Supporting Info-Revised-2

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Info-Revised-2 1 SUPPORTING INFORMATION (SI) TAXON SAMPLING: Hynobiidae: The family includes 54 species in ten genera (AmphibiaWeb, 2012). Besides the type genus Hynobius, Onychodactylus is included in our data matrix as a basal taxon of the family (e.g., Zhang et al., 2006). The fossil record of Hynobiidae is extremely poor, with only fragmentary material known from the upper Pliocene of Kazakhstan (Averianov and Tjudkova, 1995), and from the upper Miocene and lower Pleistocene of Romania (Venczel, 1999). More recently, the Early Cretaceous Liaoxitriton from China has been recognized as a stem-group taxon of the family (Chen and Gao, 2009). Cryptobranchidae: The family consists of three species in two genera (AmphibiaWeb, 2012). We included both Cryptobranchus and Andrias in our data matrix. In addition, the Middle Jurassic fossil taxon Chunerpeton (Gao and Shubin, 2003) from China is also included in this study. The latter taxon was named and described based on well-preserved specimens from the Daohugou site near Ningcheng, Inner Mongolia. The fossil beds exposed at the Daohugou site were mistakenly correlated with the Early Cretaceous Yixian Formation (Wang et al., 2000), but have been consistently dated as 164-165 Ma by independent research groups (Chen et al., 2004; Liu et al., 2006; Yang and Li, 2008), and thus are Middle Jurassic (Bathonian-Callovian) in age. Dicamptodontidae and Rhyacotritonidae: The family Dicamptodontidae, commonly known as Pacific giant salamanders, includes four living species in the single genus Dicamptodon (AmphibiaWeb, 2012). In addition, Dicamptodon is recorded by fossil material from the Paleocene of Alberta, Canada (Naylor and Fox, 1993). Several other fossil taxa (Bargmannia from the Miocene of Slovakia, Chrysotriton from the lower Eocene of North Dakota, Geyeriella and Wolterstorffiella from the upper Paleocene of Germany) were previously assigned to the Dicamptodontidae solely based on the position of spinal nerve foramina (Estes, 1981; Roček, 1994), but these are currently treated as enigmatic forms with uncertain taxonomic positions (Milner, 2000; Venczel, 2008). Among these, the generic name Bargmannia Herre, 1955 has been found to be a junior homonym of the siphonophore Bargmannia Totton, 1954 (Naish, 2008). In any case, these problematic fossil taxa are not included in our phylogenetic analysis because of their uncertain taxonomic status (see Milner, 2000 for discussion). The monotypic family Rhyacotritonidae has four living species in the genus Rhyacotriton (AmphibiaWeb, 2012). Known as the torrent salamanders of the Pacific northwest region of the United States, Rhyacotriton was previously classified in Dicamptodontidae or Ambystomatidae, but has been formally recognized as the type genus of the Rhyacotritonidae by Good and Wake (1992). No fossils referable to the Rhyacotritonidae are known. Salamandridae: The family Salamandridae was traditionally subdivided into the “true salamanders” and the “newts,” but these informal groups have been formally recognized as the subfamilies Salamandrinae and Pleurodelinae, respectively (Dubois and Raffaëlli, 2009) based on the molecular analysis of Zhang et al. (2008). In addition, a third subfamily (Salamandrininae) has also been recognized to include Salamandrina and the Oligocene fossil genus Archaeotriton (Dubois and Raffaëlli, 2009). Our data matrix included three taxa of the family group: Taricha and Tylototriton as representatives of the Pleurodelinae, and Salamandra as the representative of 2 the Salamandrinae. Taricha has a fossil record extending to the Oligocene in North America, and both Salamandra and Tylototriton have been recorded from the Eocene of Europe (Estes, 1981; Venczel, 2008). Amphiumidae: The family includes the genus Amphiuma, with three living species and a Paleocene occurrence of the genus. All taxa are North American in distribution (Estes, 1981). The earliest record of the family is documented by Proamphiuma from the latest Cretaceous (see Gardner, 2003b). The fossil taxon Paleoamphiuma from the Eocene Green River Formation was reported as an amphiumid in the original publication (Rieppel and Grande, 1998), but a recent review of the fossil material has shown it may be a sirenid (Gardner, 2003b). Since a formal revision of the taxon is in progress, this significant taxon is excluded from our analysis until the correct information concerning it is available in publication. Nonetheless, inclusion or exclusion of this fossil taxon has no effect on the stratigraphic range of the family Amphiumidae or Sirenidae, as both families have an early record back to Cretaceous time (Estes, 1981; Milner, 2000; Gardner, 2003a, b). Proteidae: This is a small family including only the