosystem services, on large areas of land with little or no potential for creation or restoration of BAP Priority Habitat grassland. Specific objectives Quantify the success of establishing a limited number of plant species into seedbeds (ELS/HLS creation option) and existing grassland (currently HLS restoration option) to provide pollen, nectar, seed, and/or spatial and structural heterogeneity. Quantify the effects of grassland creation and sward restoration on faunal diversity/abundance, forage production and quality, soil properties and nutrient losses. Develop grazing and cutting management practices to enhance biodiversity, minimise pollution and benefit agronomic performance. Liaise with Natural England to produce specifications for new or modified ES options, and detailed guidance for their successful management. Overview of experiment: The vast majority of lowland grasslands in the UK have been agriculturally improved, receiving inputs of inorganic fertiliser, reseeding, improved drainage and are managed with intensive cutting and grazing regimes. While this has increased livestock productivity it has led to grasslands that are species-poor in both native plants and invertebrates. To rectify this simple Entry Level Stewardship scheme options have been developed that reduce fertiliser inputs; this includes the EK2 and EK3 options. While permanent grasslands receiving low fertiliser inputs account for the largest area of lowland managed under the agri-environment schemes they currently provide only minimal benefits for biodiversity or ecosystem services.
    [Show full text]
  • Corn Flea Beetle
    Pest Profile Photo credit: North Central Branch-Entomological Society of America, UNL-Entomology Extension Common Name: Corn flea beetle Scientific Name: Chaetocnema pulicaria Order and Family: Coleoptera, Chrysomelidae Size and Appearance: Length (mm) Appearance white have a pointy end Egg ~0.35 darken slightly in color before hatching white slimly shaped Larva/Nymph < 9 cylindrical prothorax and last abdominal segment are slightly darkened small shiny black Adult < 2 enlarged hind legs white Pupa (if soft in texture applicable) gets dark before development is complete Type of feeder (Chewing, sucking, etc.): Chewing mouthparts Host plant/s: Corn is the preferred host plant, but they are also found on a number of different grass types, oats, Timothy, barley and wheat. Description of Damage (larvae and adults): The adult corn flea beetle injures corn plants by removing leaf tissue and by transmitting pathogenic bacteria. Injury by the adults appears as scratches in the upper and lower surfaces of the leaf, usually parallel to the veins. They feed on both the upper and the lower epidermis of corn leaves, but they do not chew completely through the leaves. The scratches rarely result in economy injury. The leaves of severely injured plants appear whitish or silvery. More importantly, the beetles transmit the bacterium Erwinia stewartia, the casual organism of Stewart’s wilt, to susceptible varieties of corn. Field corn infested with Stewart’s disease will show little sign of disease until late in the summer when numerous leaf lesions will appear on the leaves. The result is often small ears or no ears at all.
    [Show full text]
  • The Life History and Management of Phyllotreta Cruciferae and Phyllotreta Striolata (Coleoptera: Chrysomelidae), Pests of Brassicas in the Northeastern United States
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2004 The life history and management of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae), pests of brassicas in the northeastern United States. Caryn L. Andersen University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Andersen, Caryn L., "The life history and management of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae), pests of brassicas in the northeastern United States." (2004). Masters Theses 1911 - February 2014. 3091. Retrieved from https://scholarworks.umass.edu/theses/3091 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE LIFE HISTORY AND MANAGEMENT OF PHYLLOTRETA CRUCIFERAE AND PHYLLOTRETA STRIOLATA (COLEOPTERA: CHRYSOMELIDAE), PESTS OF BRASSICAS IN THE NORTHEASTERN UNITED STATES A Thesis Presented by CARYN L. ANDERSEN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2004 Entomology © Copyright by Caryn L. Andersen 2004 All Rights Reserved THE LIFE HISTORY AND MANAGEMENT OF PHYLLOTRETA CRUCIFERAE AND PHYLLOTRETA STRIOLATA (COLEOPTERA: CHRYSOMELIDAE), PESTS OF BRASSICAS IN THE NORTHEASTERN UNITED STATES A Thesis Presented by CARYN L. ANDERSEN Approved as to style and content by: Tt, Francis X. Mangan, Member Plant, Soil, and Insect Sciences DEDICATION To my family and friends. ACKNOWLEDGMENTS I would like to thank my advisors, Roy Van Driesche and Ruth Hazzard, for their continual support, encouragement and thoughtful advice.
    [Show full text]
  • Barcoding Chrysomelidae: a Resource for Taxonomy and Biodiversity Conservation in the Mediterranean Region
    A peer-reviewed open-access journal ZooKeys 597:Barcoding 27–38 (2016) Chrysomelidae: a resource for taxonomy and biodiversity conservation... 27 doi: 10.3897/zookeys.597.7241 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region Giulia Magoga1,*, Davide Sassi2, Mauro Daccordi3, Carlo Leonardi4, Mostafa Mirzaei5, Renato Regalin6, Giuseppe Lozzia7, Matteo Montagna7,* 1 Via Ronche di Sopra 21, 31046 Oderzo, Italy 2 Centro di Entomologia Alpina–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 3 Museo Civico di Storia Naturale di Verona, lungadige Porta Vittoria 9, 37129 Verona, Italy 4 Museo di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano, Italy 5 Department of Plant Protection, College of Agriculture and Natural Resources–University of Tehran, Karaj, Iran 6 Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 7 Dipartimento di Scienze Agrarie e Ambientali–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy Corresponding authors: Matteo Montagna ([email protected]) Academic editor: J. Santiago-Blay | Received 20 November 2015 | Accepted 30 January 2016 | Published 9 June 2016 http://zoobank.org/4D7CCA18-26C4-47B0-9239-42C5F75E5F42 Citation: Magoga G, Sassi D, Daccordi M, Leonardi C, Mirzaei M, Regalin R, Lozzia G, Montagna M (2016) Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 27–38. doi: 10.3897/ zookeys.597.7241 Abstract The Mediterranean Region is one of the world’s biodiversity hot-spots, which is also characterized by high level of endemism.
    [Show full text]