Negative Refraction, Gain and Nonlinear Effects in Hyperbolic Metamaterials Christos Argyropoulos University of Texas at Austin, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical & Computer Engineering, Department of Electrical and Computer Engineering 2013 Negative refraction, gain and nonlinear effects in hyperbolic metamaterials Christos Argyropoulos University of Texas at Austin, [email protected] Nasim Mohammadi Estakhri University of Texas at Austin Francesco Monticone University of Texas at Austin Andrea Alu University of Texas at Austin, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons Argyropoulos, Christos; Estakhri, Nasim Mohammadi; Monticone, Francesco; and Alu, Andrea, "Negative refraction, gain and nonlinear effects in hyperbolic metamaterials" (2013). Faculty Publications from the Department of Electrical and Computer Engineering. 407. http://digitalcommons.unl.edu/electricalengineeringfacpub/407 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials Christos Argyropoulos, Nasim Mohammadi Estakhri, Francesco Monticone, and Andrea Alù* Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA *[email protected] Abstract: The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices. ©2013 Optical Society of America OCIS codes: (250.5403) Plasmonics; (160.3918) Metamaterials; (160.1190) Anisotropic optical materials. References and links 1. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). 2. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). 3. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006). 4. A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73(15), 155108 (2006). 5. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007). 6. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun 3, 1205 (2012). 7. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012). 8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). 9. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007). 10. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006). 11. M. G. Silveirinha, “Broadband negative refraction with a crossed wire mesh,” Phys. Rev. B 79(15), 153109 (2009). 12. M. G. Silveirinha and A. B. Yakovlev, “Negative refraction by a uniaxial wire medium with suppressed spatial dispersion,” Phys. Rev. B 81(23), 233105 (2010). #190422 - $15.00 USD Received 13 May 2013; revised 27 May 2013; accepted 28 May 2013; published 17 Jun 2013 (C) 2013 OSA 17 June 2013 | Vol. 21, No. 12 | DOI:10.1364/OE.21.015037 | OPTICS EXPRESS 15037 13. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012). 14. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012). 15. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012). 16. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011). 17. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012). 18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). 19. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005). 20. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2004). 21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999). 22. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010). 23. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express 17(26), 24060–24074 (2009). 24. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011). 25. R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013). 26. R. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003). 27. D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009). 28. C. Argyropoulos, P. Y. Chen, G. D'Aguano, N. Engheta, and A. Alù, “Boosting optical nonlinearities in epsilon- near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012). 29. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed. (Springer- Verlag, 1984). 30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985). 31. C. S. T. Design Studio, 2011, www.cst.com. 32. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84(4), 045424 (2011). 33. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012). 34. P.-Y. Chen and A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82(23), 235405 (2010). 35. P.-Y. Chen, M. Farhat, and A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Phys. Rev. Lett. 106(10), 105503 (2011). 36. C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012). 37. M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006). 1. Introduction Hyperbolic metamaterials [1–7] hold great promise to enable a wide range of novel, metamaterial-inspired electromagnetic devices that may become essential components of future microwave, infrared (IR) and optical circuits. These devices may realize lenses overcoming the diffraction limit [8–10], exhibit negative refraction [11,12], achieve perfect absorption [13,14] and broadband super-Planckian thermal emission [15], and increase the spontaneous radiation of emitters [16,17] in different frequency ranges. Negative refraction may be achieved in these metamaterials thanks to the hyperbolic dispersion of these structures