genera Necturus and Proteus. The former genus has five living species in North America, and the latter a single species known from Europe (AmphibiaWeb, 2012). Both genera are included in our data matrix. Necturus has a fossil record extending to the Paleocene in North America (Naylor, 1978a), and Proteus to the Pleistocene in Europe (Estes, 1981). In addition, fragmentary fossil material has been described under the names Mioproteus and Orthophyia from the Miocene of North Caucasus, Germany, and Hungary (Estes and Darevsky, 1977; Estes and Schleich, 1994; Roček, 2005), and from the Pliocene of Poland (Młynarski et al., 1984). These Neogene fossil proteids are not included in our phylogenetic analysis because both taxa are poorly diagnosed, being based on fragmentary material. Sirenidae: Another small family, consisting of Siren and Pseudobranchus, each with two species (AmphibiaWeb, 2012). The fossil record of the family is poor, with Habrosaurus as the only well-known genus, based on material from the Late Cretaceous (middle Campanian) and middle Paleocene of North America (Gardner, 2003a). Two Gondwanan fossil salamanders, Kababisha (Cenomanian, Sudan) and Noterpeton (Maastrichtian, Bolivia), each based on fragmentary material, were regarded as possible sirenids (Evans and Werner, 1996), but a recent review of the evidence has excluded these enigmatic taxa from the Sirenidae (Gardner, 2003a). Plethodontidae: Commonly known as “lungless salamanders,” the Plethodontidae are by far the most species diverse group of salamanders, having 419 species recognized at present (AmphibiaWeb, 2012). The family consists of two subfamilies, Hemidactyliinae and Plethodontinae. Two taxa are included in our data matrix, Plethodon and Desmognathus, both from the subfamily Plethodontinae. Ambystomatidae: The family includes a single genus Ambystoma, with 32 extant species named and described so far (AmphibiaWeb, 2012). Among these, Ambystoma mexicanum is probably the best-known salamander taxon with over thousand publications on various aspects of the famous salamander species. The earliest fossil record of the family is described under the name Ambystoma tiheni based on fossils from the lower Oligocene of Saskatchewan in western Canada 3 (Holman, 1968; Estes, 1981). Although classified in the Ambystomatidae, the ichnogenus Ambystomichnus Peabody, 1954 is known by trackways from Paleocene beds in Montana (Gilmore, 1928; Peabody, 1954) and Eocene beds of Wyoming (Foster, 2001). Because no character in our data matrix can be scored for Ambystomichnus, the ichnotaxon is excluded from our phylogenetic analysis. Mesozoic Fossil Taxa: In the past decade, a number of crown-group salamanders have been named and described based on the material from Jurassic and Cretaceous deposits in China. Several of these taxa are included in our data matrix: Chunerpeton, Pangerpeton, Liaoxitriton, and the new taxon Beiyanerpeton. Several other taxa (e.g., Laccotriton, Sinerpeton, and Jeholotriton) are excluded from this analysis because they are anatomically uncertain and are currently under taxonomic revision. Among Mesozoic salamanders known from North America, Iridotriton was described as a putative salamandroid based on a partial skeleton from the Upper Jurassic Morrison Formation (Evans et al., 2009). The Morrison Formation has yielded 40Ar/39Ar dates of 148-150 Ma (Kowallis et al., 1998), and thus, is Tithonian in age (International Commission on Stratigraphy, 2009). This Jurassic taxon (78% missing data in our data matrix) is included in our phylogenetic analysis because of its age, biogeographic significance, and its putative salamandroid affinity as described in the original publication. Among the Mesozoic salamanders known from Europe, Valdotriton from the Lower Cretaceous (Barremian) of Spain represents an important record (Evans and Milner, 1996), and this taxon is included in our analysis as a fossil representative of the Salamandroidea. Among the several salamanders known from the Kirtlington Quarry (Evans and Milner, 1994), Marmorerpeton and the undescribed “salamander A” are non-crown group salamanders (Evans and Milner, 1996; Milner, 2000). Also from the Kirtlington Quarry, the so-called “salamander B” is mentioned as a possible “crown-salamander” (Milner, 2000), but cannot be incorporated into a phylogenetic analysis before its nomenclatural status is established by formal publication with illustration and description of the specimens. CHARACTER CODING: The characters used in the phylogenetic analysis include both binary and multistate alternatives (e.g., Siddall and Jensen, 2003). Coding of skeletal characters for extant salamanders is based on information from representative specimens of each group and data published in the literature, with the sources of information as listed below.
Recommended publications
  • First Turtle Remains from the Middle-Late Jurassic Yanliao Biota, NE China
    Vol.7, No.1 pages 1-11 Science Technology and Engineering Journal (STEJ) Research Article First Turtle Remains from the Middle-Late Jurassic Yanliao Biota, NE China Lu Li1,2,3, Jialiang Zhang4, Xiaolin Wang1,2,3, Yuan Wang1,2,3 and Haiyan Tong1,5* 1 Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2 CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China 3 College of Earth and Planetary Sciences, University of China Academy of Sciences, Beijing 100044, China 4 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China 5 Palaeontological Research and Education Centre, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand * Corresponding author: [email protected] (Received: 14th August 2020, Revised: 11th January 2021, Accepted: 9th March 2021) Abstract - The Middle-Late Jurassic Yanliao Biota, preceding the Early Cretaceous Jehol Biota in NE China has yielded a rich collection of plant, invertebrate and vertebrate fossils. But contrary to the Jehol Biota which is rich in freshwater vertebrates, in the Yanliao Biota the aquatic reptiles are absent, and turtles have not been reported so far. In this paper, we report on the first turtle remains from the Yanliao Biota. The material consists of a partial skeleton from the Upper Jurassic Tiaojishan Formation of Bawanggou site (Qinglong, Hebei Province, China). Characterized by a broad skull with a pair of sulci carotici and a remnant of an interpterygoid vacuity, a well-developed anterior lobe of the plastron with mesiolaterally elongated epiplastra and a relatively large oval entoplastron; it is assigned to Annemys sp.
    [Show full text]
  • IGCP 632, the Jurassic–Cretaceous Transition In
    IGCP 79 IGCP 632, The Jurassic–Cretaceous transition in North Eastern China (western Liaoning and Inner Mongolia): An IGCP meeting and field excursion on the conti- nental Jurassic Jingeng Sha1, Yanhong Pan1, Enpu Gong2, and Vivi Vajda3* 1 LPS, Nanjing Institute of Geology & Paleontology, Nanjing 210008, China 2 Northeastern University, Shenyang 110004, China 3 Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden, *Corresponding author, E-mail: [email protected] Exposures of strata spanning the Jurassic–Cretaceous boundary been discovered. However, the correlation of the various lithostrati- occur within several basins in western Liaoning and adjacent Inner graphic units in this area is complicated due to patchy exposures and Mongolia. These continental successions host world-renowned plant the scarcity of radiometric constraints, which pose a challenge to researchers and animal fossils including feathered dinosaurs and the oldest flow- working on these deposits. ering plant, Archaeofructus. The first feathered dinosaurs from north- To understand the stratigraphy and context of the Jurassic–Creta- eastern China where found about 20 years ago and created a major ceous biota in Liaoning province, the second IGCP-632 symposium impact in science and the media. Since then, many new specimens have was organized in Liaoning, including a two-day presentation (Sep- Figure 1. (A) Sketch map over the field excursion area in north-eastern China. (B) enlargement of the field region showing the localities of the field stops. Episodes Vol. 40, no. 1 80 intracontinental orogenic system, the Yanshan Movement, and creating a new basin-range system in east Asia. Vivi Vajda presented new results (Peterffy et al., 2015; Vajda et al., 2016) where she compre- hensively analyzed the end-Triassic mass extinc- tion and aftermath and its causal mechanisms, particularly stressing the affects of Jurassic vol- canism in disrupting the major ecosystems but also its importance for fossilization.
    [Show full text]
  • BOA2.1 Caecilian Biology and Natural History.Key
    The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia
    [Show full text]
  • Caudata: Hynobiidae): Heterochronies and Reductions
    65 (1): 117 – 130 © Senckenberg Gesellschaft für Naturforschung, 2015. 4.5.2015 Development of the bony skeleton in the Taiwan salamander, Hynobius formosanus Maki, 1922 (Caudata: Hynobiidae): Heterochronies and reductions Anna B. Vassilieva 1 *, June-Shiang Lai 2, Shang-Fang Yang 2, Yu-Hao Chang 1 & Nikolay A. Poyarkov, Jr. 1 1 Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, Moscow 119991, Russia — 2 Department of Life Science, National Taiwan Normal University, 88, Sec. 4 Tingchou Rd., Taipei 11677, Taiwan, R.O.C. — *Cor- responding author; vassil.anna(at)gmail.com Accepted 19.ii.2015. Published online at www.senckenberg.de / vertebrate-zoology on 4.v.2015. Abstract The development of the bony skeleton in a partially embryonized lotic-breeding salamander Hynobius formosanus is studied using the ontogenetic series from late embryos to postmetamorphic juveniles and adult specimen. Early stages of skull development in this spe- cies are compared with the early cranial ontogeny in two non-embryonized lentic-breeding species H. lichenatus and H. nigrescens. The obtained results show that skeletal development distinguishes H. formosanus from other hynobiids by a set of important features: 1) the reduction of provisory ossifications (complete absence of palatine and reduced state of coronoid), 2) alteration of a typical sequence of ossification appearance, namely, the delayed formation of vomer and coronoid, and 3) the absence of a separate ossification center of a lacrimal and formation of a single prefrontolacrimal. These unique osteological characters in H. formosanus are admittedly connected with specific traits of its life history, including partial embryonization, endogenous feeding until the end of metamorphosis and relatively short larval period.
    [Show full text]
  • 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon
    INFORMATION REPORTS NUMBER 2010-05 FISH DIVISION Oregon Department of Fish and Wildlife 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 3406 Cherry Drive NE, Salem, OR, 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Sharon E. Tippery Brian L. Bangs Kim K. Jones Oregon Department of Fish and Wildlife Corvallis, OR November, 2010 This project was financed with funds administered by the U.S. Fish and Wildlife Service State Wildlife Grants under contract T-17-1 and the Oregon Department of Fish and Wildlife, Oregon Plan for Salmon and Watersheds. Citation: Tippery, S. E., B. L Bangs and K. K. Jones. 2010. 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon. Information Report 2010-05, Oregon Department of Fish and Wildlife, Corvallis. CONTENTS FIGURES.......................................................................................................................................
    [Show full text]
  • Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
    COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela­ tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char­ acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri­ nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac­ tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth­ odontini. The highly diversified tribe Bolitoglossini includes three super­ genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig­ ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char­ acterized. Range maps are presented for all genera. Relationships of all genera are discussed.
    [Show full text]
  • The Status of Three Uncommon Salamanders (Amphibia: Caudata) in Iowa
    Journal of the Iowa Academy of Science: JIAS Volume 95 Number Article 6 1988 The Status of Three Uncommon Salamanders (Amphibia: Caudata) in Iowa Jeffery D. Camper Drake University Let us know how access to this document benefits ouy Copyright © Copyright 1988 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Camper, Jeffery D. (1988) "The Status of Three Uncommon Salamanders (Amphibia: Caudata) in Iowa," Journal of the Iowa Academy of Science: JIAS, 95(4), 127-130. Available at: https://scholarworks.uni.edu/jias/vol95/iss4/6 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. )our. Iowa Acad. Sci. 95(4): 127-130, 1988 The Status of Three Uncommon Salamanders (Amphibia: Caudata) m Iowa JEFFREY D. CAMPER 1 Department of Biology, Drake University, Des Moines, Iowa 50311 The smallmouth salamander {Ambystoma texanum (Matthes)], blue-spotted salamander (Ambystoma laterale Hallowell), and central newt {Notophthalmus viridescens louisianensis (Wolterstorfl)] were studied in Iowa from fall 1982 through summer 1984. All three species have declined in abundance in Iowa. A. texanum is more abundant and widespread than was previously suspected, but is declining due to habitat destruction. Apparently, only two populations of A.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Missouri State Wildlife Action Plan Missouri Department of Conservation Conserving Healthy Fish, Forests, and Wildlife 2015
    Missouri State Wildlife Action Plan Missouri Department of Conservation CONSERVING HEALTHY FISH, FORESTS, AND WILDLIFE 2015 Missouri State Wildlife Action Plan 2015 Missouri is a national leader in fish, forest, and wildlife conservation due to Missouri citizens’ unique and proactive support of conservation efforts. The Conservation Department continues to build on our 79- year legacy of citizen-led conservation by outlining strategic priorities for the future to help us successfully manage fish, forest, and wildlife. Each of these priorities ties directly back to the heart of our mission: to manage and protect the fish, forest, and wildlife resources of the state and to provide opportunities for all citizens to use, enjoy, and learn about those resources. - Robert L. Ziehmer, Director Missouri Department of Conservation Missouri State Wildlife Action Plan 2015 FOREWORD issouri supports an abundant natural heri- examples of the state’s original natural communities tage, ranking 21st in the nation in terms of and outstanding biological diversity. The Depart- Mits numbers of native animal and plant spe- ment’s science-based efforts, aimed at understand- cies. There are over 180 native fish species, includ- ing life-history needs and habitat system dynamics, ing the endemic Niangua darter, that ply the state’s have benefited a variety of Missouri species, includ- aquatic habitats. More than 100 species of native ing recovery efforts of the American burying beetle, amphibians and reptiles occur in a myriad of habitats Ozark hellbender, eastern hellbender, eastern collared from mountain-top glades to lowland swamps. Mis- lizard, prairie massasauga rattlesnake, greater prai- souri supports nationally significant river and stream rie-chicken, bald eagle, peregrine falcon, pallid and systems, some of the largest forested tracts left in the lake sturgeons, Niangua darter, Topeka shiner, Virgin- Midwest, a high density of cave and karst features, ia sneezeweed, geocarpon, and Missouri bladderpod.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • A Relict Stem Salamander: Evidence from the Early Cretaceous of Siberia
    A relict stem salamander: Evidence from the Early Cretaceous of Siberia PAVEL P. SKUTSCHAS The early evolution of salamanders, which are one of the possible “stem salamander” from the Kimmeridgian–early three living groups of lissamphibians, is not well known. Tithonian (Morrison Formation) of the USA (Nesov 1992; Both stem- and crown-group salamanders first appeared Evans and Milner 1996; Gardner and DeMar 2013). Outside in the Middle Jurassic (Bathonian), but subsequently had China, all Bathonian vertebrate assemblages containing sala- different evolutionary histories: stem salamanders were manders are dominated by stem-group salamanders but later, thought to have gone extinct in the Late Jurassic, while at the end of the Middle Jurassic and into the Late Jurassic, crown salamanders persist to the present day. Here, I re- crown-group salamanders became the dominant salamander port the discovery of an indeterminate stem salamander in component in vertebrate assemblages everywhere. the Lower Cretaceous (Aptian–Albian) Ilek Formation of There has been only one report of possible stem sala- Western Siberia. This is new evidence that the most basal manders in post Jurassic deposits: three atlantal centra from salamanders survived beyond the Jurassic–Cretaceous the Aptian–Albian Cloverly Formation of Wyoming, USA boundary and co-existed with crown-group salamanders (Gardner and DeMar 2013: 486, fig. 1d). These atlantal centra during approximately the first 40 million years of the known could not be referred to any crown-group salamander family history of salamanders. The recognition of stem salaman- currently known from the North American Early Cretaceous, ders in the Early Cretaceous of Western Siberia adds to the and generally resemble some Jurassic stem salamander atlantal inventory of taxa that suggest this area was a refugium for centra (Gardner and DeMar 2013: 486).
    [Show full text]